
Developing Custom Firmware for the
Red Storm SeaStar Network Interface

May 18, 2005

Kevin Pedretti
Sandia National Laboratories

ktpedre@sandia.gov

Trammell Hudson
OS Research

hudson+cug@osresearch.net

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

1 of 16

•Motivation

• SeaStar overview

• Development tools

• Description of C-based SeaStar firmware

•Optimization techniques

• Conclusion

Outline

2 of 16

Motivation

• Enhance attractiveness of Red Storm/SeaStar as a
NIC offload research platform

• C strikes good balance of usability and performance

– Excels at interfacing with hardware

– Hides register allocation and instruction scheduling

– Compiler optimizations reduce performance
penalty

• Global view

• Function inlining

• Passing function arguments in registers (ABI)

– Interoperates well with assembly

3 of 16

SeaStar Block Diagram

4 of 16

Development Tools – GNU Toolchain

• Pre-packaged Binutils/GCC source distribution
– gas, gcc, ld, objdump, etc.

• Targets little-endian PPC440
– PowerPC usually big-endian, PPC440 supports both

– Opteron is little-endian only

– Targeting little-endian avoids endianess conversions

– Introduces some quirks
• GCC little-endian PPC440 support less mature
• Some HW instructions not available (e.g., lmw)

5 of 16

Linking and Loading

• Link using GNU ld and custom linker script
• Defines SRAM regions for:
– Text (cached)
– Stack (cached)
– Uncached data
– Cached data

• ELF image converted to flat binary image
– 166 KB ELF 22 KB binary image

• Loading accomplished using Cray provided
mechanism

6 of 16

Debugging and Profiling

•GDB would be nice, difficult to implement

• Developed tracing tool

• Trace points inserted with:
trace(), trace_val(uint8_t value)

• Trace records stored in uncached SRAM ring buffer

• Tool on Service Management Workstation (SMW)
can retrieve any node’s trace log at any time

• 10 ns overhead per trace point, no overhead if
tracing turned off at compile time

7 of 16

Example of tracedump Output

e4681e8b: 24: 18ff0c4c mainloop+0014 (178 ns)
e4681ee4: 99: 63ff313c rx_complete+001c (84 ns)
e4681f0e: 0: 00ff318c rx_complete+006c (24 ns)
e4681f1a: 0: 00ff3198 rx_complete+0078 (374 ns)
e4681fd5: 5: 05ff12b4 handle_command+0030 (156 ns)
e4682023: 0: 00ff24b0 goaccel_tx_command+001c (80 ns)
e468204b: 0: 00ff24c0 goaccel_tx_command+002c (40 ns)
e468205f: 0: 00ff2124 resolve_source+0030 (18 ns)
e4682068: 0: 00ff212c resolve_source+0038 (102 ns)
e468209b: 0: 00ff2504 goaccel_tx_command+0070 (290 ns)

8 of 16

C Firmware

• Supports Portals API

• 3,434 SLOC C, 253 SLOC Assembly

• 22 KB Firmware image

•Originally derived from Cray assembly-based FW
in Nov. 2005

9 of 16Firmware Host Interface

10 of 16

Optimization – Caching

• PPC440 has 32 KB Icache, 32 KB Dcache

• Data shared with Opteron is uncached

• Data accessed only by firmware may be cached

• Use separate PPC440 address space to avoid
conflicts with Cray loader

11 of 16

Effect of PPC440 Caching on
MPI Latency

12 of 16

Effect of PPC440 Caching on
MPI Bandwidth

13 of 16

Optimization – Interrupt Elimination

•Generic mode requires 2 interrupts per RX
– 1) Firmware asks host where to put message

– 2) Firmware tells host when RX is complete

•Optimization – copy ‘very small’ messages up to
the host before the first interrupt
– Eliminates second interrupt

– Not zero-copy

• Currently very small <= 12 bytes

• Could extend to larger message sizes with
additional work

14 of 16

Effect of Very Small Message
Optimization on MPI Latency

15 of 16

Optimization – Write Through Techniques

•Goal is to avoid uncached reads from SRAM

• Keep shadow copy of uncached structures in
cached memory:

niccb.heartbeat = ++cached_niccb.heartbeat;

• FIFO manipulation optimized in same way
– Always read cached TAIL pointer

– Only refresh HEAD pointer when FIFO might be full

• Saved approximately 6 us per message

16 of 16

Conclusion

• SeaStar firmware can be developed in C

•Working C-based firmware that others can extend

• Significant optimization to date, more planned
– Initial C firmware 30 us currently 4.9 us

• “Let the firmware development begin”

17 of 16

Backup Slides

18 of 16

Firmware Data Structures

19 of 16

Optimization – Pinning Globals in Registers

• Neat GCC-specific optimization:

register process_t *process asm ("r31");
register source_t *source asm ("r30");
register pending_t *pending asm ("r29");

• Eliminates loads/stores
– Faster, especially for uncached

– Results in smaller firmware

• Have used up to 10 registers for globals with good
results

