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Motivation

• Enhance attractiveness of Red Storm/SeaStar as a
NIC offload research platform

• C strikes good balance of usability and performance

– Excels at interfacing with hardware

– Hides register allocation and instruction scheduling

– Compiler optimizations reduce performance
penalty

• Global view

• Function inlining

• Passing function arguments in registers (ABI)

– Interoperates well with assembly
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SeaStar Block Diagram
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Development Tools – GNU Toolchain

• Pre-packaged Binutils/GCC source distribution
– gas, gcc, ld, objdump, etc.

• Targets little-endian PPC440
– PowerPC usually big-endian, PPC440 supports both

– Opteron is little-endian only

– Targeting little-endian avoids endianess conversions

– Introduces some quirks
• GCC little-endian PPC440 support less mature
• Some HW instructions not available (e.g., lmw)
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Linking and Loading

• Link using GNU ld and custom linker script
• Defines SRAM regions for:
– Text (cached)
– Stack (cached)
– Uncached data
– Cached data

• ELF image converted to flat binary image
– 166 KB ELF  22 KB binary image

• Loading accomplished using Cray provided
mechanism
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Debugging and Profiling

•GDB would be nice, difficult to implement

• Developed tracing tool

• Trace points inserted with:
trace(), trace_val(uint8_t value)

• Trace records stored in uncached SRAM ring buffer

• Tool on Service Management Workstation (SMW)
can retrieve any node’s trace log at any time

• 10 ns overhead per trace point, no overhead if
tracing turned off at compile time
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Example of tracedump Output

e4681e8b:  24: 18ff0c4c mainloop+0014 (178 ns)
e4681ee4:  99: 63ff313c rx_complete+001c (84 ns)
e4681f0e:   0: 00ff318c rx_complete+006c (24 ns)
e4681f1a:   0: 00ff3198 rx_complete+0078 (374 ns)
e4681fd5:   5: 05ff12b4 handle_command+0030 (156 ns)
e4682023:   0: 00ff24b0 goaccel_tx_command+001c (80 ns)
e468204b:   0: 00ff24c0 goaccel_tx_command+002c (40 ns)
e468205f:   0: 00ff2124 resolve_source+0030 (18 ns)
e4682068:   0: 00ff212c resolve_source+0038 (102 ns)
e468209b:   0: 00ff2504 goaccel_tx_command+0070 (290 ns)
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C Firmware

• Supports Portals API

• 3,434 SLOC C, 253 SLOC Assembly

• 22 KB Firmware image

•Originally derived from Cray assembly-based FW
in Nov. 2005
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Optimization – Caching

• PPC440 has 32 KB Icache, 32 KB Dcache

• Data shared with Opteron is uncached

• Data accessed only by firmware may be cached

• Use separate PPC440 address space to avoid
conflicts with Cray loader
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Effect of PPC440 Caching on
MPI Latency
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Effect of PPC440 Caching on
MPI Bandwidth
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Optimization – Interrupt Elimination

•Generic mode requires 2 interrupts per RX
– 1) Firmware asks host where to put message

– 2) Firmware tells host when RX is complete

•Optimization – copy ‘very small’ messages up to
the host before the first interrupt
– Eliminates second interrupt

– Not zero-copy

• Currently very small <= 12 bytes

• Could extend to larger message sizes with
additional work
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Effect of Very Small Message
Optimization on MPI Latency
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Optimization – Write Through Techniques

•Goal is to avoid uncached reads from SRAM

• Keep shadow copy of uncached structures in
cached memory:

niccb.heartbeat = ++cached_niccb.heartbeat;

• FIFO manipulation optimized in same way
– Always read cached TAIL pointer

– Only refresh HEAD pointer when FIFO might be full

• Saved approximately 6 us per message
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Conclusion

• SeaStar firmware can be developed in C

•Working C-based firmware that others can extend

• Significant optimization to date, more planned
– Initial C firmware 30 us  currently 4.9 us

• “Let the firmware development begin”
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Backup Slides
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Firmware Data Structures
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Optimization – Pinning Globals in Registers

• Neat GCC-specific optimization:

register process_t *process asm ("r31");
register source_t  *source  asm ("r30");
register pending_t *pending asm ("r29");

• Eliminates loads/stores
– Faster, especially for uncached

– Results in smaller firmware

• Have used up to 10 registers for globals with good
results


