
Metropolitan Road Traffic Simulation on FPGAs

Justin L. Tripp, Henning S. Mortveit, Anders Å. Hansson, Maya Gokhale
Los Alamos National Laboratory

Los Alamos, NM 85745

Overview

• Background

• Goals

• Using the XD1

• Results

• Conclusion and Future work

Unclassified 2 / CUG 05

Hardware acceleration of Large-scale Simulations

• Simulations have become a standard approach for system analysis.

• The scale of such systems often push computational boundaries.

• Simulations, such as TRANSIMS, have a large component of

cellular automata(CA)-like structure with localized information

and computation.

• FPGAs or a combination of FPGAs and CPUs seems well-suited to

tackle such problems.

→ TRANSIMS microsimulator is an example/prototype!

Unclassified 3 / CUG 05

Simulation Examples: The Unified Infrastructure Suite

• Examples: TRANSIMS,
EpiSims, AdHopNet

• Systems are very large: Size:
107 travelers, 109 nodes, 109

transceivers and 1012

pkts/hr—require HPC based
simulations

• Need formal framework for
design, analysis and
specifications of
socio-technical simulations

• Composed of smaller
heterogeneous, inter-operable
simulations

Unclassified 4 / CUG 05

TRANSIMS - a brief overview

• Realistic traffic on real
networks

• People have plans

• Router generates global travel
routes from plans

• Micro-simulator moves
entities around using plans

• Portland network has 6.6 million road-cells and about 1500 intersections.
Chicago has about 20 million road-cells.

• The traffic micro-simulation time for Portland is about 16 hours.

Unclassified 5 / CUG 05

Example: Traffic in Portland

Unclassified 6 / CUG 05

Mathematical Structure of the TRANSIMS micro-simulator

• The micro-simulator consists of
four cellular automata:

? Lane-change decision Φs

? Lane-change execution
(stochastic) Φl

? Acceleration (stochastic) Φv

? Position update Φp

• Driver plans influence the
dynamics around intersection and
turn-lanes.

• The micro-simulator is the product
system: Φ = (Φp ◦ Φv) ◦ (Φl ◦ Φs)

The terms Φv and Φs represent stochastic SDS.

Unclassified 7 / CUG 05

Goals for Hardware Acceleration with FPGAs

• Accelerate traffic simulation with FPGAs.

• Explore the role of FPGAs in accelerating very large simulations.

• Increase understanding about trade-offs for large designs.

• Extend the use of FPGAs to control dominated computation.

Unclassified 8 / CUG 05

TRANSIMS: Traffic Simulation

Micro-simulation using cellular automaton computation on an unstructured grid.

• Road network of nodes and links.

? Nodes - intersections and merge
points

? Links - one or more parallel
lanes of cells

? cells - hold one car and are
7.5m long.

• Cars

? Four basic rules describe
cellular behavior.

? discrete speeds
v ∈ {0, 1, 2, 3, 4, 5}

? updated once per second.

Link

Node
Merge Merge

Node

Intersection
Node

Example Structure

Unclassified 9 / CUG 05

Scalable Approach

• Use common FPGA streaming

data approach.

• Streaming allows for large scale

road networks by processing

road cells in a continuous

stream by trading area for time.

• Road statistics show that 90%

of the road cells are single lane

roads.

Update engine

Read Write

MemoryMemory

Addr_genAddr_gen

Enable

• Design is partitioned between single lane roads on the

FPGA, and multi-lane and intersections on the CPU.

Unclassified 10 / CUG 05

Update Engine and Overlap Areas

• Compute Engine calculates new

velocity based on cars ahead

and a pseudo-random

slow-down factor.

Scan
cells
and
output

Velocity
update

Shift register

• The results are put into a shift register and pulled out when

the cars velocity matches the currently “new” cell.

• Cells that are shared with the

software simulation are marked

as overlap region I or II.

traffic flow update direction

overlap region II overlap region I

• The velocity update modifies cars in overlap region II and

passes cars in overlap region I.

Unclassified 11 / CUG 05

Cray XD1 - Reconfigurable Supercomputing

• Single Chassis: 12 AMD

Opterons, up to

8GB/processor

• 48 or 96 GB/s non

blocking RapidArray

Fabric

• 1 V2Pro30 or V2Pro50

for each SMP Pair

• 3.2 GB/s Link to

RapidArray and FPGA

MemoryMemory Memory

Six SMP

Pairs

FPGA

Hyper−
Transport

Link

RapidArray Interconnect System
24 RapidArray Links

RapidArrayRapidArray

Opteron
Processor

Opteron
Processor

Link Link

Unclassified 12 / CUG 05

Cray XD1 - FPGA Module

• V2Pro30 or V2Pro50

• 3.2 GB/s RapidArray

Link

• Four 4 MB QDR SRAMs

with 3.2 GB/s bandwidth

• Links to Neighbor FPGAs

(not yet supported)
RapidArray

2
GB/s

2
GB/s

2
GB/s

2
GB/s

QDRII
RAM

HyperTransport
to SMP

3.2
GB/s

3.2
GB/s

Neighbor
Compute Module

Neighbor
Compute Module

QDRII

QDRII

QDRII

RAM

RAM

RAM

FPGA
Accelerator

3.2 GB/s

RapidArray
Processor

Unclassified 13 / CUG 05

Cray XD1 - Software Support

• Opteron SMP nodes run Cray/SuSE Linux

• MPI is provided for internode communication

• Linux device drivers and command-line tools for FPGA interaction.

• HW/SW designs are accomplished by manual partitioning of the

HW and the SW.

• FPGA API for loading, executing, resetting, reading/writing

memories, reading/writing registers, and mapping memory for

FPGA’s use.

• VHDL models provided for fabric, memories and provided cores (rt

and qdr).

Unclassified 14 / CUG 05

Cray XD1 - Communication Costs

• Rapid Array Transport (RT)
Core provides the interface to
the RapidArray Fabric

• QDR Core provides the
interface to each of the four
QDR SRAM memories

• Data transfer arrives in the
RT core and must be routed
via the user’s design to the
QDR core.

• The user’s design must also
provide arbitration, if
necessary.

Rapid
Array
Proc.

QDR
Core QDR

Memory

Write Ctrl

Write

Read

RT

Core

FPGA

To CPU

Fabric
Array

RapidTo

Engine
Traffic

Unclassified 15 / CUG 05

Cray XD1 - Read and Write Bandwidth

• Cray’s Manual suggests

“write-only” designs.

• Measured the available

bandwidth for host read

and write.

Bandwidth: Host to FPGA (MB/s)
Array Pointer Memcpy

Read 5.94 5.95 6.01
Write 1260 1320 1320

• 200× bandwidth gap between reads and writes.

• Writes have all the advantages (posted, combined in kernel)

• Memory access method was not significant.

Unclassified 16 / CUG 05

Communication Approaches

Host Partial Read and Partial Write

Host Partial Write and FPGA Partial Write

Host Read and Write

Not to scale

Read

Write

Read

Read

Write

Write

Process

Process

Process

Unclassified 17 / CUG 05

Data Push to Host

• Only cars in overlap areas are

sent to host.

• FIFOs are required since cars in

overlap can be bursty.

• Round-robin selection for each

FIFO.

• Overlaps push with execution to

eliminate the cost of data

transfer.

Traffic
Engine

Traffic
Engine

Traffic
Engine

Engine
Traffic

Round
Robin

Rapid
Array
Fabric

RT
Core

Fifos

Data
Push

Mux

Unclassified 18 / CUG 05

Design Results for FPGA

Raw Speed Results

2.2GHz

V2p50 Opteron

Slices 1857

Clock(MHz) 180 2199

Cells/sec 7.2× 108 5.7× 106

Speedup 126.3 1.0

Software was timed using the time step counter register on the
Opteron. The FPGA design was synthesized from VHDL using Xilinx
ISE v6.2.

Unclassified 19 / CUG 05

Design Results for FPGA

Comparisons of streaming the data including communication to and
from the host.

w/o Push Push 2.2GHz

V2p50 V2p50 Opteron

Cells/sec 2.56× 107 1.96× 108 5.7× 106

Speedup 4.5 34.4 1.0

Without push is the speedup when the FPGA’s memories are read by
the host microprocessor. Using push, sends back the incremental
updates using the FPGA to shared memory on the host.

Unclassified 20 / CUG 05

System Integration

Overlapping the processing and data read steps allows us to
effectively reduce communication to nearly zero.

Without push With push
Network state update 8.3% 9.7%
Software to hardware 0.2% 0.18%
Intersections 14.0% 13.8%
Lane change update 13.3% 16.8%
Velocity update 21.9% 25.5%
Position update 30.0% 33.8%
Hardware to software 12.3% 0.14%

However, not all processing of the road straightaways could happen
on the FPGA due to the size of the memories.

Unclassified 21 / CUG 05

Strategies to Reduce Memory usage

• Smaller road cell representation 64bits to 32bits.

? Remove car ids.

? Make assumptions about sequentially numbered road cells.

• Compression of “empty” road segments.

? Run-length encoding.

? traffic data semantics.

Unclassified 22 / CUG 05

Conclusions

• FPGAs can scale with large simulation requirements (millions of

simulation elements).

• Using the Cray XD1 with a realistic road network, we achieved a

34.4× speedup.

• FPGAs can accelerate large traffic simulations using custom

calculations.

• These results are for a single FPGA and single processor, and

higher level cluster partitioning can be achieved similar to the PC

cluster of the original TRANSIMS.

Unclassified 23 / CUG 05

Future Work

• Using additional FPGAs via the RapidTransport Fabric to add

more computation power for a single CPU.

CPU
FPGAs

RapidTransport Fabric

• Produce a clustered version using the XD1 Cray machine and

MPI.

CPUCPU CPU CPU CPU CPU

RapidTransport Fabric

FPGAs

Unclassified 24 / CUG 05

Future Work

• Reduce data size by using either compression or smaller semantic

representation of the data.

Exchange
Shared
Data

Data
Compress
Decomp.

 Traffic
 Compute

Engine
Mem_0

To the host

Unclassified 25 / CUG 05

