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ABSTRACT: The volume and diversity of biological information to be integrated in 
comparative bioinformatics studies continues to grow. Increasingly, the information is 
unstructured and without appreciable annotation necessary to make the necessary 
associations for comparative analysis. The FPGA and the Cray XD1 in particular 
provide a means to rapidly generate the dynamic metadata information needed to 
enhance the value of unstructured and semi-structured data. Similar to efforts required of 
compression and encryption, the presentation will showcase efforts at the OSC center for 
data intensive computing to employ FPGA technology to the challenge of generalized 
biological sequence indexing as a foundation for comparative analysis and subsequent 
predictive inference.  
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1. Introduction 

Bioinformatics continues to be an area of explosive 
growth in the volume of information generated through 
both instrumental and in silico simulations and studies. 
New species are joining the ranks sequenced genomes 
annually. The expanding use of automated experimental 
techniques, including DNA micro-arrays, gene chips and 
mass-spectrometry add ever increasing amounts of 
unstructured and semi-structured data to information 
reservoir on a daily basis. Much of the information has not 
yet been and may not ever be published or publicly 
registered. A fundamental challenge facing the 
management and efficient use of the combined wealth of 
public and private bioinformatics related content is an 
efficient means to identify and integrate similar sequences. 
Using a normalizing signature algorithm designed for 
maximum portability, ease of implementation and 
independence from choice of technology platform 
provides an important step to effectively integrating and 
maintaining coherency among the evermore pervasive 
sources of bioinformatics data. The interest in exploring 
the potential of the Cray XD1 with Field Programmable 
Gate Arrays (FPGA) in the context of a bioinformatics 
specific signature function provided the impetus for this 
project. 

2. Motivations  

The sources of bioinformatics information in general, and 
sequence data in particular, are becoming increasingly 
diverse. The clear message delivered by funding agencies 
such as the National Science Foundation and the National 
Institutes of Health to researchers is to share information 
more openly, thereby adding significant impetus to create 
even more sources of information. In the case of 
bioinformatics sequences, this includes registered, pre-
registered and even unregistered sequence data.  The 
problem created by such efforts is an inability to 
consistently identify, track and incorporate sequence 
information as it moves through various stages of maturity 
and availability. 
 

2.1 Challenges Facing Sequence Integration 
 
An illustrative example is provided in the experience 
building the ARABI-COIL database (http://www.coiled-
coil.org)[1]. The aims of this project were to develop an 
integrated database of experimental and in silico 
computed information related to coiled-coil proteins in 
Arabidopsis thaliana. An initial problem faced was the 
inconsistent use of identifiers within initial datasets used 
as the basis for the database. This situation was further 
exacerbated when sequence updates were applied to the 
dataset where identifiers had evolved further. While all 
sequences were publicly registered, the lack of a 
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consistent fundamental identifier or signature connected to 
the sequence data itself added significant complexity to 
the application of updates and incorporation of computed 
results in the local database.  
 
A further example of benefits derived from a normalizing 
sequence signature can be found in SAGE (Serial 
Analysis of Gene Expression) and MPSS (Massively 
Parallel Signature Searching) investigations. The 
application of SAGE [2] and MPSS [3] techniques to the 
study of gene expression generates hundreds of thousands 
to millions of short sequences (aka tags), typically ranging 
from 17 to 34 nucleotides in length. Each tag plays a 
critical role in the overall effectiveness of the study by its 
presence or absence, and is consequently handled as an 
independent sequence or element of information. It 
remains a very significant task to independently register 
each of these independent tags in a central database for 
the purposes of assigning an identifier.  
 
A final motivation for defining a normalizing signature 
algorithm is found in the need to maintain coherency 
among several independently managed databases. Two 
predominant sources of human error manifesting in a lack 
of coherency among disparate data sources include 
correlating information and preparing information subsets 
for export. Augmenting the assigned identifier with a 
normalized signature provides an ability to integrate 
information more readily with a much higher degree of 
confidence and practical elimination of human error. 
 

2.2 Solution Design Criteria 
 
An algorithm for a normalized sequence signature and 
exchange identifier has been developed at OSC (Ohio 
Supercomputer Center) [4]. The algorithm accomplished 
several key design goals in the implementation. These are 
briefly summarized: 
 
Portable – a priority has been placed on being highly 
portable and amenable to multiple native implementations, 
including Java, C/C++, Fortran, PERL and, in this case, 
field programmable gate arrays. The emphasis on 
portability encourages a pervasive implementation and 
adoption. The signature itself eliminates portability issues 
by disavowing the use of non-numeric characters in the 
signature, thereby providing consistent representation 
independent of implementation. 
 
Normalizing – a priority has clearly been placed on 
accounting for conventions used for representing 
biosequence information in creating a convention-free 
signature. 
 
Usable – the signature, while relatively brief, contains 
summary meta-data information about the sequence which 
may be employed to readily exclude sequences of 

disinterest. Maintaining a priority on human readable form 
and discernable fields aids the utility of the signature. 
 
Evenly distributed – the goal of even distribution across 
the range of generated values is very important for digital 
signatures and hash functions. 
 
Self-validating – the signature contains information to 
insure integrity of the signature itself.  
Extensibility – the algorithm is defined to be extensible 
 
The algorithm and supporting routines are part of a larger 
suite of bioinformatics software collectively known as the 
Ohio Biosciences Library (OBL) which complements the 
Cray BioLib and the Portable Cray BioLib. More 
information specific to this algorithm may be found at 
bioinformatics.osc.edu/obl.  
 
The proven applicability and efficiency of the FPGA for 
similar functions, such as commonly employed signature 
and hash algorithms such as MD5 (Message Digest 5) [5] 
and SHA (Secure Hash Algorithm) provide a natural 
motivation for implementing the algorithm on the Cray 
XD1. Further motivation was found in the desire to 
explore the XD1 development environment.  

3.  Resources  

The Cray XD1 cluster computing system was used as the 
host for this research effort. The goal was to leverage the 
unique features of Field Programmable Gate Array 
(FPGA) devices that are available on the XD1 for this bio-
informatics application.  
 
The XD1 that is available at OSC is a cluster with 36 
Opteron processors working at 2.2 GHz in three chassis. 
Each chassis has six Symmetric Multiprocessor Processor 
(SMP) units, and each SMP has two Opteron processors. 
One of the chassis also contains six FPGA accelerator 
cards. Each accelerator card hosts a Xilinx Virtex II Pro 
50 device with a -7 speed rating. All the SMPs are 
connected through a high speed modified infiniband based 
Rapid Array inter-connect with an effective bandwidth of 
10.5 Gbps [6]. The FPGAs are connected to the SMP 
through a Rapid Array Processor (RAP). Data transfer 
between the SMP memory subsystem and the FPGA is 64-
bits wide and has a bandwidth of 12.8 Gbps [7]. 
 

 3.1 Software Tools 
The XD1 at OSC hosts the Riviera SE mixed language 
HDL design and simulation environment. This 
environment [8] supports many Hardware Design 
Languages (HDL). In particular, it enables mixed 
language, VHDL and Verilog simulation. This 
environment was extensively used for design, 
development and debugging of circuits. The Xilinx ISE 
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6.3i development toolset [9] was extensively used to 
synthesize map, place and route the circuits developed.   
 

4. Implementation  
 

4.1 Algorithm Definition 

 
The normalizing biosequence signature algorithm, also 
referred to as the BXID (for Biosequence eXchange ID) is 
based on several key elements of efficient hash functions 
and random number generation. The algorithm 
incorporates a mid-squares hash method to produce an 
even distribution across the range of values. The 
algorithm also incorporates a multi-state finite state 
machine to enhance randomness in the signature 
distribution despite frequent homology within supplied 
data. The algorithm employs a mapping function look-up 
table to accomplish efficient normalization and eliminate 
extraneous information not relevant to the sequence. 
Finally, the algorithm definition employs arithmetic 
operations of limited precision in lieu of bit manipulations 
to enhance portability of implementation and isolation 
from byte representation (big-endian vs. little-endian). 
Intermediate precision of results is designed to not exceed 
31 bits, eliminating the need to accommodate sign issues 
in the arithmetic operations. The details of the algorithm 
are presented below: 
 
Initialize seed = 255 
Initialize uppermask = 2^23 
Initialize lowermask = 2^8 
Initialize maxsize = 32767 
Initialize si = seed, i an element of {0,1,2,3,4,5} 

Initialize g or c character count, gc,  and length, l, to zero 

Initialize sequence type state variable, q = 0 (undefined state) 

For each character, c, in sequence 

    Assign Index value, k, A defined as position 1. 

    k = index(c, ‘ ACTGUNXIQRYDOBSEFHJKLMPVWZ*’) 

    If k in range (k > 0 ) 

       Increment length, l 

       Update sequence type, q 

       Update gc count 

       Update stage value, si, as follows 

       i = mod(l ,6) 

       f = mod( l + 1, 6) 

      si = mod( seed + si/2 + sf /2 + k + k * mod( l, 1021)), 
maxsize) 

       si = mod(si ^2, uppermask) / lowermask 
 
Composite final hash function values 

 h1 = s0 * 2**16 + s1 

 h2 = s2 * 2**16 + s3 

 h3 = s4 * 2**16 + s5 

 
Compute descriptor fields 

 length check digit, lc = l % 10 

 length magnitude, lm = min(floor( log10 l ) , 9 ) 

 length magnitude multiplier, lmm = l / lm 

 set current algorithm version v = 1 

 gc percentage, p  = min( ( gc * 100 ) / l , 99) 

 compute check digit for generated hash fields,  

  x = mod(( Σ(i=1,3) Σ(k=0,4) mod(hi,102k+2)/102k ),8) 
 
Composite descriptor fields in human identifiable form 

 h0 =  q * 10,000,000 + p * 100,000 + 

  lm * 10,000 + lmm * 1,000 + lc * 100 + 

  v * 10 + x 

 
 

4.2 High-Level Code Description 

 
The algorithm described above has been implemented 
using FORTAN, Java and C programming languages. In 
this implementation each character is processed serially. 
The input to the algorithm is a string of characters. Each 
input character is first converted to a normal index 
between 0 and 27, independent of case. Values outside the 
domain of relevance are ignored. Using the normalized 
character index value, a hashing function, the sum of g 
and c sequence characters, and seven metadata flags are 
computed. 
 
Computing the hashing function is the major task of this 
algorithm. There are four hash values that are computed. 
Three of the four hash values are dependent upon the six 
intermediate hash values for each of the independent 
states. Two consecutive intermediate stage values are 
combined to make three higher precision hash values. The 
fourth signature element is computed based on the 
generated metadata flags and the sum of g and c sequence 
characters.  
 
The intermediate hash value is computed based on the 
previous intermediate hash value, the hash value of the 
next intermediate state, the normalized character index, 
the number of valid sequence characters accumulated to 

that point and a seed that is set at initialization. The use of 
the mod function is integral to the function, ensuring 
intermediate values remain within accepted ranges. 
 

S[n] = (seed + S[n]/2 + S[(n+1)%6 ] /2 + k * (l % 1021) * 

+ k) %  maxsize 

S[n] = ( (S[n] * S[n] ) % uppermask) / lowermask
 

Where,  
S[n] denotes the local hash value, 

l denotes the number of valid characters encountered at 
that point in the sequence. 

The initial value of seed is set to 255. The values maxsize, 

uppermask and lowermask are set to 32767, 2
23

 and 2
8
 

respectively. 
The initial values of all the six local hashes are set to zero. 

 

4.3 Parallel Computation and Modifications 

 
As indicated earlier, the algorithm was developed 
targeting a sequential machine, where each sequence 
character is processed one after the other. However, it is 
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possible to process up to six characters in parallel, since 
this algorithm computes six local hash values. 
 
The l value indicates the number of valid characters. 
Therefore, the computations need to be done serially. By 
filtering the input of invalid characters before entering the 
input, this algorithm could be parallelized and six 
characters processed simultaneously in six processing 
units. l is computed using a number that is a multiple of 
six and adding an offset based on the processing unit. l 
wraps around 1021, which is a prime number, in the 
original algorithm. This was changed to 1020, which is 
divisible by 6, in the FPGA implementation.  
 
To improve the ease at which the algorithm could be 

implemented on an FPGA implementation, the maxsize 
was changed fro 32767 to 32768 (2

15
). Also note that 

based on the above equation the valid bits of the 
intermediate hash functions are effectively 15. 
 
There are six flags that are set based on the interpretation 
of the valid characters encountered. These flags 
characterize the sequence as one of the following: 
undefined, DNA with no unknown positions, DNA with 
unknown positions, RNA with no unknown positions, 
RNA with unknown positions, inconclusive (protein, 
DNA, RNA), and confirmed protein sequence. The gc 
percent composition is computed as a readily discernable 
element of the sequence.  These flags and the summations 
are done in parallel to the intermediate hash computations. 
 

Data Dependency 

 
The intermediate hash value is circularly dependent on 
other local hash values by design. Local hash 0 depends 
on local hash 1 and local hash 5 depends on local hash 0. 
This dependency effectively reduces the parallelism to 
five. The sixth sequence character could be processed in a 
sixth processing unit or processed where local hash 0 is 
computed.  Therefore, the latency to compute the latency 
to process six sequence characters would be double the 
latency of processing a single character. By overlapping 
the computations the latency could be reduced. 
 

4.4  FPGA Implementation 

 
The parallel version of this algorithm was implemented 
targeting the Cray XD1 FPGA programming environment. 
The compute intensive parts of the algorithms were 
mapped to FPGAs and the rest was computed using the 
Opteron. The six local hash and the three hash values that 
are dependent on the local hash values were computed on 
the FPGA. The metadata element that describes the global 
sequence character and the gc population were computed 
on the host Opteron. The major blocks that are 
implemented on the FPGA are given in Figure 1. The 

block that in computed on the Opteron is indicated by a 
dashed line. 
 

 

K 0..27 

hash 1, 2, 3 

Lookup 

table 

Six local hash 

and three hash 

values 

g and c 

count 
 

 

Set Flags 

hash [0] 

Sequence characters 

 

Figure 1. Overview of the Implementation 

 
A register based interface is used to write the input 
sequence to the FPGA and to read the results from the 
FPGA. Six sequence characters and l, which is a multiple 
of six (without the offset) is written to a 64-bit register. 
The FPGA circuit computes the hash and the flags along 
with the sums of g and c sequence characters and fills 
write the results to two 64-bit registers. These registers 
can be read by the host and processed. 
The local hash computations are done in four clock cycles 
in four different stages. The computations were divided 
into four stages to increase the clock speed and make it 
feasible to implement on the XD1. The l number and the 
offset are added and multiplied with the normalized 
character index in stage 1. The seed and the normalized 
character index is added to the resultant of stage 1 in 
stage 2. The previous local has values are added in stage 3 
to the results of stage 2 and the results of stage 3 are 
multiplied with each other to get the square in stage 4.  
The bits 23 to 8 are extracted in stage 4 for squaring.   
 
Stage 1: tmp_1  = ipos * K + offset * K 
Stage 2: tmp_2 = tmp_1 + seed + K 
Stage 3: tmp_3  =  tmp_2 + localhash[n]/2 + localhash 
[n+1]/2 
Stage 4:  itmp_squared = tmp_3 * tmp_3 
               localhash [n] = itmp_squared(bits 22 to 8) 
 
Note that the correct number of bits is used in stage 3, for 
the localhash[n] and localhash[n+1] and in stage 4, bits 22 
to 8 of itmp_squared  are assigned to localhash[n]. Three 
18x18 bit multipliers are used in this implementation. In 
stage 1, ipos and offset could be added and then 
multiplied by K, reducing the multipliers to two. 
However, such an implementation would have a lower 
clock speed.  
 
This implementation can be easily fully pipelined as the 
computations are done in multiple stages and the results 
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are registered. The major constraint to pipelined 
implementations is the inability to guarantee input data 
every clock cycle. A compromise would be to provide 
input data at selected clock cycles.  
 
This implementation uses a clock frequency of 169 MHz, 
when a Xilinx 2 Pro device with a speed grade of -7 is 
targeted. Therefore, a fully pipelined implementation 
would have the ability to process over 1 billion sequence 
characters a second. The bandwidth between the FPGA 
and the host constrains this to a lower throughput.  
 
The localhash processing unit was written in Verilog. The 
lookup table, flag generation and the g and c accumulators 
were written in VHDL.  
 
Approximately, 2000 slices of the FPGA resources on a 
Xilinx 2VP50 device, which is about 8 % of the slices 
available, are used for this implementation. Included in 
this resource calculation, are the resources required for all 
other functional units such as the register interface, block 
RAM interface, QDR memory interface, etc.  The 
algorithm itself would require no more than 500 slices. 
 

5. Results 

 
The strategy that was used to determine the correctness of 
the implementation was empirical. On each step of the 
design cycle, from developing the processing units to 
integrating with the register interface and developing the 
software interface, the circuits have been simulated and 
tested using a sample sequence string. The sample string 
was incorporated in an input data file, which is used by 
the simulator to read and write to specific register or 
memory locations. The outputs of the designated registers 
were checked for the output values.  
 
After synthesizing the FPGA circuit, many randomly 
generated were used to check the hash values produced by 
the FPGA implementation and the software program. 
When the changes done to the FPGA were incorporated in 
the software program the results obtained by both methods 
were the same.   

 

6. Limitations of the Implementation  

 
One of the main limitations of the present implementation 
is that it is not fully pipelined, since it uses a register 
based interface. The register based interface design was 
chosen as there is no mechanism for the FPGA to interrupt 
the host processor and indicate the completion of tasks. 
The only method that is available is for the processor to 
poll on a register for a bit to be set by the FPGA fabric. 
This will reduce the available bandwidth. A FPGA 
Transfer Region (FTR) memory based communication 
interface between the FPGA and the host would alleviate 
the bandwidth constrains that exist, since it is able to 

better use the ‘burst mode’ for the transfer of data. In the 
burst mode, eight consecutive quad-words can be 
scheduled to be transferred either way instead of the 
single quad word at a time.   
 
The FPGA can initiate a read or write FTR memory 
transfer.  The host has to provide a pointer to the read 
buffer and the length. The FPGA can transfer the data and 
compute the hash values without any intervention by the 
host. Such an interface would be suitable for very long 
DNA sequences and would require a fully pipelined 
implementation. 
 
The present implementation has been targeted for the Cray 
XD1 specifically. Presently, as is, this implementation is 
not portable to any other platform as it is quite integrated 
to the register interface. One could however, decouple the 
interface and make it more portable.  
 
Presently, the HDL code is written in VHDL as well as in 
Verilog. This could be changed to a single language easily 
so that users who have access to single language design 
environments could also modify and simulate the code. 
 
The XD1 API writes and reads to and from the registers 
using unsigned long data types. When a string of six 
characters have to be written to the registers each 
character has to be packed so that the order does not 
change because the Opteron is a little-endian machine. 
Basically, the first character of the string should be input 
to the first processing unit and not the sixth. This 
increases the work load on the host. This work could be 
eliminated by changing the order the characters are fed to 
the processing units. This would not be a factor if the host 
was a big-endian machine.  
 

Performance 

  
The algorithm was able to sustain a processing rate of 6 

million sequence characters per second on the XD1.  
 

Algorithm Effectiveness 

 
Several studies were conducted on the Cray X1 to validate 
the overall effectiveness of the algorithm prior to 
implementation on the XD1. In these studies, randomly 
generated nucleotide and protein sequences of varying 
length were independently generated and evaluated for 
distribution and collision frequency.  
 
The studies indicate an overall effective distribution of 
results for the algorithm. In the largest case, 500 million 
randomly protein sequences of varying length were 
created and analysed for collision frequency. In this case, 
no collisions were detected. In the case of exclusively 
nucleotide sequences, collisions were detected more 
frequently, with a relatively small number collisions 
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detected within 100 million randomly generated 
sequences of varying length, as a result of increased intra-
sequence homology.  The hash value distribution 
remained even for all cases considered. Full details of 
validation studies are available [4]. 
 

7. Conclusions 
 
The Cray XD1 with field programmable gate array 
support provided an effective platform for implementing 
the biosequence signature algorithm. With minor 
adjustments to the algorithm, an efficient implementation 
was enabled, utilizing only a small portion of the available 
programmable logic on the FPGA. While tremendous 
processing rates appear to be within reach on the FPGA 
for this algorithm, communication bottlenecks readily 
become apparent, thereby limiting the true potential in the 
current implementation.  
 

Future Efforts 
 
OSC has developed an interface that used the FPGA 
transfer region (FTR) to communicate between the FPGA 
and the host. Preliminary results indicated that this 
interface has a bandwidth of approximately 800MB each 
way, consistently, using a round trip testing program. This 
interface is at least two orders of magnitude faster than the 
register interface in use at present. We intend to use this 
FTR memory interface to accelerate the computations. 
 
Even with the limitations, the FPGA implemented 
signature module holds important potential for on and off 
FPGA integration with other sequence comparison 
algorithms, search algorithms and on-the-fly content 
analysis. 
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