
CUG 2005 Proceedings 1 of 6

Accelerated Biological Meta-Data Generation and
Indexing on the Cray XD1

Eric Stahlberg
1
, Joseph Fernando

2
, Jeff Doak

3
, Kevin Wohlever

2

1
Ohio Supercomputer Center, 1224 Kinnear Road, Columbus, Ohio

2
Ohio Supercomputer Center-Springfield, 1 Limestone Street, Springfield, Ohio

3
 Cray Inc., Mendota Heights, Minnesota

ABSTRACT: The volume and diversity of biological information to be integrated in
comparative bioinformatics studies continues to grow. Increasingly, the information is
unstructured and without appreciable annotation necessary to make the necessary
associations for comparative analysis. The FPGA and the Cray XD1 in particular
provide a means to rapidly generate the dynamic metadata information needed to
enhance the value of unstructured and semi-structured data. Similar to efforts required of
compression and encryption, the presentation will showcase efforts at the OSC center for
data intensive computing to employ FPGA technology to the challenge of generalized
biological sequence indexing as a foundation for comparative analysis and subsequent
predictive inference.

KEYWORDS: XD1, FPGA , bioinformatics, metadata, digital signature, hash function

1. Introduction

Bioinformatics continues to be an area of explosive
growth in the volume of information generated through
both instrumental and in silico simulations and studies.
New species are joining the ranks sequenced genomes
annually. The expanding use of automated experimental
techniques, including DNA micro-arrays, gene chips and
mass-spectrometry add ever increasing amounts of
unstructured and semi-structured data to information
reservoir on a daily basis. Much of the information has not
yet been and may not ever be published or publicly
registered. A fundamental challenge facing the
management and efficient use of the combined wealth of
public and private bioinformatics related content is an
efficient means to identify and integrate similar sequences.
Using a normalizing signature algorithm designed for
maximum portability, ease of implementation and
independence from choice of technology platform
provides an important step to effectively integrating and
maintaining coherency among the evermore pervasive
sources of bioinformatics data. The interest in exploring
the potential of the Cray XD1 with Field Programmable
Gate Arrays (FPGA) in the context of a bioinformatics
specific signature function provided the impetus for this
project.

2. Motivations

The sources of bioinformatics information in general, and
sequence data in particular, are becoming increasingly
diverse. The clear message delivered by funding agencies
such as the National Science Foundation and the National
Institutes of Health to researchers is to share information
more openly, thereby adding significant impetus to create
even more sources of information. In the case of
bioinformatics sequences, this includes registered, pre-
registered and even unregistered sequence data. The
problem created by such efforts is an inability to
consistently identify, track and incorporate sequence
information as it moves through various stages of maturity
and availability.

2.1 Challenges Facing Sequence Integration

An illustrative example is provided in the experience
building the ARABI-COIL database (http://www.coiled-
coil.org)[1]. The aims of this project were to develop an
integrated database of experimental and in silico
computed information related to coiled-coil proteins in
Arabidopsis thaliana. An initial problem faced was the
inconsistent use of identifiers within initial datasets used
as the basis for the database. This situation was further
exacerbated when sequence updates were applied to the
dataset where identifiers had evolved further. While all
sequences were publicly registered, the lack of a

CUG 2005 Proceedings 2 of 6

consistent fundamental identifier or signature connected to
the sequence data itself added significant complexity to
the application of updates and incorporation of computed
results in the local database.

A further example of benefits derived from a normalizing
sequence signature can be found in SAGE (Serial
Analysis of Gene Expression) and MPSS (Massively
Parallel Signature Searching) investigations. The
application of SAGE [2] and MPSS [3] techniques to the
study of gene expression generates hundreds of thousands
to millions of short sequences (aka tags), typically ranging
from 17 to 34 nucleotides in length. Each tag plays a
critical role in the overall effectiveness of the study by its
presence or absence, and is consequently handled as an
independent sequence or element of information. It
remains a very significant task to independently register
each of these independent tags in a central database for
the purposes of assigning an identifier.

A final motivation for defining a normalizing signature
algorithm is found in the need to maintain coherency
among several independently managed databases. Two
predominant sources of human error manifesting in a lack
of coherency among disparate data sources include
correlating information and preparing information subsets
for export. Augmenting the assigned identifier with a
normalized signature provides an ability to integrate
information more readily with a much higher degree of
confidence and practical elimination of human error.

2.2 Solution Design Criteria

An algorithm for a normalized sequence signature and
exchange identifier has been developed at OSC (Ohio
Supercomputer Center) [4]. The algorithm accomplished
several key design goals in the implementation. These are
briefly summarized:

Portable – a priority has been placed on being highly
portable and amenable to multiple native implementations,
including Java, C/C++, Fortran, PERL and, in this case,
field programmable gate arrays. The emphasis on
portability encourages a pervasive implementation and
adoption. The signature itself eliminates portability issues
by disavowing the use of non-numeric characters in the
signature, thereby providing consistent representation
independent of implementation.

Normalizing – a priority has clearly been placed on
accounting for conventions used for representing
biosequence information in creating a convention-free
signature.

Usable – the signature, while relatively brief, contains
summary meta-data information about the sequence which
may be employed to readily exclude sequences of

disinterest. Maintaining a priority on human readable form
and discernable fields aids the utility of the signature.

Evenly distributed – the goal of even distribution across
the range of generated values is very important for digital
signatures and hash functions.

Self-validating – the signature contains information to
insure integrity of the signature itself.
Extensibility – the algorithm is defined to be extensible

The algorithm and supporting routines are part of a larger
suite of bioinformatics software collectively known as the
Ohio Biosciences Library (OBL) which complements the
Cray BioLib and the Portable Cray BioLib. More
information specific to this algorithm may be found at
bioinformatics.osc.edu/obl.

The proven applicability and efficiency of the FPGA for
similar functions, such as commonly employed signature
and hash algorithms such as MD5 (Message Digest 5) [5]
and SHA (Secure Hash Algorithm) provide a natural
motivation for implementing the algorithm on the Cray
XD1. Further motivation was found in the desire to
explore the XD1 development environment.

3. Resources

The Cray XD1 cluster computing system was used as the
host for this research effort. The goal was to leverage the
unique features of Field Programmable Gate Array
(FPGA) devices that are available on the XD1 for this bio-
informatics application.

The XD1 that is available at OSC is a cluster with 36
Opteron processors working at 2.2 GHz in three chassis.
Each chassis has six Symmetric Multiprocessor Processor
(SMP) units, and each SMP has two Opteron processors.
One of the chassis also contains six FPGA accelerator
cards. Each accelerator card hosts a Xilinx Virtex II Pro
50 device with a -7 speed rating. All the SMPs are
connected through a high speed modified infiniband based
Rapid Array inter-connect with an effective bandwidth of
10.5 Gbps [6]. The FPGAs are connected to the SMP
through a Rapid Array Processor (RAP). Data transfer
between the SMP memory subsystem and the FPGA is 64-
bits wide and has a bandwidth of 12.8 Gbps [7].

 3.1 Software Tools
The XD1 at OSC hosts the Riviera SE mixed language
HDL design and simulation environment. This
environment [8] supports many Hardware Design
Languages (HDL). In particular, it enables mixed
language, VHDL and Verilog simulation. This
environment was extensively used for design,
development and debugging of circuits. The Xilinx ISE

CUG 2005 Proceedings 3 of 6

6.3i development toolset [9] was extensively used to
synthesize map, place and route the circuits developed.

4. Implementation

4.1 Algorithm Definition

The normalizing biosequence signature algorithm, also
referred to as the BXID (for Biosequence eXchange ID) is
based on several key elements of efficient hash functions
and random number generation. The algorithm
incorporates a mid-squares hash method to produce an
even distribution across the range of values. The
algorithm also incorporates a multi-state finite state
machine to enhance randomness in the signature
distribution despite frequent homology within supplied
data. The algorithm employs a mapping function look-up
table to accomplish efficient normalization and eliminate
extraneous information not relevant to the sequence.
Finally, the algorithm definition employs arithmetic
operations of limited precision in lieu of bit manipulations
to enhance portability of implementation and isolation
from byte representation (big-endian vs. little-endian).
Intermediate precision of results is designed to not exceed
31 bits, eliminating the need to accommodate sign issues
in the arithmetic operations. The details of the algorithm
are presented below:

Initialize seed = 255
Initialize uppermask = 2^23
Initialize lowermask = 2^8
Initialize maxsize = 32767
Initialize si = seed, i an element of {0,1,2,3,4,5}

Initialize g or c character count, gc, and length, l, to zero

Initialize sequence type state variable, q = 0 (undefined state)

For each character, c, in sequence

 Assign Index value, k, A defined as position 1.

 k = index(c, ‘ ACTGUNXIQRYDOBSEFHJKLMPVWZ*’)

 If k in range (k > 0)

 Increment length, l

 Update sequence type, q

 Update gc count

 Update stage value, si, as follows

 i = mod(l ,6)

 f = mod(l + 1, 6)

 si = mod(seed + si/2 + sf /2 + k + k * mod(l, 1021)),
maxsize)

 si = mod(si ^2, uppermask) / lowermask

Composite final hash function values

 h1 = s0 * 2**16 + s1

 h2 = s2 * 2**16 + s3

 h3 = s4 * 2**16 + s5

Compute descriptor fields

 length check digit, lc = l % 10

 length magnitude, lm = min(floor(log10 l) , 9)

 length magnitude multiplier, lmm = l / lm

 set current algorithm version v = 1

 gc percentage, p = min((gc * 100) / l , 99)

 compute check digit for generated hash fields,

 x = mod((Σ(i=1,3) Σ(k=0,4) mod(hi,102k+2)/102k),8)

Composite descriptor fields in human identifiable form

 h0 = q * 10,000,000 + p * 100,000 +

 lm * 10,000 + lmm * 1,000 + lc * 100 +

 v * 10 + x

4.2 High-Level Code Description

The algorithm described above has been implemented
using FORTAN, Java and C programming languages. In
this implementation each character is processed serially.
The input to the algorithm is a string of characters. Each
input character is first converted to a normal index
between 0 and 27, independent of case. Values outside the
domain of relevance are ignored. Using the normalized
character index value, a hashing function, the sum of g
and c sequence characters, and seven metadata flags are
computed.

Computing the hashing function is the major task of this
algorithm. There are four hash values that are computed.
Three of the four hash values are dependent upon the six
intermediate hash values for each of the independent
states. Two consecutive intermediate stage values are
combined to make three higher precision hash values. The
fourth signature element is computed based on the
generated metadata flags and the sum of g and c sequence
characters.

The intermediate hash value is computed based on the
previous intermediate hash value, the hash value of the
next intermediate state, the normalized character index,
the number of valid sequence characters accumulated to

that point and a seed that is set at initialization. The use of
the mod function is integral to the function, ensuring
intermediate values remain within accepted ranges.

S[n] = (seed + S[n]/2 + S[(n+1)%6] /2 + k * (l % 1021) *

+ k) % maxsize

S[n] = ((S[n] * S[n]) % uppermask) / lowermask

Where,
S[n] denotes the local hash value,

l denotes the number of valid characters encountered at
that point in the sequence.

The initial value of seed is set to 255. The values maxsize,

uppermask and lowermask are set to 32767, 2
23

 and 2
8

respectively.
The initial values of all the six local hashes are set to zero.

4.3 Parallel Computation and Modifications

As indicated earlier, the algorithm was developed
targeting a sequential machine, where each sequence
character is processed one after the other. However, it is

CUG 2005 Proceedings 4 of 6

possible to process up to six characters in parallel, since
this algorithm computes six local hash values.

The l value indicates the number of valid characters.
Therefore, the computations need to be done serially. By
filtering the input of invalid characters before entering the
input, this algorithm could be parallelized and six
characters processed simultaneously in six processing
units. l is computed using a number that is a multiple of
six and adding an offset based on the processing unit. l
wraps around 1021, which is a prime number, in the
original algorithm. This was changed to 1020, which is
divisible by 6, in the FPGA implementation.

To improve the ease at which the algorithm could be

implemented on an FPGA implementation, the maxsize
was changed fro 32767 to 32768 (2

15
). Also note that

based on the above equation the valid bits of the
intermediate hash functions are effectively 15.

There are six flags that are set based on the interpretation
of the valid characters encountered. These flags
characterize the sequence as one of the following:
undefined, DNA with no unknown positions, DNA with
unknown positions, RNA with no unknown positions,
RNA with unknown positions, inconclusive (protein,
DNA, RNA), and confirmed protein sequence. The gc
percent composition is computed as a readily discernable
element of the sequence. These flags and the summations
are done in parallel to the intermediate hash computations.

Data Dependency

The intermediate hash value is circularly dependent on
other local hash values by design. Local hash 0 depends
on local hash 1 and local hash 5 depends on local hash 0.
This dependency effectively reduces the parallelism to
five. The sixth sequence character could be processed in a
sixth processing unit or processed where local hash 0 is
computed. Therefore, the latency to compute the latency
to process six sequence characters would be double the
latency of processing a single character. By overlapping
the computations the latency could be reduced.

4.4 FPGA Implementation

The parallel version of this algorithm was implemented
targeting the Cray XD1 FPGA programming environment.
The compute intensive parts of the algorithms were
mapped to FPGAs and the rest was computed using the
Opteron. The six local hash and the three hash values that
are dependent on the local hash values were computed on
the FPGA. The metadata element that describes the global
sequence character and the gc population were computed
on the host Opteron. The major blocks that are
implemented on the FPGA are given in Figure 1. The

block that in computed on the Opteron is indicated by a
dashed line.

K 0..27

hash 1, 2, 3

Lookup

table

Six local hash

and three hash

values

g and c

count

Set Flags

hash [0]

Sequence characters

Figure 1. Overview of the Implementation

A register based interface is used to write the input
sequence to the FPGA and to read the results from the
FPGA. Six sequence characters and l, which is a multiple
of six (without the offset) is written to a 64-bit register.
The FPGA circuit computes the hash and the flags along
with the sums of g and c sequence characters and fills
write the results to two 64-bit registers. These registers
can be read by the host and processed.
The local hash computations are done in four clock cycles
in four different stages. The computations were divided
into four stages to increase the clock speed and make it
feasible to implement on the XD1. The l number and the
offset are added and multiplied with the normalized
character index in stage 1. The seed and the normalized
character index is added to the resultant of stage 1 in
stage 2. The previous local has values are added in stage 3
to the results of stage 2 and the results of stage 3 are
multiplied with each other to get the square in stage 4.
The bits 23 to 8 are extracted in stage 4 for squaring.

Stage 1: tmp_1 = ipos * K + offset * K
Stage 2: tmp_2 = tmp_1 + seed + K
Stage 3: tmp_3 = tmp_2 + localhash[n]/2 + localhash
[n+1]/2
Stage 4: itmp_squared = tmp_3 * tmp_3
 localhash [n] = itmp_squared(bits 22 to 8)

Note that the correct number of bits is used in stage 3, for
the localhash[n] and localhash[n+1] and in stage 4, bits 22
to 8 of itmp_squared are assigned to localhash[n]. Three
18x18 bit multipliers are used in this implementation. In
stage 1, ipos and offset could be added and then
multiplied by K, reducing the multipliers to two.
However, such an implementation would have a lower
clock speed.

This implementation can be easily fully pipelined as the
computations are done in multiple stages and the results

CUG 2005 Proceedings 5 of 6

are registered. The major constraint to pipelined
implementations is the inability to guarantee input data
every clock cycle. A compromise would be to provide
input data at selected clock cycles.

This implementation uses a clock frequency of 169 MHz,
when a Xilinx 2 Pro device with a speed grade of -7 is
targeted. Therefore, a fully pipelined implementation
would have the ability to process over 1 billion sequence
characters a second. The bandwidth between the FPGA
and the host constrains this to a lower throughput.

The localhash processing unit was written in Verilog. The
lookup table, flag generation and the g and c accumulators
were written in VHDL.

Approximately, 2000 slices of the FPGA resources on a
Xilinx 2VP50 device, which is about 8 % of the slices
available, are used for this implementation. Included in
this resource calculation, are the resources required for all
other functional units such as the register interface, block
RAM interface, QDR memory interface, etc. The
algorithm itself would require no more than 500 slices.

5. Results

The strategy that was used to determine the correctness of
the implementation was empirical. On each step of the
design cycle, from developing the processing units to
integrating with the register interface and developing the
software interface, the circuits have been simulated and
tested using a sample sequence string. The sample string
was incorporated in an input data file, which is used by
the simulator to read and write to specific register or
memory locations. The outputs of the designated registers
were checked for the output values.

After synthesizing the FPGA circuit, many randomly
generated were used to check the hash values produced by
the FPGA implementation and the software program.
When the changes done to the FPGA were incorporated in
the software program the results obtained by both methods
were the same.

6. Limitations of the Implementation

One of the main limitations of the present implementation
is that it is not fully pipelined, since it uses a register
based interface. The register based interface design was
chosen as there is no mechanism for the FPGA to interrupt
the host processor and indicate the completion of tasks.
The only method that is available is for the processor to
poll on a register for a bit to be set by the FPGA fabric.
This will reduce the available bandwidth. A FPGA
Transfer Region (FTR) memory based communication
interface between the FPGA and the host would alleviate
the bandwidth constrains that exist, since it is able to

better use the ‘burst mode’ for the transfer of data. In the
burst mode, eight consecutive quad-words can be
scheduled to be transferred either way instead of the
single quad word at a time.

The FPGA can initiate a read or write FTR memory
transfer. The host has to provide a pointer to the read
buffer and the length. The FPGA can transfer the data and
compute the hash values without any intervention by the
host. Such an interface would be suitable for very long
DNA sequences and would require a fully pipelined
implementation.

The present implementation has been targeted for the Cray
XD1 specifically. Presently, as is, this implementation is
not portable to any other platform as it is quite integrated
to the register interface. One could however, decouple the
interface and make it more portable.

Presently, the HDL code is written in VHDL as well as in
Verilog. This could be changed to a single language easily
so that users who have access to single language design
environments could also modify and simulate the code.

The XD1 API writes and reads to and from the registers
using unsigned long data types. When a string of six
characters have to be written to the registers each
character has to be packed so that the order does not
change because the Opteron is a little-endian machine.
Basically, the first character of the string should be input
to the first processing unit and not the sixth. This
increases the work load on the host. This work could be
eliminated by changing the order the characters are fed to
the processing units. This would not be a factor if the host
was a big-endian machine.

Performance

The algorithm was able to sustain a processing rate of 6

million sequence characters per second on the XD1.

Algorithm Effectiveness

Several studies were conducted on the Cray X1 to validate
the overall effectiveness of the algorithm prior to
implementation on the XD1. In these studies, randomly
generated nucleotide and protein sequences of varying
length were independently generated and evaluated for
distribution and collision frequency.

The studies indicate an overall effective distribution of
results for the algorithm. In the largest case, 500 million
randomly protein sequences of varying length were
created and analysed for collision frequency. In this case,
no collisions were detected. In the case of exclusively
nucleotide sequences, collisions were detected more
frequently, with a relatively small number collisions

CUG 2005 Proceedings 6 of 6

detected within 100 million randomly generated
sequences of varying length, as a result of increased intra-
sequence homology. The hash value distribution
remained even for all cases considered. Full details of
validation studies are available [4].

7. Conclusions

The Cray XD1 with field programmable gate array
support provided an effective platform for implementing
the biosequence signature algorithm. With minor
adjustments to the algorithm, an efficient implementation
was enabled, utilizing only a small portion of the available
programmable logic on the FPGA. While tremendous
processing rates appear to be within reach on the FPGA
for this algorithm, communication bottlenecks readily
become apparent, thereby limiting the true potential in the
current implementation.

Future Efforts

OSC has developed an interface that used the FPGA
transfer region (FTR) to communicate between the FPGA
and the host. Preliminary results indicated that this
interface has a bandwidth of approximately 800MB each
way, consistently, using a round trip testing program. This
interface is at least two orders of magnitude faster than the
register interface in use at present. We intend to use this
FTR memory interface to accelerate the computations.

Even with the limitations, the FPGA implemented
signature module holds important potential for on and off
FPGA integration with other sequence comparison
algorithms, search algorithms and on-the-fly content
analysis.

8. Acknowledgements

The authors would like to acknowledge the critical role of
the Department of Energy for this effort in terms of
equipment and staff time support. We would like to
further acknowledge both OSC and Cray, Inc. for
supporting staff efforts in the development,
implementation and validation of the algorithm. The
authors would also like to acknowledge the efforts of Pete
Carswell at OSC for developing a reference C
implementation of the algorithm used in this study. We
would also like to acknowledge the National Science
Foundation Project 2010 for funding the project for which
this algorithm was developed and employed.

9. References

1. Rose A, Manikantan S, Schraegle SJ, Maloy MA,

Stahlberg EA, Meier I: Genome-wide identification of

Arabidopsis coiled-coil proteins and establishment of

the ARABI-COIL database. Plant Physiology 2004a,

134:927-939 (2004)

2. Velculescu VE, Zhang L, Vogelstein B and Kinzler

KW, Serial Analysis of Gene Expression, Science,

270:484-487 (1995)

3. Brenner S, et al. Gene expression analysis by

massively parallel signature sequencing (MPSS) on

microbead arrays. Nat. Biotechnol. 18, 630−634 (2000)

4. Stahlberg EA, Doak J. manuscript in process

5. Rivest R, The MD5 Message-Digest Algorithm, RFC
1321, MIT LCS and RSA Data Security, Inc., April 1992

6. Why use RDMA, referenced from
http://www.osc.edu/~/dennis/rdma/rdma.html

7. Cray XD1 Product Description, Cray Inc, 2004.

8. Riviera Overview, referenced from
http://www.aldec.com

9. XST User Guide, referenced from
http://www.xilinx.com/support/sw_manuals/xilinx6/dpwnl
oad

About the Authors

Eric Stahlberg is senior researcher at OSC
specializing in algorithm development and integration
challenges in life sciences. Eric can be reached at OSC
with the email: eas@osc.edu

Joseph Fernando is a senior researcher at the Ohio
Supercomputer Center Sprinfield site specializing in
FPGA algorithms and implementations. Joseph can be
reached with the email: fernando@osc.edu

Kevin Wohlever is director of the Ohio
Supercomputer Center Springfield site. Kevin may be
contacted at kevin@osc.edu

Jeff Doak is the on-site Cray analyst at the Ohio
Supercomputer Center Springfield. Jeff may be reached
by email: jdoak@cray.com

