
Reconfigurable Computing Aspects of the Cray XD1

Craig Ulmer, Ryan Hilles, and David Thompson

Sandia National Laboratories∗

Livermore, California USA
cdulmer@sandia.gov

ABSTRACT: Reconfigurable Computing (RC) refers to the use of reconfigurable
hardware devices to accelerate the computational performance of a system for particular
applications. Cray’s new XD1 computer presents an appealing substrate for RC research
because it places Field-Programmable Gate Arrays (FPGAs) in close proximity to host
processor memory. In this paper we present our early experiences with the XD1 in the
context of RC. In order to gain more insight into the inner mechanics of the architecture,
we have constructed four simple FPGA-based applications: a data transfer engine, a
linear sorting array, a data hashing function, and a distance calculation kernel that
involves double-precision floating-point operations.

Keywords: XD1, FPGA, double-precision floating point

∗ Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department
of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-AL8500.

1. Introduction
In 2004 Cray Canada (formerly OctigaBay) of Cray,

Inc. brought to market a new multiprocessor system
called the Cray XD1 [1]. The XD1 is an attractive system
for many in the scientific community because it provides
a dense computing platform that is based on a familiar
“cluster computing”-style programming environment.
While there is high demand for this type of integrated
system, there is another aspect of the XD1 that warrants a
closer examination of its architecture. The XD1 is one of
the first commercial high-performance computing (HPC)
systems to include Field-Programmable Gate Arrays
(FPGAs) as user-programmable accelerators that are
located in close proximity to the host CPU’s main
memory. These FPGAs function as a means of offloading
key operations into hardware, and enable the XD1 to
serve as a platform for Reconfigurable Computing
research.

1.1 Reconfigurable Computing
Reconfigurable Computing (RC) [2,3] refers to the

practice of utilizing reconfigurable hardware devices to
accelerate the computational performance of a system for
a particular application. In this work a reconfigurable
hardware device is programmed to emulate application-
specific circuitry specified by the user. By adapting an
algorithm to function as custom hardware, researchers
have been able to achieve significant speedups over
approaches that implement the algorithm in software [4].

While many reconfigurable hardware architectures have
been proposed over the years, most RC research is based
on Field-Programmable Gate Arrays (FPGAs).
Commercial FPGAs are readily available and offer vast
amounts of reconfigurable logic for emulating user-
defined circuitry. For example, Xilinx offers multiple
FPGA products [5] that operate at moderate clock rates
(100-300 MHz) and can house multi-million logic gate
designs.

1.2 RC Challenges
Reconfigurable hardware is an appealing option for

HPC users because it enables application designers to
construct custom processing architectures that can be
optimized to fit the characteristics of their applications.
However, it is important to observe that RC researchers
have always had to face three main challenges in their
work:

1. System Integration: In order for any

accelerator to be relevant to end users, it must
be integrated into a system in a way that enables
data to be exchanged with the accelerator in an
efficient manner. While many FPGA accelerator
projects have produced exceptional on-chip
results, performance is often lost because data is
exchanged between the FPGA and host
processor using a slow I/O interface such as
PCI. What is needed is a system architecture

that enables a tight coupling between the
system’s FPGAs and host processors.

2. Limited FPGA Capacity: The fact that FPGAs
have finite resources places an upper bound on
the size of the design that can be emulated in a
single chip. This bound essentially limits the
number of concurrent operations that can be
performed in the FPGA and therefore affects
performance.

3. Programming Environments: Hardware
design is significantly more time consuming
than software design. While compilers for
higher-level languages exist [6], hardware
designers typically implement their designs by
hand using traditional hardware description
languages (HDLs).

While these challenges have delayed widespread use

of RC, recent events suggest that a new environment is
emerging where RC can be utilized in practical situations.
The integration challenge is being addressed by Cray and
others with the development of systems that elevate the
position of FPGA accelerators in the system architecture.
The capacity challenge is being addressed by the FPGA
industry, which is steadily increasing FPGA capacity and
capabilities in order to meet market demand. While the
programming environment challenge is likely to be a long
term effort, a number of researchers are active in this area
and are steadily advancing compiler technology.

2. Cray XD1 Architecture
The Cray XD1 is a new multiprocessor system that is

a mix of commodity parts and custom design. Each 3U
chassis in the XD1 architecture houses six compute
blades, a high-speed interconnection network called the
Rapid Array Fabric, six storage devices, and a service
processor for monitoring the system’s health. Each
compute blade provides two AMD Opteron processors,
memory, and network interface hardware to connect the
blade to the system’s Rapid Array Fabric. Internally, this
fabric utilizes commodity InfiniBand [7] components for
managing low-level data transfers. However, the XD1
employs its own communication library on top of this
fabric, making it incompatible with the InfiniBand
standard.

2.1 XD1 Blade Architecture
The architecture for a compute blade in the XD1 is

depicted in Figure 1. Each blade features two 64-bit AMD
Opteron processors that are connected through a cache-
coherent HyperTransport [8] link operating at 3.2+3.2
GB/s. Each processor has four DIMM sockets for
memory, enabling a blade to have up to 32 GB of
memory. A second HyperTransport link connects one

CPU directly to a network interface (NI) chip This NI is
currently implemented in a Xilinx Virtex-II/Pro FPGA.
Due to signaling limitations for this FPGA, the CPU-NI
link operates at 1.6+1.6 GB/s. The NI has two
connections to the Rapid Array Fabric, with each
connection operating at 1+1GB/s (i.e., 4x InfiniBand).

Opteron
CPU

Opteron
CPU

SRAM

Expansion Module

SRAM

SRAM

SRAM

Main
Memory

Main
Memory

NI FPGANI

Rapid Array Fabric

1.6 GB/s1.6 GB/s

3.2 GB/s

3.2 GB/s

1.0+1.0 GB/s 1.0+1.0 GB/s

Figure 1: XD1 Blade Architecture

2.2 FPGA Expansion Board
In order to make the blade architecture more

expandable, Cray Canada includes a socket interface on
the blade that enables a custom add-on expansion board to
be connected to the second processor’s unused
HyperTransport channel. The first expansion board that
Cray has made available for this interface contains both
networking and RC resources. In terms of networking, the
board provides the blade with a second NI that has an
additional pair of network connections. These connections
can be attached to a second (add-on) plane of Rapid Array
Fabric in order to increase the communication
performance of the XD1.

The expansion board also provides a user-
programmable FPGA that can be used as an accelerator
for RC applications. As Figure 1 illustrates, the user
FPGA is connected to the NI through a simplified version
of HyperTransport. This interface enables the FPGA to
read and write the host’s memory, as well as respond to
memory requests issued by the host. The expansion board
is equipped with four banks of quad data rate (QDR)
memory that is connected directly to the FPGA. This
memory allows moderate amounts of data to be stored
near the FPGA in order to improve performance. Cray
provides a reasonable amount of support for utilizing the
FPGA accelerator on the expansion board. Users are
supplied with pre-built hardware cores for both the
HyperTransport and QDR memory interfaces, as well as
example designs that demonstrate how to use these units.
Cray also provides a basic host-level device driver for the

FPGA board. In addition to loading and resetting the
FPGA, this driver performs basic memory management
functions (e.g., memory pinning and address translation).

2.3 Test System
After participating in an evaluation program with

OctigaBay and Cray, we purchased an entry level XD1 to
further investigate the system’s architecture for RC
research. The XD1 described in this paper is a single
chassis system with twelve Opteron 248 processors that
run at 2.2 GHz. Each of the six blades in the system is
equipped with an expansion board, although the system is
not equipped with the second plane of Rapid Array
Fabric. The expansion boards are loaded with Xilinx
Virtex-II/Pro 50-7 (V2P50) FPGAs. While this FPGA has
only half the capacity of the largest V2P FPGA, it
operates at the highest speed grade. Configuration files
for the V2P50 are greater than 2MB and have load times
of approximately 1.8 seconds.

2.4 Paper Organization
The intent of this paper is to document our early

experiences with the XD1 in the context of reconfigurable
computing. In order to better observe low-level
performance characteristics of this architecture, we have
constructed four simple applications for the FPGA
accelerator. First, we describe a DMA data transfer engine
in section 3 which exposes the rate at which the FPGA
can exchange data with host memory. In section 4 we
discuss a data hashing algorithm that computes the MD5
message digest identifier for an arbitrary length of data.
Section 5 reports on a sorting algorithm that sorts 64-bit
row values in a fixed-width matrix. In section 6 we
describe our experiences with double-precision floating
point for an algorithm that computes the length of a
triangle’s hypotenuse. Finally, we provide general
observations and concluding remarks for this work.

3. Data Exchange
System integration is a key challenge in RC research

because the manner in which FPGAs are inserted into a
system’s architecture dictates the rate at which the FPGAs
can exchange data with other system resources.
Historically, the most common path for integrating FPGA
resources into a workstation has been through the use of
peripheral device add-on cards. These cards facilitate
communication between the FPGA and the host processor
through standard I/O interfaces such as PCI or PCI-X.
While these interfaces enable RC researchers to work
with commodity parts, their low communication
performance makes it challenging to implement a system
where there is a tight coupling between FPGA accelerator
and host processors.

The Cray XD1 is one of the first systems to connect
FPGAs to the system using the high-speed
HyperTransport interface. Our first application for

examining the XD1’s performance is one that measures
the rate at which data can be exchanged between the
FPGA and host memory. For this work we have
constructed a programmable DMA engine for the FPGA
that performs FPGA-initiated data transfers. The engine
references host memory using physical addresses and thus
requires a user application to pin and translate a block of
memory using the FPGA device driver before work can
begin. For comparison to host-initiated transfers, we have
also constructed a host application that exchanges data
with the FPGA using standard memcpy() operations.

3.1 XD1 FPGA Interface to Host Memory
Cray provides a communication core for the FPGA

that enables data to be transferred between main memory
and the FPGA. From the FPGA user’s perspective this
core is comprised of two separate interfaces: one for host-
initiated transfers and another for FPGA-initiated
transfers. Each interface has ports for read and write
transactions. The host-initiated transfer interface is
relatively straightforward to utilize because the FPGA
user’s circuits simply need to accept incoming write data
and generate replies for incoming read requests. While
reads involve the use of tag identifiers to correlate read
replies to read requests, these tags can be managed with
simple delay registers.

FPGA-initiated transfers are slightly more complex
because the user’s FPGA circuitry is responsible for
orchestrating the transfers. In addition to supplying the
physical address of the host memory used in the transfer,
the user must adhere to HyperTransport’s rules regarding
alignment and burst size. Specifically, users cannot issue
read or write transactions that cross 64 byte boundaries.
This rule limits the maximum transfer size of a burst to 64
bytes and forces transfers that cross these boundaries to
be broken into multiple transactions. Additionally,
HyperTransport requires that host addresses be 64-bit
aligned. Transfers to unaligned addresses can be
performed through a mode that enables byte-lanes in a 64-
bit word to be flagged as valid or invalid, but these
transfers are limited to a maximum size of 32 bytes.

3.2 DMA Engine
The characteristics of HyperTransport make it

awkward to work with the FPGA-initiated transfer
interface. Therefore a basic DMA engine was constructed
to automate the process of exchanging large blocks of
data between the host and the FPGA. For the initial
version of this engine, it is assumed that users will only
exchange one or more 64-bit words of data with host
memory that is 64-bit aligned. The engine is designed to
automatically break transfers that cross the 64-byte
boundaries of host memory into multiple transactions.
The DMA engine provides signals to notify the user’s
logic when a particular transfer has completed.

HT Interface

Address
LUT

Write
Control

Read
Control

DMA Engine

Incoming
FPGA

Block RAMHyper
Transport
Response

Hyper
Transport
Request

Address

Data

Address

Data

Write Request

Read Request

User’s Circuits

Outgoing
FPGA

Block RAM

Figure 2: An FPGA DMA Engine

As illustrated in Figure 2, the DMA engine employs a

memory interface for exchanging data with the user’s
circuits, and has separate ports for read and write
requests. The memory interface enables the engine to
manage its DMA transactions without having to perform
complex synchronization signaling with the user’s
circuits. The process for a user circuit to perform a DMA
transfer is as follows. For the (read/write) port, a user
provides the DMA engine with the physical address of the
host memory (source/target), the (target/source) address
of the FPGA memory port, and the number of 64-bit
words to be transferred. For write transactions, the DMA
engine pulls data from the FPGA memory interface to fill
the data section of the outgoing transfer. Read
transactions are a two step process where (1) DMA
requests are issued to the host and (2) incoming results are
written to FPGA memory. In order to correlate requests to
replies, a small lookup table is used to associate a
transaction with a particular FPGA memory address. This
table is necessary because it is possible for
HyperTransport requests to be processed out of order. The
DMA engine provides signaling to notify the user of
when a read/write transaction has been fully issued, and
when all of the replies for a read request have arrived.

3.3 Data Transfer Tests
A simple host application was constructed to observe

the XD1’s performance in exchanging data between the
FPGA and host memory located on the local blade. The
first set of these tests utilized host-initiated data transfers
by simply memory mapping the FPGA into the host
application’s address space and using memcpy() to move
blocks of memory. By default, the XD1’s FPGA driver
enables write combining for these types of transfers.
Write-combining relaxes the processor’s memory
consistency model and enables Programmed I/O writes to
be handled in burst transactions that are more efficient

than individual writes. The second set of tests utilized the
DMA engine to perform FPGA-initiated data transfers. In
these tests, the host application sent a command to the
FPGA to perform an FPGA-initiated transfer between
pinned memory and FPGA memory. Following the
transfer the FPGA used the DMA engine to write a data
value to a particular address in host memory to signify the
completion of the transfer.

0

200

400

600

800

1,000

1,200

1,400

1,600

1 10 100 1,000 10,000 100,000 1,000,000

Transfer Size (Bytes)

B
an

dw
id

th
 (M

iB
yt

es
/s

)

Host-to-FPGA (Host-Initiated)

Host-to-FPGA (FPGA-Initiated)

FPGA-to-Host (FPGA-Initiated)

FPGA-to-Host (Host-Initiated)

Figure 3: Data Transfer Performance

The results of these tests are presented in Figure 3. As

expected, transactions that are performed with write
transactions provide the best results. For host-to-FPGA
transfers, write combining enables Host-initiated writes to
have better performance than FPGA-initiated reads. Host-
initiated writes are also advantageous because data can be
sent from any virtual address, as opposed to having to
come from pinned memory. For FPGA-to-host transfers,
the Host-initiated reads gave terrible performance as
expected, while FPGA-initiated writes excelled. It is
important to note that with the exception of Host-initiated
reads, all of the transfers approached the maximum
achievable bandwidth of 1,400 MiBytes/s.

3.4 DMA Clock Frequency
The XD1 employs programmable frequency

generators to drive the global clock signal of each FPGA
in the system. While internal digital clock managers
(DCMs) can be used to generate additional clock signals
within the FPGA, doing so involves careful planning
when moving data between different clock domains. Due
to this complexity, it is tempting for FPGA designers to
instead use the reference clock to drive all of the logic,
and set the design to run at a clock frequency that does
not exceed the rate at which the slowest components in
the system can operate. However, doing so directly affects
the performance of the DMA engine. In order to observe
the effect of FPGA clock frequency on DMA
performance, the FPGA-initiated memory transfer

program for FPGA-to-host transfers was run using
FPGAs that were clocked at different speeds for each test.

0

200

400

600

800

1,000

1,200

1,400

1 10 100 1,000 10,000 100,000 1,000,000

Transfer Size (Bytes)

B
an

dw
id

th
 (M

iB
yt

es
/s

)

200 MHz

175 MHz

150 MHz

125 MHz

100 MHz

75 MHz

Figure 4: FPGA-to-Host Data Transfer Performance
for Different Clock Rates

As Figure 4 illustrates, reducing the clock rate of the
DMA engine reduces the rate at which data is transferred
to the host. Similar measurements were observed for the
other methods of data transfer. Given that it is unlikely
that all user circuits will be able to run at 200 MHz, the
next step in developing the DMA engine would be to
enable the unit to operate at a different clock rate than the
user’s circuitry. This effort would require signaling to
protect data as it moves between clock domains.
However, this signaling would only need to be performed
for the control signals of the API, as data is exchanged
through a memory interface that is typically connected to
a dual-ported memory block that allows reader and writer
ports to be clocked at different rates.

4. Data Hashing Example
Our second example application for investigating the

RC characteristics of the XD1 is data hashing. Data
hashing algorithms examine an arbitrary amount of data
and generate a unique identifier that can be used to
reference the data and validate its integrity. A good
hashing algorithm includes every byte of input data in the
generation of the hash value, and performs sufficient
permutations to make it non-trivial for a user to construct
a dataset that has the same hash value as another data set.
Because of these characteristics, data hashing algorithms
can require moderate processing times on host CPUs.
Given that data hashing algorithms are used as building
blocks in many computer science applications, it is
worthwhile to examine means by which their performance
can be improved. For this work we focus on the MD5
message digest function.

The MD5 message digest function was created by
Rivest in 1992 [9]. While better quality hashing
algorithms have been developed since then, MD5 is still

commonly utilized today to validate data sets. MD5 takes
an arbitrary length of data and generates a 128-bit
identifier. Internally the algorithm operates on a 512-bit
block of input data at a time and runs the block through
64 computational steps. Each step modifies the 128-bit
hash identifier using a computation that is comprised of a
small number of Boolean operations, an addition, and a
rotation. After streaming the entire data set through the
computation, a zero-padded length field is passed through
the computation to generate the final hash value.

4.1 Balancing the Hardware Implementation
The serial nature of the MD5 algorithm makes it

challenging to construct a hardware implementation that
exploits concurrency. While a block computation has 64
stages, these stages cannot overlap or be arranged in
parallel because each stage reads and updates the hash
value. Concurrency can be found and exploited at the
block level, by fetching the next 512-bits of data while the
current block is being computed. However, if it takes 64
cycles to perform a block operation, the fetch operation
only requires data to be obtained at a rate of 8-bits per
clock. Given the wide buses and high data-transfer rates
in the XD1, it should be expected that this operation will
be a compute bound problem for the FPGA.

Another complication in this design is that the
computations in the 64 individual stages require multiple
operations. Performing these operations in a single clock
cycle decreases the maximum clock rate of the system.
Conversely, splitting individual operations into multiple
clock cycles improves clock rate but scales the overall
number of cycles required to complete the operation. We
constructed two designs to observe these characteristics.
The first design performs each of the 64 stages in a single
clock cycle, while the second design performs each stage
in five steps, resulting in a total of 320 clocks to complete
a block operation. Both designs utilize the same data
exchange operations to obtain data from the host and store
results back to host memory. For this application, the host
program writes data into FPGA memory using write-
combining Programmed I/O operations. The FPGA
DMAs the result to host memory when the operation
completes.

4.2 MD5 Results
Both MD5 designs were compiled for the XD1’s

FPGAs. As expected, the design that performed the
computations in a single cycle had a much lower clock
rate than the multi-cycle design (66 MHz vs. 190 MHz).
A test application was constructed to measure the amount
of time required for a host application to perform the
MD5 computation for data sets of varying lengths using
software alone and the two hardware accelerators. The
results of these tests are presented in Figure 5.
Unfortunately, the serial data flow of the computation did
not result in an architecture that was faster than the host

application. As these measurements indicate, the
improvements in clock rate obtained by the multi-cycle
design were not sufficient to compensate for the larger
number of clock cycles required to complete the
operation.

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000 100,000 1,000,000

Message Size (Bytes)

P
ro

ce
ss

in
g

Ti
m

e
(m

ic
ro

se
co

nd
s)

FPGA Multi-Cycle

FPGA Single-Cycle

Host

Figure 5: Processing Time for the MD5 Algorithm

5. Sorting Example
Our third application is a simple hardware

implementation of a sorting algorithm for fixed width
matrices. Sorting is a fundamental task in computer
science for which many algorithms have been proposed.
In general, the best performing sorting algorithms are
efficient because they are optimized for the von Neumann
style of processing architecture that is the basis for
modern CPUs. This architecture assumes that a CPU has a
small number of comparison units, a small amount of
internal memory, and that it is expensive to bring data
values into the CPU. An example of an algorithm that is
customized to these assumptions can be found in
quicksort [10]. Quicksort compares unsorted values to a
pivot point instead of other unsorted values in order to
reduce the number of data values that are pulled into the
CPU. FPGAs free designers from the constraints of the
von Neumann architecture and enable us to consider
custom architectures for an algorithm. Our approach to
implementing a sorting engine is to create a linear array of
simple sorting elements that operate in a streaming
manner. While this approach can only sort as many values
as the FPGA has capacity for sorting elements, the
hardware can be utilized as a building block for more
complex operations.

5.1 Sorting Array
The hardware constructed for this work is a one-

dimensional array of sorting elements. Each sorting
element is comprised of a register for storing a single 64-
bit data value, a comparison unit, and logic for
sequencing data flow. The sorting element has two modes
of operation: evaluate and flush. During the evaluate

mode, a sorting element compares data placed on the
unit’s input to the internal value. It then places the larger
of the two values in the element’s internal register and the
smaller on the unit’s output port. In the flush mode, each
element first moves its internal value to the output port,
and in the following cycles moves data on the input port
to the output port. The sorting element is trivial to
describe in a hardware description language (90 lines of
Verilog), and is easily replicated to build a sorting array.

The sorting array is a one-way pipeline of n sorting
elements. A new value can be inserted into the array each
cycle until the array reaches capacity. Once the final data
value is inserted, the array needs n-1 clock cycles to allow
all of the values time to bubble into place, and then an
additional n clock cycles to push the stream of sorted data
values out of the array. The advantage of this approach is
that a large number of data values are compared against
other data values at the same time, resulting in a total
delay of 3n clock cycles to sort and store n numbers. This
approach is also advantageous because it operates in a
streaming manner that does not require the entire input
data set to be available before sorting can begin.

5.2 XD1 Implementation
A design was constructed for the XD1 FPGA to

enable the sorting of a fixed-length series of 64-bit
numbers. This design instantiates a DMA engine, a
sorting array, and a state machine for controlling the flow
of data through the system, as illustrated in Figure 6.
Once the FPGA is loaded with the design, a host
application copies an unsorted array of data values to a
region of pinned host memory and sends a command to
the FPGA that specifies the address of the data, the
address of where the sorted data should be stored, and the
number of n-length blocks that need to be sorted. Upon
receiving a command, the FPGA will issue DMA reads to
pull each block of data into the sorting array. Once a
block is sorted, it is moved into an outgoing FPGA buffer
for DMA transfer to the host. Outgoing and incoming
DMA transfers are scheduled to overlap in order to hide
overhead when there is more than one block to sort.

Sorting Array

Address
Wr Req

Rd Req
DMA

Engine
Sorting
Control

Double-Buffered
Outgoing Memory

Figure 6: FPGA-based Sorting Engine

5.3 Performance Measurements
Through different experiments, we found that the

maximum array size that could be implemented in a
single Xilinx V2P50 FPGA was 128 elements. The entire
design consumed approximately 87% of the V2P50’s
logic resources and had a maximum clock rate of 130
MHz. A host application was constructed to compare the
design’s performance against a CPU implementation of
quicksort. In these tests a series of 128 word blocks were
sorted to determine the sorting rate of both the FPGA and
quicksort. Figure 7 presents the measured rates for the
host and two FPGA scenarios. The first is for normal use
(“Pre/Post Copy”), where the measurement includes the
amount of time required for the host application to copy
data into and out of pinned memory that the FPGA can
work with. The second is for raw performance (“No
Copy”), where unsorted and sorted data is resident in
pinned host memory and does not need to be copied.
Performance is reported in terms of millions of 64-bit
words sorted per second.

0

5

10

15

20

25

30

35

1 10 100 1,000

Matrix Rows

S
or

tin
g

R
at

e
(M

iW
or

ds
/s

)

FPGA (No Copy)

FPGA (Pre/Post Copy)

CPU

Figure 7: Sorting Performance

The host-based algorithm in these tests provides a

constant sorting rate because the number of elements in a
block does not change. FPGA performance increases with
the number of blocks because multiple blocks enable host
memory reads and writes to overlap. Overall, the FPGA
accelerator gives a performance gain of 2-4x over the
software implementation. Based on our experiments with
smaller block sizes, this gain increases as block size
increases. There are two areas of future work that are
immediately clear. First, a simple mergesort engine could
be placed after the array to buffer results and increase the
sorting capacity of the FPGA. Second, we believe the
design could be optimized to enable more sorting
elements to be housed in the FPGA. Our approach in this
paper has been to implement simple hardware and rely on
the synthesis tools to produce a usable design. Hand
placing sorting element logic would likely yield a denser
design with faster logic.

6. Distance Computation
Our final test application for the XD1 is a simple

distance computation that is performed in double-
precision floating point. This computation determines the
length of a triangle’s hypotenuse from the lengths of the
other two sides of the triangle. Based on the Pythagorean
theorem, this computation equates to c=sqrt(a2 + b2).

6.1 Floating Point in FPGAs
Floating point operations have historically been a

weakness for FPGAs for multiple reasons. In general,
floating-point computations are relatively complex
operations that consume significant amounts of resources
in an FPGA. Floating-point development is complicated
by the fact that the IEEE standard for floating point
contains a number of subtle behaviors for specific cases
(e.g., rounding) that make full compliance non-trivial.
While many researchers have implemented floating point
units for FPGAs in the past, we do not know of any
publicly available floating-point libraries that offer a
complete set of operations that function at high speeds.

As a means of enabling RC research, Keith
Underwood and K. Scott Hemmert at Sandia National
Laboratories in New Mexico have developed an internal
library of single- and double-precision floating-point
cores for use with Xilinx FPGAs. These cores were
written in low-level JHDL and hand-placed to maximize
the performance of the hardware. Double precision
floating point operations consume roughly 800-3,000 V2P
slices (4-12% of a V2P50), and operate at speeds between
130-200 MHz. The library contains operations for add,
multiply, divide, and square root. More information about
this work can be found in [11,12].

6.2 XD1 Implementations
The availability of the SNL/NM floating-point cores

enabled us to construct the distance computation in the
XD1’s FPGA hardware. The architecture of the unit is
presented in Figure 8. Similar to the MD5 example, this
design double buffers input data in a block of FPGA
memory and requires the host to fill the buffer using
Programmed I/O operations. The FPGA’s input memory
is 128-bits wide and 1,024 entries deep. This width
enables two 64-bit data values to be passed to the
computational circuitry every clock cycle. The V2P50
FPGA has enough capacity to implement the full data
flow for this computation. Two multiplier circuits are
used to compute a2 and b2 in parallel, followed by an
addition circuit and a square root circuit. The total number
of pipeline stages for the floating-point computation is 88.
Result data is collected in an outgoing buffer and then
transferred to host memory when a full block of data is
available.

Incoming
SRAM

Outgoing
SRAM

DMA
Engine

Control

Incoming
SRAM

From
Host

To
Host

Figure 8: FPGA-Based Distance Calculation

6.3 Performance
The distance design was compiled for the XD1’s

V2P50 FPGA, and found to occupy roughly 39% of the
chip. The maximum clock rate for the design was 159
MHz. A host application was constructed to exchange
data with the FPGA in blocks of data that contained 512
pairs of input data values. Performance results are
presented in Figure 9 for both the FPGA and an
application that performs the distance calculation using
the CPU. From these results we see that the large block
size chosen for data exchange results in degraded
performance until 2,048 computations are requested. At
this point the data exchange pipeline is filled and
overhead is overlapped. The CPU provides better
performance until 64K computations are requested, at
which point the FPGA provides slightly better
performance. The drop in CPU performance is likely due
to cache effects.

0

10

20

30

40

50

60

70

80

90

100

100 1,000 10,000 100,000 1,000,000

Distance Computations

P
ro

ce
ss

in
g

R
at

e
(M

iO
pe

ra
tio

ns
/s

)

CPU

FPGA

Figure 9: Double-Precision Distance Computation

7. Observations
A number of observations can be made from these

experiments. First, the XD1 provides an architecture
where FPGA accelerators have high-bandwidth access to
host memory. An FPGA in the XD1 can read and write
host memory at over 1,300 MiBytes/s, which is roughly
10 times greater than the rate that can be achieved in a
system that employs an FPGA on a 32-bit/33MHz PCI
interface. However, it is important to note that the
HyperTransport link connecting the FPGA to the CPU
operates at half the rate of the HyperTranspot link that
connects the CPUs. This fact implies that the CPU still
has a natural processing advantage that RC researchers
must account for when developing FPGA accelerator
circuits.

Another observation about this work is that some
efforts were successful in obtaining a speedup while
others were not. While the MD5 computation performs
bit-wise operations that FPGAs typically excel at, the data
flow for the algorithm did not enable us to extract enough
parallelism to make the FPGA implementation
competitive. However, this application demonstrated how
a balance must be made between the number of
operations performed each clock cycle and the total
number of cycles required to complete the algorithm. The
sorting and distance calculation algorithms were more
successful because they provide parallelism that can be
exploited in the hardware design. These examples
demonstrate that the FPGA can compete with the host
processor, even when large blocks of data have to be
exchanged with main memory.

Finally, our experiments indicate that the XD1’s
V2P50 FPGAs are sufficiently large enough for users to
begin considering their use for small but meaningful
scientific computations. Using the SNL/NM floating-
point library, we found that the V2P50 has the capacity to
house a small number (10-20) of double-precision
floating-point units. While this is a good start, we
encourage Cray to consider newer, larger FPGAs in their
future work, such as the Xilinx Virtex4.

8. Conclusions
The Cray XD1 is an appealing platform for

Reconfigurable Computing research because it places
FPGAs in close proximity to the system’s main memory.
In this paper we have examined how these FPGAs can be
utilized as computational accelerators. Four simple FPGA
applications were constructed to examine the underlying
performance characteristics of the architecture, and to
serve as early experimentation into how accelerator
applications should be constructed. These examples
demonstrate that the FPGA accelerators can perform
useful work that is competitive with host-processor
performance for certain types of algorithms.

9. Acknowledgments
The authors acknowledge the help and support of

multiple people in this work. Steve Margerm at Cray
Canada provided a great deal of assistance with the low-
level mechanics of the XD1. In addition to answering
numerous questions, he provided useful examples and
insight into how to work with the XD1’s FPGAs. We also
acknowledge and thank Keith Underwood and K. Scott
Hemmert at Sandia National Laboratories in New Mexico
for allowing us to use their floating-point libraries. These
cores worked as promised and operated at speeds greater
than their specifications.

References

[1] Cray, Inc. “The Cray XD1 Datasheet,” 2005.
[2] W. Mangione-Smith, V. Pasanna, H. Spaanenburg,

B. Hutchings, D. Andrews, A. DeHon, C. Ebeling,
R. Hartenstein, O. Mencer, J. Morris, and K.
Palem. “Seeking Solutions in Configurable
Computing,” in IEEE Computer Vol. 30, Iss. 12.
1997.

[3] K. Compton and S. Hauck. “Reconfigurable
Computing: A Survey of Systems and Software,”
in ACM Computing Surveys Vol. 34, Iss. 2. 2002.

[4] W. Smith and A. Schnore, “Towards an RCC-
Based Accelerator for Computational Fluid
Dynamics Applications,” in The Journal of
Supercomputing, Vol. 30, No. 3, 2004.

[5] Xilinx, Inc. “Virtex-4 Family Overview,” 2005.
[6] M. Gokhale, J. Stone, J. Arnold, and M.

Kalinowski. “Stream-oriented FPGA computing in
the Streams-C high level language,” in Proceedings
of Field-Programmable Custom Computing
Machines, 2000.

[7] InfiniBand Trade Association. “InfiniBand
Architecture Specification Release 1.2”, 2004.

[8] HyperTransport Consortium. “HyperTransport
Link Specification,” 2005.

[9] RFC 1321. “The MD5 Message-Digest
Algorithm”, 1992.

[10] C.A.R. Hoare. “Quicksort,” in The Computer
Journal, Vol. 5, Issue 1, 1962.

[11] K. Underwood and K. Hemmert. “Closing the Gap:
CPU and FPGA Trends in Sustainable Floating-
Point BLAS Performance,” in Proceedings of
Field-Programmable Custom Computing Machines
2004.

[12] M. Haselman, M. Beauchamp, A. Wood, S. Hauck,
K. Underwood, K. Hemmert. “A Comparision of
Floating Point and Logarithmic Number Systems
for FPGAs,” in Proceedings of Field-
Programmable Custom Computing Machines 2005.

