Integrating External Storage Servers with the XT3

Pittsburgh Supercomputing Center

Jason Sommerfield, Paul Nowoczinski,

J. Ray Scott, Nathan Stone

Project Goals

- Expose WAN bandwidth to the XT3
- Facilitate efficient transfers to/from the PSC archiver
- Get the most out of each SIO node
 - More fully utilize the PCI-X on each SIO node
 - Potentially reassign or share SIO nodes between multiple purposes
- Allow for further expansions (e.g. Vis) an incremental performance improvements

Outline

- Background
- Observations & Motivation
- Project Goals
- Plan of record
- Status
- Continued/future efforts

Selected PSC Systems

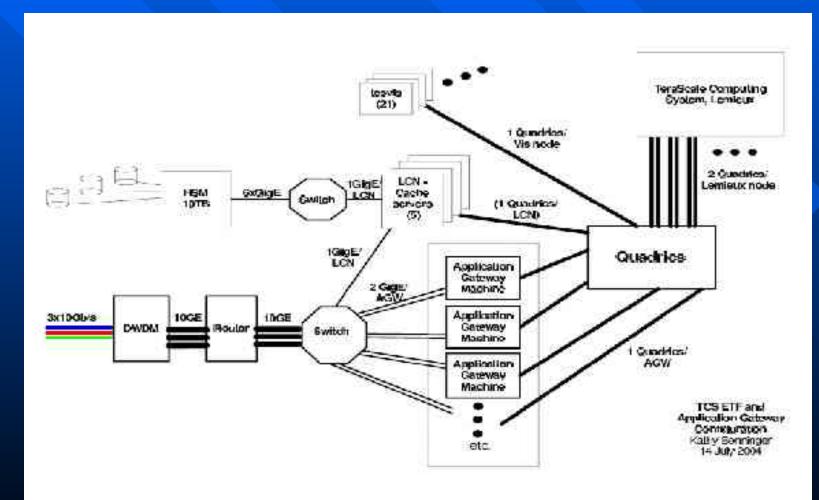
- **XT3**: ~2066p
- TCS: ("LeMieux") 3000p AlphaServer SC cluster
- Rachel/Jonas: 4x64P
 AlphaServers
- Archiver: 3-level HSM w/PBs of tape capacity (<1PB in use to date)

Selected External Considerations

- Vast majority of users are remote
- PSC is a member of the NSF Teragrid project
 - PSC has a capability platform focus
 - Increased need for frequent bulk data transfers between compute & storage resources of other sites
 - 3x10Gb/s connection to Teragrid ("ETF")
 backbone

Storage at PSC

- Per system resources
 - slow & steady home directories
 - fast & temporary scratch space
- Access to central archiver
 - High speed access from local compute systems
 - Good, parallel paths to Teragrid
- Lustre testbeds
- Emerging Lustre deployment for XT3
 - 200+TB, 10-15GByte/s performance target



Related PSC Efforts of Note

- TCSIO
 - High speed parallel transport suite supporting advanced features including parallel & 3rd party transfers with rcp-like (simple) syntax
- Application Gateways (AGWs)
 - Novel project to extend the Teragrid network bandwidth into the TCS compute system using commodity hardware.
- Scalable Lightweight Archival Storage Hierarchy (SLASH)
 - Distributed file caching

Application Gateway Nodes

XT3 IO Overview

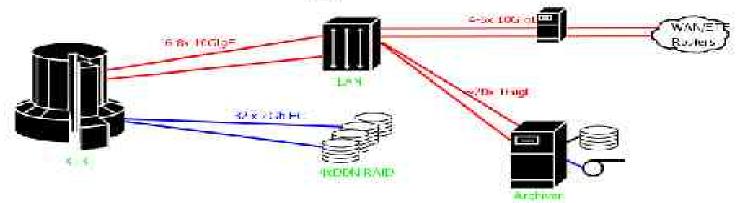
- A small subset of nodes (~46 for us) run Linux & have PCI-X slots
- These Service & IO (SIO) nodes have a few roles
 - a) A few perform system tasks (boot, database)
 - b)Some attach to disks via Fibre Channel (for Lustre)
 - c)Some operate 10GigE interfaces for external communications
 - d)Others are typically assigned as login nodes

Key Observations

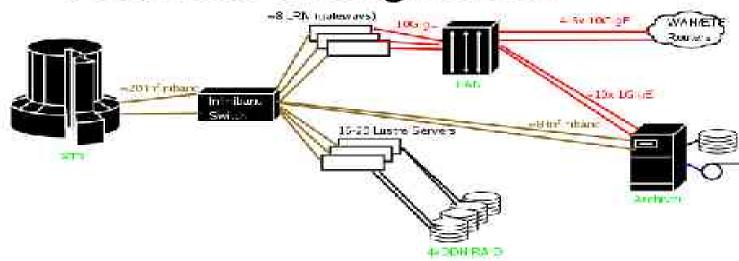
- The main use of the 10GigE bandwidth is likely for file transfer.
 - file transfers also involve the Disk IO nodes in order to actually read or write the data
 - other (e.g. interactive sessions) connections could be supported with less aggregate connectivity
- Neither current 10GigE or 2Gb FC adapters typically fill the PCI-X bus
- SIO nodes are running Linux on Opterons, so adapters supported in that general environment stand a chance here

Project Goals (revisited)

- Expose Teragrid bandwidth to the XT3
- Facilitate efficient transfers to/from the archiver
- Get the most out of each SIO node
 - More fully utilize the PCI-X on each SIO node
 - Potentially reassign or share SIO nodes between multiple purposes
- Allow for further expansions (e.g. Vis) an incremental performance improvements



The Plan (, Man)


- Populate the SIO nodes with high speed, multi-protocol (Infiniband) adapters
- Relocate the disk storage to external servers to be accessed over Infiniband
- Develop a path from the Infiniband network to the archiver, the Teragrid, and other systems of interest

Base Configuration

Modified Configuration

Status

Infiniband in XT3

- Building kernel modules requires presence of something very near the source for the SIO kernel running
- Using vendor packaged snapshot of OpenIB (e.g. Mellanox's IB Gold) was the most successful & least painful path for 2.4 kernel support
 - » Documentation also better
- User level protocols functioning, but some features (e.g. adapter firmware upgrade) still a little challenging via
 SIO node
- OpenIB effort (boosted by ASC support) evolving quickly and will likely continue to produce the best software stack, but current revisions require 2.6 kernels

Status (2)

- Lustre over Infiniband
 - Running in small PSC testbeds (commodity
 Opteron & Xeon systems)
 - Infiniband NAL functioned roughly "out of the box"
 - Reasonable resiliency & performance
 - » Single thread write speeds ~400MByte/s (1 thread) to 2 OSTs (~400MB/s local disk bandwidth per OST)
 - » Multiple thread (6 over 2 clients) write speeds up to ~900MB/s to 3 OSTs (~400MB/s local disk bandwidth per OST)

Status(3)

- Lustre on XT3
 - Currently using current default IO mechanism from compute nodes
 - » ~200MByte/s through yod
 - Aggregate writes from SIO nodes approaches current disk channel rates
 - » ~380MB/s to 2 OSTs with one 2Gb FC to DDN RAID each
 - Expanding Disk subsystem (>200TB, 20-32 FC links)

Status(4)

- Infiniband to 10GigE routing nodes (LRNs)
 - Infiniband vendors developing appliance type version of gateways
 - » GigE available, 10GigE under development
 - AGW-like alternative prototypes systems undergoing testing & tuning
 - » Commodity PC with with PCI-Express Infiniband adapter & 10GigE card of choice
 - » Basic [IP] routing between interfaces works
 - » Node-to-node IP performance improving
 - Currently in the 3-3.5Gb/s range between commodity nodes

Next Steps

- Test SCSI over Infiniband (SRP) as interim means to permit disk & network traffic from the same SIO nodes
 - Investigate concurrent & time-shared multipurposing of select SIO nodes
- Implement a functional Portals "router" to pass Lustre traffic from compute node through SIO node to external Lustre servers
 - Implement an optimized Portals router for Lustre

Next Steps (2)

- Investigate load balancing issues
 - Lustre access through multiple Portals routers
 - » Possibly a non-fixed number of routers
 - Network load balancing through multiple LRNs
- Revisit LRN issues
 - Load balancing of data streams—primarily to Lustre
 - Should XT3 use SDP to LRNs?
 - Should LRNs run data services (e.g. gridftp)?
- Pursue SLASH integration with Lustre

References

- Ongoing work related to this talk
 - http://www.psc.edu/~jasons/xt3
- OpenIB Open Source Infiniband Software effort
 - http://www.openib.org
- TCSIO (parallel and high perfomance file IO suite)
 - http://www.psc.edu/research/presentations/2003/ TerascaleIOSolutions.pdf
- Application Gateway Nodes & Qsockets software
 - http://www.psc.edu/~jheffner/talks/agw.pdf
- Scalable Lightweight Archival Storage Hierarchy (SLASH)
 - http://www.storageconference.org/2005/papers/

Questions or Comments?

jasons@psc.edu

