
Evaluation of running FFTs on the Cray XD1
with attached FPGAs

Michael Babst
DSPlogic, Inc.
13017 Wisteria Drive, #420, Germantown, MD 20874 Phone (301) 977-5970
Mike.Babst@dpslogic.com

Roderick Swift
DSPlogic, Inc.
13017 Wisteria Drive, #420, Germantown, MD 20874 Phone (301) 977-5970
rod.swift@dpslogic.com

Dave Strenski
Cray Inc
7077 Fieldcrest Road, Suite 202, Brighton, Michigan 48116, Phone (313) 317-4438
stren@cray.com

ABSTRACT:

FFTW is a subroutine library for computing the discrete Fourier transform in one or more
dimensions, of arbitrary input size, and of both real and complex data. FFTW has been
benchmarked on several platforms and is the FFT library of choice for most applications. This
paper will present the results from the development of a hardware-accelerated FFT using an
FPGA attached to the Cray XD1. The results are compared to the FFTW benchmarks.

KEYWORDS:

Cray XD1, FPGA, FFT

Introduction

DSPlogic has developed a hardware accelerated FFT algorithm for the FPGAs (Xilinx [1] Vertex-II Pro
XC2VP50) attached to the Cray XD1 machine. In the paper we compare the results of the FFT running on
the FPGA against running FFTW on the Opteron in terms of both accuracy and speed. We show that
performance is highly dependent on the Opteron/FPGA communications architecture. A modular design
structure was used to allow Opteron/FPGA communications to be isolated from the FFT algorithm itself.
This architecture simplifies the processes of both changing the algorithm and adding new algorithms. It
also allows FPGA/Opteron communications to be optimized and treated separately from the algorithm
itself.

The paper starts with some background information about FFTW. Next we cover the motivation for
pursuing an FFT algorithm on the FPGAs used on the Cray XD1 system and some background on that
machine. The bulk of the paper then explains how the FFT was implemented on the Cray XD1 machine,
with a description of the I/O architectural features. Since the number and format of the bits used in the
FFT algorithm on the FPGA differ from those used on the Opteron, the next sections cover the issue of
accuracy, and how to compare fixed point arithmetic against 32-bit IEEE floating point in terms of
dynamic range and precision. Many combinations of precision are possible on the FPGA. The primary
limitation of fixed-point arithmetic is dynamic range, which limits the maximum positive and maximum
negative values of numbers used in the same computation. Many tradeoffs may be made among speed,
FFT size, and precision. The speed is compared against the Opteron processors running FFTW.

FFTW Background

The Fast Fourier Transform (FFT) was named one of the top ten algorithms of the 20th century, and
continues to be a focus of current research. [2] They are used in many kinds of applications, most notably
in the field of signal processing. A look at the FFTW web site [3] shows many of the different algorithms
that can be used to calculate FFTs and how they compare to FFTW. Its performance is competitive even
with vendor-optimized code, but unlike these programs, FFTW is not tuned to a fixed machine. Instead,
FFTW uses a planner to adapt its algorithm to the hardware in order to maximize the performance. [4]
Because of its performance, wide availability, and wealth of data at its web site, we choose it as the
benchmark to which we compare our FPGA FFT design.

The Cray XD1 Node with Attached FPGA

The Cray XD1 machine consists of a building block called a chassis. This chassis contains six node
boards that each consist of; two Opteron processors, one Rapid Array Processor (RAP), an optional
second RAP, and an optional Application Accelerator which consists of a Xilinx Vertex family FPGA
and QDR SRAM. The six nodes are connected to a main board on the bottom of the chassis, which also
contains a 24-port switch. Data from one Opteron is moved to the RAP via a Hyper Transport link and
then through the switch to the receiving RAP and to the other Opteron.[5] [6]

The focus of our attention is on the node board as seen above. Note that the FPGA is directly attached to
the second RAP using a Hyper Transport type link. This gives the machine a very low latency between
the Opteron and the FPGA, about 0.3 microseconds, and a bandwidth of 1.6 GB/s in each direction. We
show later in the paper the importance of this 1.6 GB/s bandwidth because it becomes the limiting
performance factor in the FFT design on the FPGA.

For an example of another application running on the Cray XD1 machine using the Application
Accelerator, refer to the paper from Los Alamos National Laboratory [7] showing a speedup of 34.4x on

their traffic simulation application. Another interesting paper showing an application's boost in
performance via FPGA, though not on the Cray XD1, is by the University of Southern California [8]
showing a performance of 26.6 GFlops on a 32-bit matrix multiply routine.

Programming the FFT on the FPGA

In order to provide a design that is easy to upgrade, optimize, and customize, a modular design approach
was used. Our tests indicate, as we will show, that performance is entirely limited by the Opteron/FPGA
communications. Therefore the I/O interface is a very important part of the design and will also be
discussed.

The modular design of the application and the division between the Opteron and the FPGA is shown in
the next figure. The application consists of four primary layers, the Cray API, I/O Management, the FFT
library, and the end-user software application.

Data Flow
Management

Input
FIFO

(4 MB)

Cray
AA
API

FPGA Application

C
ra

y
 R

T
 C

o
re

Output
FIFO

(4 MB)

Result
Buffer
(2 MB)

IO
 L

ib
ra

ry

I/O
Control

Opteron
Application

FFT
Core

User
Memory

Opteron Application Accelerator

Control
State

Machine

FFT
Config/
Status

The Cray API (blue boxes) provides the low-level interface between the Opteron and the FPGA. [5] It
consists of both FPGA cores and a library of function calls that are supplied from Cray. On the Opteron
side, the Cray Application Accelerator software API provides functions such as loading, unloading, and
resetting the FPGA. It also provides a simple method of writing data to and from the FPGA. On the
FPGA side, the Rapid-Array Transport (RT) Core provides the low level communications interface to the
Cray XD1 fabric. A QDR SRAM interface core is also provided to communicate with the SRAM attached
to the FPGA.

The I/O management layer (yellow boxes) provides a greatly simplified, framed, streaming data interface
between the FFT software and hardware layers. It provides simple software function calls such as
loadframe() and getresult() to send and receive programmable length blocks of data, called
frames, to and from the FPGA application, the FFT design in this case. The Data Flow Management
FPGA core manages all communications with the host processor and the RT core. It also provides input
and output FIFOs to decouple the FPGA and Opteron processing. Refer to Appendix 1 for the syntax of
the API.

The FFT Library (green boxes) consists of an FFT core and a software API. The software API consists of
a single function, fft_init(), which sets the FFT length and direction (forward/inverse). The FFT
FPGA core has been created using a combination of off-the-shelf cores and custom VHDL programming
to optimize for the XD1. The FFT core utilizes a Radix-2 decimation-in-frequency algorithm and is
capable of continuous throughput at 1 complex sample per clock cycle, with a maximum clock frequency
of 200 MHz.

The end-user software application (also in green boxes) utilizes both the FFT Library API and the I/O
Management API. The user's data starts in the Opteron's memory, organized as complex samples, each
sample requiring a 64-bit format, described later. A simple function, dspio_init() is called first to load
the bitstream into the FPGA and performs the initialization. Next, dspio_config() is called to set the
frame length used for communications with the FPGA. A communications frame of data may consist of
one or more FFT blocks. The user then calls fft_init() to set the FFT length and direction. Input data
is then sent to the core using the loadframe() function. The user provides a pointer to the base address
of the input data. The loadframe() function may be called repeatedly until all input data is transferred
to the core. If the input FIFO is temporarily full, the loadframe() function will return immediately with
a notification code. FFT results data is retrieved from the core using the getresult() function. Again,
the user provides a pointer to where the FFT results should be written. If the result is ready, one
communications frame of FFT data will be copied to user memory. If the result is not ready,
getresult() will return immediately with a notification code. The getresult() function may be
called repeatedly until all FFT results are returned.

Data Flow

The purpose of this section is to describe the user data formats and the data flow between the Opteron and
the FPGA. The format for FFT input and output data is shown in the following figure.

The FFT length, N, may be between 32 and 65536. In order to use pipelining to minimize the effects of
communications latency, it is useful to process multiple FFTs at once. Therefore the entire input dataset
length will consist of M complex samples. The example provided here will compute non-overlapping
FFTs of this data.

The data set must first be divided into M/K communication frames, each containing K samples. Each
frame may contain one or more FFT blocks, each with N complex samples. The I/O Management FPGA
Core requires the frame length to be between 1024 and 65536. For example, N = 65536 must use one FFT
per frame, N = 1024 may use between one and 64 FFTs per frame, and N = 32 must use between 32 and
2048 FFTs per frame.

The architecture is designed to provide the fastest possible FFT performance and maximum FFT
throughput (in FFTs per second). However, it is clearly very inefficient if a single 32-bit FFT is to be
computed.

F0 FM/K-1

B0 BK/N-1

Re[15:0]

Im[31:0] Re[31:0]

Complex Input Sample

Dataset = M samples

K samples / frame

D0 DN-1

N samples / fft

Dataset

Frame

FFT Block

Im[15:0]

Complex Output Sample

64 bits / sample

Frame Length:
1024 < K < 65536
FFT Size:
32 < N < 65536, non-overlapping
Dataset Size:
32 < M < Available Memory

The figure also shows that each complex input and output sample is represented by a 64-bit word, with
the lower 32 bits reserved for the real part and upper 32 bits for the imaginary part. The input data utilizes
16-bit fixed point format and the output uses 32-bit fixed point format to allow bit growth for accurate
computation at each stage of the FFT. More details on the precision of the FFT computations are
discussed below.

Processing Pipeline and Latency

Data pipelining is required to achieve maximum FFT performance. Multiple frames of input data may be
sent to the FPGA before the first FFT result is returned. The time from the first input transmission to the
first output result is the FFT latency. A diagram of this processing pipeline is shown in the following
figure.

Load Input Fifo F0

Load FPGA Processor

F1

loadframe() loadframe()

F2

loadframe()

F3

loadframe()

F4

loadframe()

F0 F1 F2 F3 F4

Process Data
Processing Delay

To Output Fifo

To Result Buffer

To User Memory

F0

F0

F0

F1

F1

Tff

Tfr

Tfc

getresult()

F1

Dfft

Tfo
clkfft NTD 5.1≈

sec
10*1.1

8)5.1125.3(9
KTNKT clkL ++≈

Load Input Fifo F0

Load FPGA Processor

F1

loadframe() loadframe()

F2

loadframe()

F3

loadframe()

F4

loadframe()

F0 F1 F2 F3 F4

Process Data
Processing Delay

To Output Fifo

To Result Buffer

To User Memory

F0

F0

F0

F1

F1

Tff

Tfr

Tfc

getresult()

F1

Dfft

Tfo
clkfft NTD 5.1≈

sec
10*1.1

8)5.1125.3(9
KTNKT clkL ++≈

When the user calls loadframe(), data is sent to the input FIFO on the FPGA. This forward transfer
time is limited by the Cray XD1 fabric to:

clk
clk

ff KT
F
KT ==

where Fclk is the FPGA clock frequency. This corresponds to a maximum forward data transfer rate of

() clkf F
Tclk

RMax 88
==

or 1.6 GB/s for Fclk = 200 MHz.

The FFT core is capable of processing data continuously at one sample per FPGA clock. The processing
delay of the FFT core is approximately 1.5 FFT blocks, or:

clkfft NTD 5.1≈
The data is then transferred to the output FIFO at a rate of 1.6 GB/s. The FFT result is then transferred by
the FPGA to a "result buffer" in Opteron memory, without CPU interaction. This transfer requires 9 clock
cycles to transfer 8 64-bit words. This return frame transfer time is also limited by the Cray XD1 fabric
to:

clk
clk

fr KT
F
KT

8
9

8
9
==

This corresponds to a maximum return data transfer rate of

() clkr F
Tclk

RMax 11.7
9

8*8
==

or 1.42 GB/s for Fclk = 200 MHz.

Finally, the data is copied from the result buffer in Opteron memory to the user memory area on the
Opteron. Experiments have shown that this transfer time is variable based on the Cray XD1 system
performance, buffer memory locations and data types. However, typical performance in the current
implementation is approximately 1.1 GB/s. Therefore the time to copy data from the result buffer to the
user memory area is approximately

910*1.1
8KTfc ≈

The total latency to the first FFT result is therefore

fcfrfofftffL TTTDTT ++++≈
After simplification we have

sec
10*1.1

8)5.1125.3(9
KTNKT clkL ++≈

Accuracy of the FPGA FFT design

The current implementation of the FFT uses fixed point computations. Fixed point numbers may be
viewed as floating point numbers without the exponent and with a variable mantissa width. The lack of an
exponent limits the dynamic range (largest and smallest number that may be represented. The exponent
may be selected ahead of time, but must be common to all numbers. The exponent (or scaling) may also

change during computations in a known, fixed manner. Therefore the resulting exponent may often be
different than the input exponent but nonetheless applies to all output numbers.

The example shown here starts with a 16-bit fixed point input and allows precision (bit) growth
throughout each stage of the computation. The result is a 32-bit output. The bit growth allows
computations to be performed and the output to be represented without scaling/rounding effects. Other
variations are possible, such as 24-bit input and 24-bit output. However scaling and rounding are required
at each stage of the FFT computation in order to fit the result in the 24-bit output. This is similar to what
happens in floating-point computations. [9]

The 16-bit input and 32-bit output was selected primarily for the convenience of not having to worry
about scaling. It is important to note that the 16-bit fixed point arithmetic performed in the FPGA is not
the same as doing 16-bit fixed point arithmetic on the Opteron. On a typical microprocessor with a fixed
precision function unit, like a 32-bit floating point add unit, at every calculation there is a rounding error.
So a 16-bit fixed point add unit would have two 16-bit input numbers and one 16-bit output number. On
the FPGA the functional units are not all the same size (i.e. precision). Since the FFT algorithm is a 16
stage calculation and at each step an addition bit is used, such that for the FFT calculation two 16-bit
fixed point numbers are the input, but one 32-bit fixed point number is the output. All 32 bits are
preserved and sent back to the Opteron.

When comparing the precision of the results between the Opteron and the FPGA, we also need to look at
how the precision is stored in an 32-bit IEEE floating point number. Recall that for single precision
floating point numbers, 1 bit is used for the sign, 8 bits are used for the exponent, and 23 bits are used for
the mantissa. So when comparing the 32-bit floating point with the 16-bit fixed point, the 7-bit difference
in numerical format accounts for a significant portion of the accuracy capability.

A very simple measure of the precision of a fixed point number in terms of decimal notation is:
 16-bit accuracy = 1/(216) is on the order of 10-5
 23-bit accuracy = 1/(223) is on the order of 10-7

However, the accuracy of the FFT result depends on many more factors, such as the type of
rounding/truncation (if any) used after each computation stage and the accuracy of the "twiddle factors"
used in the computation. The bit growth to 32-bits at the output allows the precision to be maintained
throughout the computation, even to a higher level of precision that is possible with 32-bit floating point
numbers. An improved method of measuring the accuracy of the FFT is to used a normalized metric, such
as the method described on the FFTW website [3]. The error between a high-precision FFT algorithm and
the FPGA output is computed as

n

n

b
ba

bacompare
−

=),(

where the L2 norm is defined as

nlen

i

n
inn xxL

1
1

0
⎟
⎠

⎞
⎜
⎝

⎛
== ∑

−

=

.

Using this methodology, the actual L2 norm accuracy of the 16-bit in/32-bit out FPGA FFT is measured
between 2.0e-5 and 3.5e-5. This is commensurate with results for other single-precision FFT algorithms
described on the FFTW website, as shown in the next figure. Finally recall that using 16-bit input/32-bit
output was primarily for convenience. Other tradeoffs between speed, accuracy, and FFT size may also be
made. In the future as more FPGA real estate becomes available, we should be able to fully implement a
64-bit floating point algorithm.

Expected Speed Performance of FFT on Opteron and Attached FPGAs

This section describes the expected speed performance of the FFT design on the FPGA. As with the
accuracy section, getting a pure one-to-one comparison is difficult. The first thing to realize, from the
Opteron side, is that when the Opteron is doing an FFT calculation, the function units are busy and can
not work on anything else. When the FPGA works on the FFT, the Opteron may have spare processing
bandwidth for other calculations. As the FPGA sends its results back, it uses separate circuitry to send the
data to the Opteron's memory, so the Opteron's function units are available.

The other major difference between measuring the Opteron's performance and the FPGA performance is
latency. Since everything is measured from the perspective of the Opteron's memory, the results from the
FPGA have a latency associated with them, since they must traverse the Hyper Transport link to and from
the FPGA. Therefore running single short FFTs will not perform well on the FPGA.

The FPGA is capable of processing 1 complex sample (represented by 64 bits) at every clock. The
maximum clock speed is 200 MHz for a maximum processing bandwidth of 1.6 GB/s. The actual clock
speed for the 16/32-bit test design is 175 MHz, with a maximum processing bandwidth of 1.4 GB/s. As
shown above the maximum rate at which the FPGA can return data to the Opteron is limited to 1.4 GB/s
due to the extra clock cycle required every 8 64-bit word transfers. Therefore, the theoretical maximum
processing rate is limited by the fabric to 1.4 GB/s, or 175 complex samples/second.

A second limitation on the processing bandwidth is that there is currently a 2 MB limit on the size of the
Opteron memory space that the FPGA can write to. Therefore the getresult() function must
continuously copy data from this buffer to the end user data buffer. Experiments have shown that these
general memory-to-memory transfers average approximately 1.1 GB/s, depending on buffer memory
locations and data types. However special care when aligning buffers and selecting data types can
improve this figure. Nonetheless, the memory-to-memory transfer rate is a second limit on the
performance.

Finally, a third limitation exists when the loadframe() and getresult() functions are used because
the Opteron must be time-shared to send the data to the FPGA and also to copy data from the result buffer
to the user data buffer. This reduces the I/O processing bandwidth by an additional factor of 2. This is a
significant impact on performance and slows processing bandwidth to approximatley (1.1)/2 = 550 MB/s.
This is a "worst case" performance that will be used as a lower bound on the expected performance of the
FPGA-based FFT. Further optimizations have improve performance beyond this rate. This rate will also
be improved further when the size limitation on the result buffer is removed. Cray indicates that this will
occur in one of the next releases.

These three processing rates; 1.4 GB/s, 1.1 GB/s, and 550 MB/s each correspond to an FFT computation
time based on the number of complex samples in the FFT. Again, the 1.4 GB/s represents the theoretical
maximum, 550 MBps represents the absolute worst case, and 1.1 GB/s represents a reasonably achievable
number after optimizations have been made. These expected results are shown in the following figure.
The figure also shows the published performance of the FFTW algorithm [3] running on a Model 246
Opteron for comparison purposes. It can be seen that a processing rate of 1.4 GB/s or 1.1 GB/s will
always outperform the Opteron based FFT. However the FPGA underperforms the Opteron for the worst
case 550 MB/s at small FFT sizes. The current state of optimizations demonstrate a sustained throughput
of over 800 MB/s.

The next graph shows the expected latency of the FFT, based on the pipeline description provided earlier.
This represents the time needed to get the first FFT result frame back. This also demonstrates the need to
run a large amount of data through the FPGA to overcome this latency.

Average FFT Processing Time

0

1

10

100

1000

10000

5 6 7 8 9 10 11 12 13 14 15 16

log2(Nfft)

Ti
m

e
(u

se
c)

R = 1.42 R = 1.1 R = 1.1 / 2 FFTW(cpignol64-246)

FFT Latency

1.00E-05

1.00E-04

1.00E-03

1.00E-02

5 6 7 8 9 10 11 12 13 14 15 16

log2(Nfft)

La
te

nc
y

(s
ec

)

Fc=200, Rm=1.6G Fc=175, Rm=1.6G Fc=175, Rm=1.1G

Experimental Results

The following table shows the actual measured results prior to optimization. The FFT size and frame
length were varied while the total number of samples was maintained constant. The TX columns represent
the average time duration or throughput for the loadframe() operation. The RX colums represent the
average time duration or throughput for the getresult() functions.

The table shows that the loadframe() throughput is optimal at larger frame sizes while the RX
getresult() throughput remains relatively constant at about 1.1 GB/s. Therefore for best performance,
it is recommended that smaller FFT sizes be grouped into larger frames for transmission to the FFT,
provided that a low latency is not required.

FFT size
Frame
Size

Number
of Frames

FFTs/
Frame

Total
processed Average Duration (usec) Throughput (Mbytes/sec)

N K F K/N Nproc Total TX RX Total TX RX
65536 65536 8 1 524288 932.63 403.00 526.00 562.16 1300.96 996.75
32768 32768 16 1 524288 462.50 205.88 255.06 566.80 1273.32 1027.77
16384 16384 32 1 524288 231.31 106.28 123.88 566.65 1233.26 1058.10
8192 8192 64 1 524288 116.86 56.05 60.31 560.81 1169.30 1086.62
4096 4096 128 1 524288 60.45 30.04 29.74 542.11 1090.85 1101.74
2048 2048 256 1 524288 32.81 17.96 14.50 499.44 912.20 1129.62
1024 1024 512 1 524288 19.23 11.09 7.90 426.02 738.95 1037.22
512 1024 512 2 524288 9.27 5.44 3.73 441.76 753.50 1098.71
256 1024 512 4 524288 4.62 2.75 1.81 443.67 745.54 1130.24
128 1024 512 8 524288 2.31 1.38 0.91 442.91 744.73 1126.51
64 1024 512 16 524288 1.16 0.69 0.46 441.00 740.96 1117.90
32 1024 512 32 524288 0.58 0.35 0.23 441.38 742.03 1127.75

A combined throughputs of approximately 560 is achieved without any optimization. In order to optimize
the results further, a new function, txrx() was created to manage the processing of the entire dataset for
the end user. This function accepts a pointer to the input dataset and writes the result to another pointer
location provided by the user. The function does not return until all samples in the dataset are processed.
Using this optimized method, we have measured total throughputs in excess of 800 MB/s, an
improvement of approximately 50% over the separate loadframe() and getresult() function calls.
Nonetheless, not all applications are as I/O intensive as the FFT and, for example, might have a much
smaller amount of output data than input data. Therefore, the loadframe() and getresult() functions
may still remain convenient for other applications.

Finally, the following figure shows the expected speedup ratio of processing time for the Opteron based
FFTW divided by the FPGA-based FPGA processing time for I/O rates of 1.4 GB/s (theoretical
maximum), 1.1 GB/s (expected future performance), and 800 MB/s (current actual sustained throughput).
As can be seen, the processing improvement is greatest for larger FFT sizes. The performance
improvements for a two-dimensional FFT are expected to be even greater.

Average Data Throughput

0

100

200

300

400

500

600

700

800

900

1024 2048 4096 8192 16384 32768 65536

Frame Length

Th
ro

ug
hp

ut
 (M

B
yt

es
/s

ec
)

Average Speedup Ratio

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Nfft

T(
fft

w
)/T

(fp
ga

)

R=1.4G R=1.1G R=800M

Conclusions

We have shown that using the FPGAs attached to the Cray XD1 to calculate one dimensional FFTs is
feasible and currently yields at least a 4.75 times speedup for a FFT size of 65536, with a potential of up
to 8.5 times. We have also demonstrated using 16-bit input/32-bit output fixed point data provides
accuracy that is comparable to many single-precision algorithms, but not as accurate as the best single-
precision algorithms. It can also can be moved to a higher level of precision with the caveat that
constraints of the Virtex II Pro-50 might lower the speed or the maximum FFT size. The Virtex-4 will
allow even greater FFT sizes, processing rates, and precision. We have also demonstrated that the
performance is limited by the I/O interface to and from the FPGA. As I/O optimizations are improved,
performance of the FFT will also improve. Finally, we described a modular design will ease the effort of
porting other algorithms to the FPGAs attached to the Cray XD1.

References

[1] Xilinx Incorporation, http://www.xilinx.com
[2] Lenore R. Miller, Sharon G. Small, "Four Easy Ways to a Faster FFT", Journal of
Mathematical Modeling and Algorithms 1: 193-214, 2002
[3] Fastest Fourier Transform in the West, http://www.fftw.org
[4] Matteo Frigo, Steven G. Johnson, "The Design and Implementation of FFTW3",
Proceedings of the IEEE 93 (2), 216-231, 2005
[5] Cray Inc, Seattle WA, "Cray XD1 FPGA Development" , 2005
[6] Cray Inc, Seattle WA, "Cray XD1 Datasheet", 2005
[7] Justin L. Tripp, Henning S. Mortveit, Anders A. Hannsson, Maya Gokhale, "Metropolitan
Road Traffic Simulation of FPGAs", presented at the FCCM conference in April of 2005, in
Napa, California
[8] Ling Zhuo, Viktor K. Prasanna, "Scalable and Modular Algorithms for Floating-Point
Matrix Multiplication on FPGAs"
[9] Altera Coporation, "Floating-Point FFT Processor (IEEE 754 Single Precision) Radix 2
Core", Altera white paper, 2003

Footnotes

 1 All jobs run on the Cray XD1 pacific.cray.com.

Appendix 1

The DSPlogic I/O Library API interface:
 FPGA Initialization
 int32 dspio_init(char fpgafile[], int32 verbose);

 I/O Configuration
 int32 dspio_config(
 uint32 nq_frm_in, input frame length (64-bit words)
 uint32 nq_frm_out, output frame length (64-bit words)
 int32 verbose);

 Close FPGA
 int32 dspio_close (int32 verbose);

 Send data to FPGA
 int32 dspio_loadframe (
 const uint64 *datap, pointer to input data
 uint32 frame_param frame parameters
 int32 verbose);

 Read data from FPGA
 int32 dspio_getresult (
 uint64 *datap, pointer for result data
 int32 verbose);

 I/O Status
 fpga_struct dspio_status ()
 uint64 app_id; application ID
 uint32 comp_status; comp status
 uint32 nfrm_received; number of frames received by FPGA
 uint32 nfrm_returned; number of frames returned by FPGA
 uint32 inbuf_depth_qw; input buffer depth
 uint32 outbuf_depth_qw; output buffer depth
 uint32 max_inbuf_depth_qw; maximum input buffer depth
 uint32 max_outbuf_depth_qw; maximum output buffer depth
 uint64 err; error code

 Control registers
 int32 dspio_appcfg (
 uint32 regid, control register ID (0-7)
 uint64 val);

 Status registers
 uint dspio_appstat (
 uint32 regid, status register ID (0-7)
 int32 verbose);

