

MPI, SHMEM, and UPC Performance on the Cray X1
— A Case Study using APEX-Map

Hongzhang Shan and Erich Strohmaier

{hshan, estrohmaier@lbl.gov}

Computational Research Division
Lawrence Berkeley National Laboratory

Abstract

APEX-Map is a synthetic performance probe for characterizing access behavior to global data

structures. It is designed around concepts for temporal locality and spatial locality and can be used to
analyze the performance characteristics of a computing platform across a whole range of localities. It can
also be used to compare performance across different architectures or different programming paradigms.
In this paper, we present the results of APEX-Map on the Cray X1 and use them to analyze this specific
computing platform. We have implemented APEX-Map using MPI, SHMEM, and UPC and compare these
three programming paradigms on the Cray X1. We are also going to discuss some performance problem
we have found regarding the current MPI library implementation.

1. Introduction

The delivered performance of current parallel computers is closely related with how fast global data

can be fed into the computing units inside the CPUs. The effective capability to move data depends on both
the characteristics of the applications and of the underlying hardware. Unfortunately, until now, we lack a
standard to measure this capability and compare it across different platforms. APEX-Map is designed to
fulfill this purpose.

APEX-Map assumes that an application’s data access streams can be characterized by a few

parameters. Currently, we selected three parameters for this characterization, the accessed data size (M),
the temporal locality (K), and the spatial locality (L). By integrating these three parameters in a simple
kernel, APEX-Map tries to mimic the application’s memory access behavior. It can then be used as proxy
for the performance behavior of the underlying codes. By varying the values of these parameters
independently between their extreme values a performance map (or performance signature) can be
generated for each platform. These performance maps can be used not only to understand each platform’s
characteristics but also to compare performance across different parallel programming models. In this paper,
we focus on comparing the performance of three parallel programming models, MPI, SHMEM, and UPC,
on the Cray X1.

Fig. 1: APEX-Map data distribution and data access

X

L L M-1 0

P0 P1

mailto:estrohnaier@lbl.gov

The implementation of Apex-Map will be briefly described in Section 2. In Section 3, we will examine
the performances of the three parallel programming models used and we will discuss the performance
problems of current MPI implementation. Finally, we summarize our results in Section 4.

2. APEX-Map Implementation

In APEX-Map, the global data are evenly distributed across all the processes as shown in Fig. 1 for a

two-processor case and data access is in block mode. In implementations using message passing, the
message size is equal to the block size. The starting address, X, for each block is computed based on a non-
uniform random process following a power distribution function controlled by the parameters M, K, and L
and these addresses are stored in an auxiliary array. For each process, the computed indices will be
adjusted according to its rank to reflect its local view of the global data.

Table 1:The Outline of APEX-Map

Repeat N Times
 Generate Index Array
 CLOCK(start)
 For each Index i in the Array
 If (data not in local memory)

Get Remote Data
 End If
 Compute
 CLOCK(end)
 RunningTime += end – start;
End Repeat

Table 2: The Implementation Differences between MPI, SHMEM, and UPC

MPI SHMEM UPC
Repeat N Times
 Generate Index Array
 CLOCK (start)
 For each Index i in the Array
 If (not local data)

Generate Remote Request
 Else

Compute
 End If
 Serve Incoming Requests
 Process Replies
 CLOCK (end)
 RunningTime += end-start
End Repeat
CLOCK (start)
Wait For Finish
CLOCK (end)
RunningTime += end-start

Repeat N Times
Generate Index Array
CLOCK (start)
For each Index i in the Array
 If (not local data)
 SHMEM_DOUBLE_GET()
 End If
 Compute
CLOCK (end)
RunningTime += end - start

End Repeat

Repeat N Times
Generate Index Array
CLOCK (start)
For each Index i in the Array
 If (not local data)
 //method 1:
 UPC_MEMGET()
 //method 2:
 p = global_data[rid]
 for (i = 0; i < L; i++)
 sum+=p[offset+i]
 End If
 Compute
CLOCK (end)
RunningTime += end - start

End Repeat

The outline of APEX-Map is shown in Table 1. For each data address stored in the index array, it is

checked if the data is in local memory, in which case the computation starts immediately, or if the data
resides in remote memory in which case an inter-process communication will be activated to fetch the
remote data. In principle we do allow several outstanding requests for remote data and out of order
execution on the arriving data, however, in practice it might be difficult or impossible to take advantage of
this in many programming paradigms. The compute module is essential for APEX-Map since it measures

the rate of the global data being fed into the computing units not only into local memories. More
implementation details can be found at [1].

How to fetch the remote data differs substantially among different parallel programming models. Table

2 displays the main differences between MPI, SHMEM, and UPC. The SHMEM implementation is
straightforward and based on the sequential model. The data can be directly fetched into a process’s local
memory by shmem_double_get() or other similar functions due to its one-sided communication model.
However we cannot take advantage of potential out of order executions as the SHMEM interface does not
provide an asynchronous get function. For UPC, there are two obvious ways to carry out the remote access.
Like SHMEM, UPC can also call a function UPC_MEMGET to bring all the requested remote data into a
local buffer. Another way is to take advantage of the shared memory model to load the data directly using
regular load operations one data item at a time. The pointer p is used to point to the remote data.

The implementation of APEX-Map in MPI is much more complicated. Due to the random nature of the

communication, non-blocking functions must be used to achieve acceptable performance. A process not
only has to request data from other processes but also has to serve incoming requests. At the same time, it
has to process returning replies and manage the necessary receive buffers. After a process has completed its
own computations, it still has to wait for all other processes to finish in case some further requests for data
arrive. Therefore, MPI incurs much more implementation overhead than the other two programming
models. However we can implement out of order execution on arriving data quite easily.

3. Performance Data

Apex-Map outputs the average cycles per data access for one process and the aggregate bandwidth in

MB/s for a given set of parameters. By running a set of parameters, such as K = 0.001 to 1.0 and L = 1 to
65536 words, Apex-Map can generate two dimensional performance surfaces which allow to visualize the
performance effects of temporal locality and spatial locality. Fig. 2 shows the performance map for MPI
with 256 processes. The global data array size used is 256*512MB = 128GB.

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

0.001
0.010

0.100
1.000

0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

MB/s

L

K

X1 MPI - 256 proc 4.00-5.00
3.00-4.00
2.00-3.00
1.00-2.00
0.00-1.00
-1.00-0.00

Fig. 2: The aggregate bandwidth (MB/s) for MPI with 256 processes

In many cases, the performance effects of temporal locality and the spatial locality can cover for each
other. Let’s examine the contour line of 100MB/s bandwidth in Fig. 2. With high temporal locality K =
0.001, the spatial locality needs to be only around 200 to reach this performance. If the temporal locality is
reduced to K = 1.0, we can obtain the same bandwidth by increasing the spatial locality to around 700.
However, the spatial locality has much more significant effect than the temporal locality on the Cray X1. In
most of the cases, the total aggregate bandwidth scales almost linearly with the increase of L. The

performance drop when L equals 64 is related to the MPI implementation. A MPI call MPI_Iprobe is called
frequently in APEX-Map to check for incoming messages. The incurred overhead by this function suddenly
increases after message size becomes larger than 32 words due to protocol changes.

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

0.001
0.010

0.100
1.000

1.0

10.0

100.0

1000.0

10000.0

100000.0

MB/s

L

K

X1 shmem - 256 proc 4.00-5.00
3.00-4.00
2.00-3.00
1.00-2.00
0.00-1.00

Fig. 3: The aggregate bandwidth (MB/s) for SHMEM with 256 processes

The performance of SHMEM is illustrated in Fig. 3. The MPI related performance drop for L = 64
does not appear here. Compared with the MPI performance, SHMEM delivers much higher bandwidth and
the effect of temporal locality becomes even smaller.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6
0.001

0.003

0.005

0.010

0.025

0.050

0.100

0.250

0.500

1.000Ratio

L

K

X1 SHMEM/MPI [Bandwidth]
21.00-26.00
16.00-21.00
11.00-16.00
6.00-11.00
1.00-6.00

Fig. 4: The SHMEM/MPI Bandwidth ratio for 256 Processes

Fig. 4 shows the bandwidth ratio between SHMEM and MPI. For the area with low temporal locality

and low spatial locality (lower-left corner), SHMEM performs substantially better than MPI. In the best
case, SHMEM delivered 24 times higher bandwidth than MPI despite the fact that the MPI implementation
takes advantage of out of order executions. With the increase of temporal locality or spatial locality, the
advantage of SHMEM becomes relatively smaller. On the right area when message size becomes larger
than 4096 words, SHMEM only provides 1 or 2 times higher bandwidth.

Table 3: The Bandwidth Ratio of UPC (method 1) vs. SHMEM

 0.0010 0.0025 0.0050 0.0100 0.0250 0.0500 0.1000 0.2500 0.5000 1.0000
1 1.03 1.05 1.01 0.97 0.90 0.81 0.70 0.60 0.54 0.53
2 1.01 1.02 0.99 0.95 0.89 0.77 0.68 0.58 0.53 0.51
4 1.05 1.04 1.02 0.98 0.88 0.80 0.70 0.59 0.54 0.52
8 1.03 1.05 1.01 0.98 0.88 0.80 0.68 0.59 0.54 0.52

16 1.04 1.04 1.02 0.97 0.88 0.79 0.70 0.59 0.55 0.52
32 1.05 1.05 1.03 0.97 0.87 0.80 0.71 0.59 0.55 0.52
64 1.06 1.03 1.03 1.01 0.92 0.83 0.68 0.60 0.55 0.53

128 1.06 1.06 1.06 1.09 1.02 1.04 1.06 1.06 1.03 1.01
256 1.06 1.08 1.08 1.07 1.09 1.07 1.06 1.05 1.02 0.99
512 1.05 1.09 1.11 1.13 1.07 1.07 1.10 1.08 1.04 1.03

1024 1.04 1.12 1.08 1.08 1.03 1.07 1.10 1.06 1.01 0.94
2048 1.01 1.04 1.03 1.02 1.06 1.11 1.08 1.02 1.00 0.98
4096 1.04 1.04 1.03 1.03 1.10 1.05 1.04 1.09 1.11 1.03
8192 1.05 1.05 1.04 1.04 1.07 1.06 1.18 1.27 1.22 1.14

16384 1.06 1.06 1.03 1.05 1.01 1.28 1.39 1.40 1.34 1.07
32768 1.03 1.03 1.03 1.03 1.18 1.38 1.54 1.51 1.35 1.21
65536 1.00 1.03 1.00 1.00 1.17 1.40 1.60 1.62 1.40 1.33

As we described earlier, we have two UPC implementations. The first method is to call a function

UPC_MEMGET that performs similarly with SHMEM_DOUBLE_GET. The performance ratio between
this implementation and SHMEM is shown in Table 3. For the left half of the table (high temporal locality),
the performance of UPC and SHMEM are close to each other. For the right half of the table (lower
temporal locality), UPC performs worse for short messages and better for longer messages.

Table 4: The Bandwidth Ratio of UPC (Method 2 vs. Method 1)

 0.0010 0.0025 0.0050 0.0100 0.0250 0.0500 0.1000 0.2500 0.5000 1.0000
1 5.17 5.48 6.00 5.89 6.37 7.04 9.24 12.16 13.48 14.68
2 6.95 6.39 6.47 6.19 6.84 8.30 9.62 12.47 14.66 15.34
4 7.48 7.24 7.03 6.75 7.13 8.75 10.34 12.39 15.00 15.91
8 7.30 6.87 6.95 7.05 7.49 8.48 11.04 13.62 15.95 16.33

16 7.06 6.58 6.50 6.61 7.06 8.82 10.13 12.90 15.62 16.13
32 7.24 7.14 6.82 7.02 7.26 8.89 10.47 13.27 15.11 15.49
64 6.61 6.52 6.03 6.87 6.13 8.78 10.56 11.93 11.54 9.76

128 6.28 5.41 5.79 6.13 6.97 7.30 9.08 7.68 5.87 4.85
256 4.78 5.19 4.92 5.39 5.45 5.74 5.48 3.67 2.52 2.41
512 3.71 4.22 4.13 4.44 4.59 3.88 2.87 1.62 1.29 1.16

1024 2.96 3.26 3.11 3.21 3.10 1.97 1.28 0.89 0.79 0.84
2048 2.16 2.27 1.33 2.44 1.77 1.09 0.80 0.72 0.72 0.76
4096 1.65 1.73 1.76 1.68 1.05 0.77 0.65 0.62 0.64 0.71
8192 1.35 1.39 1.45 1.36 0.83 0.65 0.58 0.54 0.57 0.65

16384 1.17 1.20 1.27 1.14 0.69 0.54 0.49 0.48 0.52 0.69
32768 1.10 1.14 1.13 1.08 0.59 0.50 0.44 0.45 0.51 0.60
65536 1.07 0.56 1.10 1.00 0.59 0.48 0.41 0.40 0.48 0.55

The second method is to take advantage of the shared memory model provided by UPC to use regular

load operation. Compared with method1, using load operation instead of the block transfer function
UPC_MEMGET is far more efficient for short messages. This can be clearly seen from Table 4 that shows
the performance ratio between regular load operation (method 2) and block transfer operation (method 1).
For longer messages, the block transfer is better, especially for lower temporal locality area where remote
communication dominates. Therefore the choice of implementation to achieve best performance in UPC on
the Cray X1 depends on the level of spatial and temporal locality during execution. The best UPC
implementation always performs better than SHMEM.

3.1 Problem with current MPI Implementation

During our experiments, surprisingly we found that the performance of our MPI APEX-Map

implementation is highly affected by the behavior of the process with rank 0. The above-presented MPI
results are obtained by using one extra process, i.e., process 0 is always idle, and the work for process i has
been shifted to process i+1. If we do not use one extra process, the behavior of process 0 will significantly
degrade the performance. Fig. 5 shows the time breakdown for 256 processes with and without one extra

process. As we described earlier, in our MPI implementation, there is a “wait for finish” stage after a
process has finished its own computation because it may still have to serve others’ requests. The
“Working” stage is the time each process needs to finish its own computations. The “Waiting” stage is the
time to wait for all other processes to finish. For the case without an extra process, the working stage for
the process with rank 0 is significantly longer than for other processes which therefore have to spend more
than 40% time purely waiting for process 0. If we use one more process so that we can shift the process i’s
work to process i+1 then process 0 has nothing to do in the working stage and all its running time is
waiting for others to finish. This is exactly what we see in Fig. 5. The reason which leads to this problem is
under investigation.

0

20

40

60

80

100

120

Working Waiting Working Waiting

 Regular Case With One More Process

Ti
m

e
(s

)

0 1 2 3 4 5

Fig. 5: The time breakdown with and without one more process

 (only the first 5 processes are displayed for simplicity)

4. Summary

In this paper, we use Apex-Map, a parameterized synthetic performance probe, to analyze the

performance of the Cray X1 under different parallel programming models. Apex-Map measures the
capability of a machine to feed data into the computing units for address streams with different temporal
locality and spatial locality. We find that UPC can deliver the best performance compared with SHMEM
and MPI. While the performance of SHMEM is close to UPC, the MPI performance suffers substantially
due to its two-sided communication model, which incurs a lot of implementation overhead. We also find
that in the current MPI implementation, the process with rank 0 does not behave properly in our code.

5. References

[1] Apex-Map: http://ftg.lbl.gov
[2] Berkeley UPC – Unified Parallel C: http://upc.nersc.gov

http://ftg.lbl.gov/
http://upc.nersc.gov/

	Abstract
	Repeat N Times
	MPI

