
Towards a Specification for Measuring Red Storm
Reliability, Availability, and Serviceability (RAS)

Jon Stearley <jrstear@sandia.gov>
Sandia National Laboratories∗

P.O. Box 5800
Albuquerque, New Mexico 87185-0817

17th May 2005

Abstract

The absence of agreed definitions and metrics for super-
computer RAS obscures meaningful discussion of the is-
sues involved, hinders their solution, and increases to-
tal system cost. Seeking to foster a common basis for
communication about supercomputer RAS, [1] proposed
a general system state model, definitions, and measure-
ments based on the SEMI-E10 specification [2] used in
the semiconductor manufacturing industry. This docu-
ment enumerates the platform-specific details necessary
to apply that general framework to the Red Storm system
at Sandia National Laboratories. Familiarity with [1] is
a strong prerequisite for understanding of this document,
as is familiarity with the Red Storm RAS subsystem1

(although to a much lesser degree). Given the current
pre-production status of Red Storm, this document does
not specify actual policy or practice, but rather proposes
a framework by which to measure RAS performance on
Red Storm.

Keywords

Reliability, Availability, Serviceability, RAS, Metrics

∗Sandia is a multiprogram laboratory operated by Sandia Corpora-
tion, a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

1Detailed description of the Red Storm RAS subsystem is beyond the
scope of this document; interested readers should consult the extensive
Cray documentation on this subject.

1 Preliminary Details

Our RAS definitions [1] depend heavily upon the “in-
tended function” of the item being considered. It is there-
fore appropriate to begin by stating the functions of the
Red Storm system. Overall, Red Storm’s function is to
quickly perform large-scale computations forproduction
users - therefore this document largely focuses onpro-
duction RAS performance (e.g. from the perspective of
production users). The system (or “section”2) is said to
be “up” when this function is manifested via the complete
set of services described in Table 1.

2 State Model

This section enumerates the specific Red Storm criteria
for determining each of the six basic states depicted in
Figure 1 (provided here for convenient reference, see [1]
for a detailed discussion). All equipment (at both a sys-
tem and component granularity) at all time falls into one
of the six basic states. Tracking of state at a section gran-
ularity is done via manual records3, whereas component
states can be accomplished by periodic queries (see Ta-
ble 2) or post-processing of historical logs (e.g. cpa.log
and/or event.log).

2Please note that “section” and “system” are used interchangeably in
this document except where specifically stated otherwise.

3It is expected that the AIRS [3] database will house these manual
section state records, e.g. the time at which the system entered a sched-
uled downtime, or was made available to users, etc.

1

Total Time

Operations
Time

Uptime Downtime

Production
Time

Unscheduled
Downtime

Scheduled
Downtime

Non-Scheduled
Time

Standby
Time

Awaiting
 production jobs

(Item IS
 operational)

(Item IS NOT
 operational)

(Item IS
 available)

(Item IS NOT
 available)

(Item IS
 available for
 production
 use)

Productive
Time

Executing
 production jobs

Engineering
Time

Software, Hardware,
 or Process
 engineering,
 test, or
 qualification

Preventative Maintenance
System Software Upgrades
Minor Hardware Replacements
Facilities related

Repair
 Diagnosis
 Corrective action
 Verification
Facilities related

Installation
Rebuild
Major Upgrades
Non-operational Holidays

Figure 1: Hierarchy of Equipment States (basic states in gray)

No distinction is made between batch and non-batch
(“interactive”) nodes in tracking their state.

2.1 Productive State

A node is counted as being in a productive state when it
is available4 for use by only one user. The low-level crite-
ria for this state is that the node’s processor_id is present
in the SystemDataBase (SDB) partition_allocation table.
This occurs upon a PBS job being executed (prior to the
execution of yod), or upon yod execution (for non-batch
“interactive” jobs). Note that this criteria results in the
shell-execution and cleanup job stages being included in
production time.

Note that when asection is dedicated for use by a sin-
gle user (“dedicated time”), all components in that section
will be counted as being in a productive state - regardless
of whether the user is actually running jobs or not - this is
the only case for which productive state will be tracked at
a section granularity.

4“Available” means that an item is in a condition to perform its in-
tended function upon demand [1].

2.2 Standby State

A node is counted as being in a standby state when it is
available for use by more than one user, but is not in a
productive state due to workload conditions (e.g. there
are no jobs are in the queue, or the node is being reserved
for a large job which has not started yet, etc. The low-
level criteria for this state is that its SDB processor_status
is “up” and its processor_id is NOT present in the parti-
tion_allocation table.
Tracking of standby state at asection level is not expected
to be necessary (although if it happens this will be visible
via the utilization metrics).

2.3 Engineering State

The time when an item (e.g. node or system) is available
to system engineering users (e.g. for system software and
process engineering and testing, application porting and
initial performance characterizations, etc). Using ASC
Availability Status terminology, to date Red Storm has
been in alpha and beta availability statuses, which in the
model proposed herein has been considered as engineer-
ing time. This state is tracked only at asection granularity
(not per-node, thus there is no low-level criteria given for
this state).

2

Service Name Description

login Users can log in to the system.
compile Users can compile applications.

job Batch and interactive jobs work (submission, wait, shell-execution, application-execution, and
cleanup [1]) work correctly, as are all batch queue functions (jobs can be submitted, queried,
removed, and are being appropriately scheduled and executed).

io Users and jobs can utilize the high performance file system.
scale At least a certain number of nodes are up (e.g. 95% of the nodesin the section).

Table 1: Critical System Services

2.4 Scheduled Downtime State

The time (scheduled downtime) when an item is not avail-
able due to planned events (e.g preventative maintenance,
hardware or software upgrades, power or cooling related,
etc). Tracking of this state is at asection granularity only.

2.5 Unscheduled Downtime State

The time (unscheduled downtime) when an item is not
available due to unplanned events (e.g. needs repair, is
power or cooling related, etc). The low-level criteria for
determining that anode is in this state is that its status
in the SDB processor table is “down”, or is configured
to be present in the section but does not appear at all in
the SDB. For example, if the red section is configured to
contain 7500 nodes but only 7450 have status “up” in the
SDB, the remaining 50 nodes are said to be in an unsched-
uled downtime state.

2.6 Non-scheduled State

The time (non-scheduled time) when an item is not ex-
pected to be operational (e.g. initial installation, signifi-
cant rebuilds, etc). Tracking of this system state will be
done manually (if at all - it is of course hoped that this
state is not necessary during the useful life of the Red
Storm system).

3 Failures and Interrupts

This section describes how we will categorize undesired
status transitions. The general rule is that failures regard

items (e.g. nodes) whereas interrupts regard work (e.g.
jobs).

3.1 System Failure

A system failure is an event requiring thatthe system en-
ter an unscheduled downtime state beforeany component
may transition into a productive status. For example, the
whole system must be rebooted before new jobs can ex-
ecute. As this is a system event its occurrence must be
recorded manually, with the time of the event being the
time at which the above condition became true (rather
than the time that the repairs began taking place).

3.2 Service Interrupt

A section will be considered “up” (completely working)
only when a full set of services is working (see Table 1).
Any time the section is in a production time status but any
of the critical services is not working is called a service in-
terrupt. This is expected to be tracked manually, however
it may be possible to establish low-level criteria to iden-
tify this event if desired (e.g. less than 95% of nodes are
up, pbs_scheduler process dies, high performance file sys-
tem disks fail, etc). If a useful subset of services remain
functional after a service interrupt, the system is said to
be operating in a “degraded” mode.

A system failure results in a service interrupt, but a
service interrupt may not always imply a system failure
(e.g. only a subset of services are unavailable, and can be
restored without interrupting the working subset of ser-
vices).

3

3.3 Job Interrupt

Red Storm provides an excellent facility by which to iden-
tify those jobs which are interrupted due to component
failure, via the SDB accounting database includes yod_err
and yod_info fields which are set when jobs terminate ab-
normally. Furthermore, when a job is terminated by the
RAS subsystem (e.g. in the event of a component failure),
this is noted in the yod_info field. The intent is to iden-
tify job interrupts which are cause by component failures.
However, if SIGKILL is used (e.g. by an ordinary user) to
terminate the job, the RAS subsystem must clean up the
remains of the job, and thus the event would be counted
as a (component-failure induced) job interrupt rather than
appropriate response to user behavior. The low-level cri-
teria for this event is that the cleaned_by field of the SDB
job_accounting table is set to “ras”.

3.4 Node Failures

A node failure is the transition of any node into an unex-
pected downtime status. Additional details are necessary
according to the type of node.

3.4.1 Compute Node

Any time a compute node unexpectedly becomes unable
to execute production jobs is counted as a node failure.
The low-level criteria for this is the setting of the node’s
status in the SDB processor table to “down”. The only
possible preceding node status settings are “up” (e.g. the
node is in standby or productive state) or “suspect” (e.g.
the node was in a productive state, and was then flagged as
“suspect” by yod during job startup) - thus any transition
to “down” constitutes a compute node failure. The SDB
status is used instead of CentralDataRepository (CDR)
status in order to most closely match the production user’s
perspective - and node failures are exposed to users via
SDB clients (yod and PBS). Secondly, the SDB provides
SQL query of state, whereas CDR access is via command
line or C-library only (as implemented at time of this writ-
ing, there is some discussion that this may change).

3.4.2 Login Node

A login node’s functions are more varied than a compute
node’s. However, we will use the same low-level criteria

as described for compute node above. As such, we do not
distinguish between which login node function failed (lo-
gin, compile, job submission, parallel file system access,
etc).

3.4.3 I/O Node

An I/O node’s function is to provide access to the paral-
lel file system. I/O node status is not currently captured
in the SDB, so the low-level criteria used to determine an
I/O node failure will be the unexpected transition of the
node’s status in the CDR to “down”. I am unable to pro-
vide exact low-level criteria for this event at this time.

3.5 Seastar Failure

Seastar (Red Storm high-speed interconnect devices) are
monitored via a “portals heartbeat” memory address being
incremented by the seastar and monitored via L05 nodes) -
any time this heartbeatstops would be counted as a seastar
failure. I am unable to provide low-level criteria for this
event at this time.

4 Measurements

This section lists metrics believed to be meaningful to-
wards understanding Red Storm RAS performance, or-
dered by decreasing importance. Consult [1] for de-
tailed equations and discussion, but it is worth emphasiz-
ing here that whereas (T)ime based metrics are common,
(N)odehour metrics provide additional insight because
they include workload information (failures are more a
function of workload than time).

Whereas [1] uses only general terms in equations, in
this document I will define some variables towards a pos-
sible implementation of the below metrics. Given a time
periodT wheretiindicates the time of measurement and
i ranges from 1 tol, let U be a time series whereui in-
dicates the number of “up” nodes at timeti, andP and
S be series indicating the number of productive-state and
standby-state nodes respectively. Furthermore, letD in-
dicate the number of nodes whichtransitioned from an

5L0 nodes are embedded Linux nodes which are part of the Red
Storm RAS subsystem. Again, readers are referred to the extensive Cray
documentation of this subsystem for more details.

4

Item State Variable Value

nodes

up ui = SELECT COUNT(processor_id) FROM processor
WHERE status=’up’;

productive pi = SELECT COUNT(DISTINCT processor_id)
FROM partition_allocation;

standby si = ui − pi

downs di = (ui − ui+1) > 0 ? (ui − ui+1) : 0 (an estimate only - see text!)
jobs interrupted ji = SELECT COUNT(partition_id) FROM job_accounting

WHERE destroy_time>=ti−1AND cleaned_by=’ras’;

Table 2: Counting compute and login nodes at timeti

up to a down status during time periodti. Table 2 de-
scribes the values of these series (all series are of length
l). A first-order estimate ofD can be obtained by tracking
changes inU, however nodes which alsotransition back
to an up status during the time period will be missed by
this estimate. A more precise assignment ofD could be
obtained by parsing the RAS subsystem event.log. Ad-
ditionally, assignment ofP as described will include in-
terrupted jobs as counting towards productive time (and
all subsequent metrics) - if this is not desired,P could
be modified by subtracting the job size from all affected
pi (all time periods during the job which was interrupted).
Values could also be obtained by processing of event logs,
but this document uses SQL queries because they are sim-
pler to implement, and not expected to unacceptably bur-
den the system.

The above variables and below metrics do not consti-
tute challenging mathematics, but rather a well-defined
means of quantifying RAS performance. The variables
as described above do however lend themselves to simple
expressions below, and allow for the study of events over
time. For example one could plot node and job failures
versus time and examine their distribution - do they ex-
hibit a constant failure rate (thus justifying an exponential
random variable model for the calculation of reliability),
or not (perhaps, a Poisson random variable is more appro-
priate), etc [1].

Not all the variables below are precisely described,
and many of them refer to the aforementioned manual
records described in Section 2. This document is a work
in progress and will be updated as actual tracking of state
and calculation of metrics is performed. The first tracking

of Red Storm state using this model is expected to occur
in June, when early production users begin using the red
section.

4.1 Reliability

4.1.1 Mean Time and Nodehours Between System
Failures

Mean time between system failures (see section 3.1) is a
primary system reliability metric, calculated as

MTBFSystem = production time

number of system failures
.

This is related to requirement 5.14 of [4] which states
that “the need to reboot the system shall be greater than
100 hours of continuous operation ... 99% of resources
available.”

Mean Nodehours Between System Failures is similar
to MTBFSystem, but provides additional information as
it is a function of workload rather than raw time. It is
calculated as

MNBFSystem = productive nodehours
number of system failures

.

4.1.2 Mean Time and Nodehours Between Node Fail-
ures

Mean time between node failures (see section 3.1) is a
primary node reliability metric, calculated as

MTBFNode = production time
number of node failures

= tl−t1
sum(F) .

5

Mean Nodehours Between System Failures is similar to
MTBFNode, but provides additional information as it is a
function of workload rather than raw time. It is calculated
as

MNBFNode = productive nodehours

number of node failures
= sum(P)

sum(F) .

4.1.3 Mean Time and Nodehours Between Job Inter-
rupts

This is related to requirement 5.13 of [4] which states that
job interrupts “MTBI for the full system shall be greater
than 50 hours for continuous operation of the full system
on a single application”.

MTBIJob = production time
number of job interrupts

= tl−t1
sum(J)

MNBIJob = productive nodehours

number of job interrupts
= sum(P)

sum(J)

It is worth noting that the total number of jobs is not
present in these calculations. Similar metrics which in-
clude the total number of jobs may also be useful towards
understanding the impact of the runtime software on the
reliability of the system (e.g. the higher the total num-
ber of job executed, the more opportunity for runtime job
start/stop software bugs to manifest themselves in job in-
terrupts).

4.1.4 Mean Time and Nodehours Between Service
Interrupts

Service interrupts are of principal concern to users - these
metrics convey the average time and productive work be-
tween such events. They are aggregate metrics, affected
by both scheduled and unscheduled service interrupts.

MTBIService = production time

number of service interrupts

MNBIService = productive nodehours
number of service interrupts

4.2 Availability

4.2.1 Total Availability

Total availability is an important availability metric, cal-
culated as

Total AvailabilitySystem(%) = uptime

total time
∗ 100.

If engineering and non-scheduled time is not negligible
(as expected), production availability is a useful supple-
ment, calculated as

Production AvailabilitySystem(%) =
production time

operations time
∗ 100.

4.3 Serviceability

4.3.1 Mean Time To Boot System

The importance of tracking mean time to boot the system
on an ongoing basis will largely depend on how often sys-
tem boots are required, and is calculated as

MTTB = total time spent booting
number of boot cycles

.

This is related to requirement 5.11 of [4] which speci-
fies that “a full system reboot of the classified or unclas-
sified sections from a clean shutdown and without a disk
system fsck shall take less than 15 minutes.”

4.3.2 Mean Nodehours To Repair

This calculation measures the average computational abil-
ity lost per failure. Due to the use of nodehours, this met-
ric is sensitive to partial as well as complete system fail-
ures.

MNTR = unscheduled downtime nodehours
number of failures

4.4 Other Miscellaneous Measurements

The following are not RAS metrics, but are included here
for completeness.

4.4.1 Total System Utilization

Total utilization is very common aggregate metric of
RAS, job workload, and queuing policy information, cal-
culated as

Total UtilizationSystem(%) = productive time

total time
∗ 100 =

sum(P)
tl−t1

.

6

4.4.2 Capability Usage Performance

A DOE requirement for Red Storm is that 80% of the
computational time be performed by jobs using at least
40% of the total possible nodes. We intend to calculate
this per section (red, black) and size (25% or 75% of total
nodes) , as

Capability Usage Performance40% =
productive nodehours by jobs at least 40% of section

total productive nodehours
.

It is unclear at this time how to aggregate these per
section and size metrics, as well as inclusion of “jumbo
mode” runs.

4.4.3 Scheduled System Availability (%)

This calculation measures how fully uptime expectations
are met during a time period. The key feature of this met-
ric is that quantitative expectations exist (e.g. uptime and
downtime schedules are set at the beginning of the time
period).

ScheduledAvailabilitySystem(%) =
uptime−downtime

scheduled uptime
∗ 100

5 Conclusions

In order to have effective communication about Red
Storm RAS performance, we must agree on what the
terms we use mean. In order to have quantitative under-
standing of Red Storm RAS performance, we must enu-
merate precise states (and the conditions necessary and
sufficient to determine them) and equations for quantita-
tive metrics. The union of [1] and this document forms
this set. It is hoped that these documents prove useful
in facilitating the ongoing evaluation and improvement of
Red Storm RAS performance, and in assessing the value
of the extensive Red Storm RAS subsystem.

Acknowledgments

Sue Kelly, Bob Ballance, and Jim Ang provided signif-
icant input and/or review of this document - thank you
very much!

Revision

Revision 1.10 of this document appears in the Proceed-
ings of the 2005 Cray Users Group Meeting. This doc-
ument will be revised according to the actual tracking of
Red Storm RAS performance. This is $Revision: 1.10 $,
$Date: 2005/05/18 05:17:56 $.

References

[1] Jon Stearley. Defining and measuring supercomputer
Reliability, Availability, and Serviceability (RAS). In
Proceedings of the 2005 Linux Clusters Institute Con-
ference, 2005. http://www.cs.sandia.gov/~jrstear/ras.

[2] Semiconductor Equipment and Materials Interna-
tional. Specification for definition and measurement
of equipment reliability, availability, and maintain-
ability. SEMI E10-0304, 1986, 2004.

[3] Robert Ballance, Jared Galbraith, and Roy Heimbach.
Supercomputing center management using AIRS. In
Proceedings of the 2003 Linux Clusters Institute Con-
ference, 2003.

[4] ASC Red Storm acceptance test plan. Cray and San-
dia National Laboratories internal document.

7

