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ABSTRACT: Reconfigurable Computing (RC) refers to the use of reconfigurable 
hardware devices to accelerate the computational performance of a system for particular 
applications. Cray’s new XD1 computer presents an appealing substrate for RC research 
because it places Field-Programmable Gate Arrays (FPGAs) in close proximity to host 
processor memory. In this paper we present our early experiences with the XD1 in the 
context of RC. In order to gain more insight into the inner mechanics of the architecture, 
we have constructed four simple FPGA-based applications: a data transfer engine, a 
linear sorting array, a data hashing function, and a distance calculation kernel that 
involves double-precision floating-point operations. 
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1. Introduction 
In 2004 Cray Canada (formerly OctigaBay) of Cray, 

Inc. brought to market a new multiprocessor system 
called the Cray XD1 [1]. The XD1 is an attractive system 
for many in the scientific community because it provides 
a dense computing platform that is based on a familiar 
“cluster computing”-style programming environment. 
While there is high demand for this type of integrated 
system, there is another aspect of the XD1 that warrants a 
closer examination of its architecture. The XD1 is one of 
the first commercial high-performance computing (HPC) 
systems to include Field-Programmable Gate Arrays 
(FPGAs) as user-programmable accelerators that are 
located in close proximity to the host CPU’s main 
memory. These FPGAs function as a means of offloading 
key operations into hardware, and enable the XD1 to 
serve as a platform for Reconfigurable Computing 
research. 

1.1 Reconfigurable Computing 
Reconfigurable Computing (RC) [2,3] refers to the 

practice of utilizing reconfigurable hardware devices to 
accelerate the computational performance of a system for 
a particular application. In this work a reconfigurable 
hardware device is programmed to emulate application-
specific circuitry specified by the user. By adapting an 
algorithm to function as custom hardware, researchers 
have been able to achieve significant speedups over 
approaches that implement the algorithm in software [4]. 

While many reconfigurable hardware architectures have 
been proposed over the years, most RC research is based 
on Field-Programmable Gate Arrays (FPGAs). 
Commercial FPGAs are readily available and offer vast 
amounts of reconfigurable logic for emulating user-
defined circuitry. For example, Xilinx offers multiple 
FPGA products [5] that operate at moderate clock rates 
(100-300 MHz) and can house multi-million logic gate 
designs. 

1.2 RC Challenges 
Reconfigurable hardware is an appealing option for 

HPC users because it enables application designers to 
construct custom processing architectures that can be 
optimized to fit the characteristics of their applications. 
However, it is important to observe that RC researchers 
have always had to face three main challenges in their 
work: 

 
1. System Integration: In order for any 

accelerator to be relevant to end users, it must 
be integrated into a system in a way that enables 
data to be exchanged with the accelerator in an 
efficient manner. While many FPGA accelerator 
projects have produced exceptional on-chip 
results, performance is often lost because data is 
exchanged between the FPGA and host 
processor using a slow I/O interface such as 
PCI. What is needed is a system architecture 



that enables a tight coupling between the 
system’s FPGAs and host processors. 

2. Limited FPGA Capacity: The fact that FPGAs 
have finite resources places an upper bound on 
the size of the design that can be emulated in a 
single chip. This bound essentially limits the 
number of concurrent operations that can be 
performed in the FPGA and therefore affects 
performance.  

3. Programming Environments: Hardware 
design is significantly more time consuming 
than software design. While compilers for 
higher-level languages exist [6], hardware 
designers typically implement their designs by 
hand using traditional hardware description 
languages (HDLs).  

 
While these challenges have delayed widespread use 

of RC, recent events suggest that a new environment is 
emerging where RC can be utilized in practical situations. 
The integration challenge is being addressed by Cray and 
others with the development of systems that elevate the 
position of FPGA accelerators in the system architecture. 
The capacity challenge is being addressed by the FPGA 
industry, which is steadily increasing FPGA capacity and 
capabilities in order to meet market demand. While the 
programming environment challenge is likely to be a long 
term effort, a number of researchers are active in this area 
and are steadily advancing compiler technology. 

2. Cray XD1 Architecture 
The Cray XD1 is a new multiprocessor system that is 

a mix of commodity parts and custom design. Each 3U 
chassis in the XD1 architecture houses six compute 
blades, a high-speed interconnection network called the 
Rapid Array Fabric, six storage devices, and a service 
processor for monitoring the system’s health. Each 
compute blade provides two AMD Opteron processors, 
memory, and network interface hardware to connect the 
blade to the system’s Rapid Array Fabric. Internally, this 
fabric utilizes commodity InfiniBand [7] components for 
managing low-level data transfers. However, the XD1 
employs its own communication library on top of this 
fabric, making it incompatible with the InfiniBand 
standard. 

2.1 XD1 Blade Architecture 
The architecture for a compute blade in the XD1 is 

depicted in Figure 1. Each blade features two 64-bit AMD 
Opteron processors that are connected through a cache-
coherent HyperTransport [8] link operating at 3.2+3.2 
GB/s. Each processor has four DIMM sockets for 
memory, enabling a blade to have up to 32 GB of 
memory. A second HyperTransport link connects one 

CPU directly to a network interface (NI) chip This NI is 
currently implemented in a Xilinx Virtex-II/Pro FPGA. 
Due to signaling limitations for this FPGA, the CPU-NI 
link operates at 1.6+1.6 GB/s. The NI has two 
connections to the Rapid Array Fabric, with each 
connection operating at 1+1GB/s (i.e., 4x InfiniBand). 
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Figure 1: XD1 Blade Architecture 

 

2.2 FPGA Expansion Board 
In order to make the blade architecture more 

expandable, Cray Canada includes a socket interface on 
the blade that enables a custom add-on expansion board to 
be connected to the second processor’s unused 
HyperTransport channel. The first expansion board that 
Cray has made available for this interface contains both 
networking and RC resources. In terms of networking, the 
board provides the blade with a second NI that has an 
additional pair of network connections. These connections 
can be attached to a second (add-on) plane of Rapid Array 
Fabric in order to increase the communication 
performance of the XD1. 

The expansion board also provides a user-
programmable FPGA that can be used as an accelerator 
for RC applications. As Figure 1 illustrates, the user 
FPGA is connected to the NI through a simplified version 
of HyperTransport. This interface enables the FPGA to 
read and write the host’s memory, as well as respond to 
memory requests issued by the host. The expansion board 
is equipped with four banks of quad data rate (QDR) 
memory that is connected directly to the FPGA. This 
memory allows moderate amounts of data to be stored 
near the FPGA in order to improve performance. Cray 
provides a reasonable amount of support for utilizing the 
FPGA accelerator on the expansion board. Users are 
supplied with pre-built hardware cores for both the 
HyperTransport and QDR memory interfaces, as well as 
example designs that demonstrate how to use these units. 
Cray also provides a basic host-level device driver for the 



FPGA board. In addition to loading and resetting the 
FPGA, this driver performs basic memory management 
functions (e.g., memory pinning and address translation). 

2.3 Test System 
After participating in an evaluation program with 

OctigaBay and Cray, we purchased an entry level XD1 to 
further investigate the system’s architecture for RC 
research. The XD1 described in this paper is a single 
chassis system with twelve Opteron 248 processors that 
run at 2.2 GHz. Each of the six blades in the system is 
equipped with an expansion board, although the system is 
not equipped with the second plane of Rapid Array 
Fabric. The expansion boards are loaded with Xilinx 
Virtex-II/Pro 50-7 (V2P50) FPGAs. While this FPGA has 
only half the capacity of the largest V2P FPGA, it 
operates at the highest speed grade. Configuration files 
for the V2P50 are greater than 2MB and have load times 
of approximately 1.8 seconds. 

2.4 Paper Organization 
The intent of this paper is to document our early 

experiences with the XD1 in the context of reconfigurable 
computing. In order to better observe low-level 
performance characteristics of this architecture, we have 
constructed four simple applications for the FPGA 
accelerator. First, we describe a DMA data transfer engine 
in section 3 which exposes the rate at which the FPGA 
can exchange data with host memory. In section 4 we 
discuss a data hashing algorithm that computes the MD5 
message digest identifier for an arbitrary length of data. 
Section 5 reports on a sorting algorithm that sorts 64-bit 
row values in a fixed-width matrix. In section 6 we 
describe our experiences with double-precision floating 
point for an algorithm that computes the length of a 
triangle’s hypotenuse. Finally, we provide general 
observations and concluding remarks for this work. 

3. Data Exchange 
System integration is a key challenge in RC research 

because the manner in which FPGAs are inserted into a 
system’s architecture dictates the rate at which the FPGAs 
can exchange data with other system resources. 
Historically, the most common path for integrating FPGA 
resources into a workstation has been through the use of 
peripheral device add-on cards. These cards facilitate 
communication between the FPGA and the host processor 
through standard I/O interfaces such as PCI or PCI-X. 
While these interfaces enable RC researchers to work 
with commodity parts, their low communication 
performance makes it challenging to implement a system 
where there is a tight coupling between FPGA accelerator 
and host processors. 

The Cray XD1 is one of the first systems to connect 
FPGAs to the system using the high-speed 
HyperTransport interface. Our first application for 

examining the XD1’s performance is one that measures 
the rate at which data can be exchanged between the 
FPGA and host memory. For this work we have 
constructed a programmable DMA engine for the FPGA 
that performs FPGA-initiated data transfers. The engine 
references host memory using physical addresses and thus 
requires a user application to pin and translate a block of 
memory using the FPGA device driver before work can 
begin. For comparison to host-initiated transfers, we have 
also constructed a host application that exchanges data 
with the FPGA using standard memcpy() operations. 

3.1 XD1 FPGA Interface to Host Memory 
Cray provides a communication core for the FPGA 

that enables data to be transferred between main memory 
and the FPGA. From the FPGA user’s perspective this 
core is comprised of two separate interfaces: one for host-
initiated transfers and another for FPGA-initiated 
transfers. Each interface has ports for read and write 
transactions. The host-initiated transfer interface is 
relatively straightforward to utilize because the FPGA 
user’s circuits simply need to accept incoming write data 
and generate replies for incoming read requests. While 
reads involve the use of tag identifiers to correlate read 
replies to read requests, these tags can be managed with 
simple delay registers.  

FPGA-initiated transfers are slightly more complex 
because the user’s FPGA circuitry is responsible for 
orchestrating the transfers. In addition to supplying the 
physical address of the host memory used in the transfer, 
the user must adhere to HyperTransport’s rules regarding 
alignment and burst size. Specifically, users cannot issue 
read or write transactions that cross 64 byte boundaries. 
This rule limits the maximum transfer size of a burst to 64 
bytes and forces transfers that cross these boundaries to 
be broken into multiple transactions. Additionally, 
HyperTransport requires that host addresses be 64-bit 
aligned. Transfers to unaligned addresses can be 
performed through a mode that enables byte-lanes in a 64-
bit word to be flagged as valid or invalid, but these 
transfers are limited to a maximum size of 32 bytes. 

3.2 DMA Engine 
The characteristics of HyperTransport make it 

awkward to work with the FPGA-initiated transfer 
interface. Therefore a basic DMA engine was constructed 
to automate the process of exchanging large blocks of 
data between the host and the FPGA. For the initial 
version of this engine, it is assumed that users will only 
exchange one or more 64-bit words of data with host 
memory that is 64-bit aligned. The engine is designed to 
automatically break transfers that cross the 64-byte 
boundaries of host memory into multiple transactions. 
The DMA engine provides signals to notify the user’s 
logic when a particular transfer has completed.  
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Figure 2: An FPGA DMA Engine 

 
As illustrated in Figure 2, the DMA engine employs a 

memory interface for exchanging data with the user’s 
circuits, and has separate ports for read and write 
requests. The memory interface enables the engine to 
manage its DMA transactions without having to perform 
complex synchronization signaling with the user’s 
circuits. The process for a user circuit to perform a DMA 
transfer is as follows. For the (read/write) port, a user 
provides the DMA engine with the physical address of the 
host memory (source/target), the (target/source) address 
of the FPGA memory port, and the number of 64-bit 
words to be transferred. For write transactions, the DMA 
engine pulls data from the FPGA memory interface to fill 
the data section of the outgoing transfer. Read 
transactions are a two step process where (1) DMA 
requests are issued to the host and (2) incoming results are 
written to FPGA memory. In order to correlate requests to 
replies, a small lookup table is used to associate a 
transaction with a particular FPGA memory address. This 
table is necessary because it is possible for 
HyperTransport requests to be processed out of order. The 
DMA engine provides signaling to notify the user of 
when a read/write transaction has been fully issued, and 
when all of the replies for a read request have arrived. 

3.3 Data Transfer Tests 
A simple host application was constructed to observe 

the XD1’s performance in exchanging data between the 
FPGA and host memory located on the local blade. The 
first set of these tests utilized host-initiated data transfers 
by simply memory mapping the FPGA into the host 
application’s address space and using memcpy() to move 
blocks of memory. By default, the XD1’s FPGA driver 
enables write combining for these types of transfers. 
Write-combining relaxes the processor’s memory 
consistency model and enables Programmed I/O writes to 
be handled in burst transactions that are more efficient 

than individual writes. The second set of tests utilized the 
DMA engine to perform FPGA-initiated data transfers. In 
these tests, the host application sent a command to the 
FPGA to perform an FPGA-initiated transfer between 
pinned memory and FPGA memory. Following the 
transfer the FPGA used the DMA engine to write a data 
value to a particular address in host memory to signify the 
completion of the transfer. 
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Figure 3: Data Transfer Performance 

 
The results of these tests are presented in Figure 3. As 

expected, transactions that are performed with write 
transactions provide the best results. For host-to-FPGA 
transfers, write combining enables Host-initiated writes to 
have better performance than FPGA-initiated reads. Host-
initiated writes are also advantageous because data can be 
sent from any virtual address, as opposed to having to 
come from pinned memory. For FPGA-to-host transfers, 
the Host-initiated reads gave terrible performance as 
expected, while FPGA-initiated writes excelled. It is 
important to note that with the exception of Host-initiated 
reads, all of the transfers approached the maximum 
achievable bandwidth of 1,400 MiBytes/s. 

3.4 DMA Clock Frequency 
The XD1 employs programmable frequency 

generators to drive the global clock signal of each FPGA 
in the system. While internal digital clock managers 
(DCMs) can be used to generate additional clock signals 
within the FPGA, doing so involves careful planning 
when moving data between different clock domains. Due 
to this complexity, it is tempting for FPGA designers to 
instead use the reference clock to drive all of the logic, 
and set the design to run at a clock frequency that does 
not exceed the rate at which the slowest components in 
the system can operate. However, doing so directly affects 
the performance of the DMA engine. In order to observe 
the effect of FPGA clock frequency on DMA 
performance, the FPGA-initiated memory transfer 



program for FPGA-to-host transfers was run using 
FPGAs that were clocked at different speeds for each test. 
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Figure 4: FPGA-to-Host Data Transfer Performance 
for Different Clock Rates 

As Figure 4 illustrates, reducing the clock rate of the 
DMA engine reduces the rate at which data is transferred 
to the host. Similar measurements were observed for the 
other methods of data transfer. Given that it is unlikely 
that all user circuits will be able to run at 200 MHz, the 
next step in developing the DMA engine would be to 
enable the unit to operate at a different clock rate than the 
user’s circuitry. This effort would require signaling to 
protect data as it moves between clock domains. 
However, this signaling would only need to be performed 
for the control signals of the API, as data is exchanged 
through a memory interface that is typically connected to 
a dual-ported memory block that allows reader and writer 
ports to be clocked at different rates. 

4. Data Hashing Example 
Our second example application for investigating the 

RC characteristics of the XD1 is data hashing. Data 
hashing algorithms examine an arbitrary amount of data 
and generate a unique identifier that can be used to 
reference the data and validate its integrity. A good 
hashing algorithm includes every byte of input data in the 
generation of the hash value, and performs sufficient 
permutations to make it non-trivial for a user to construct 
a dataset that has the same hash value as another data set. 
Because of these characteristics, data hashing algorithms 
can require moderate processing times on host CPUs. 
Given that data hashing algorithms are used as building 
blocks in many computer science applications, it is 
worthwhile to examine means by which their performance 
can be improved. For this work we focus on the MD5 
message digest function. 

The MD5 message digest function was created by 
Rivest in 1992 [9]. While better quality hashing 
algorithms have been developed since then, MD5 is still 

commonly utilized today to validate data sets. MD5 takes 
an arbitrary length of data and generates a 128-bit 
identifier. Internally the algorithm operates on a 512-bit 
block of input data at a time and runs the block through 
64 computational steps. Each step modifies the 128-bit 
hash identifier using a computation that is comprised of a 
small number of Boolean operations, an addition, and a 
rotation. After streaming the entire data set through the 
computation, a zero-padded length field is passed through 
the computation to generate the final hash value. 

4.1 Balancing the Hardware Implementation 
The serial nature of the MD5 algorithm makes it 

challenging to construct a hardware implementation that 
exploits concurrency. While a block computation has 64 
stages, these stages cannot overlap or be arranged in 
parallel because each stage reads and updates the hash 
value. Concurrency can be found and exploited at the 
block level, by fetching the next 512-bits of data while the 
current block is being computed. However, if it takes 64 
cycles to perform a block operation, the fetch operation 
only requires data to be obtained at a rate of 8-bits per 
clock. Given the wide buses and high data-transfer rates 
in the XD1, it should be expected that this operation will 
be a compute bound problem for the FPGA. 

Another complication in this design is that the 
computations in the 64 individual stages require multiple 
operations. Performing these operations in a single clock 
cycle decreases the maximum clock rate of the system. 
Conversely, splitting individual operations into multiple 
clock cycles improves clock rate but scales the overall 
number of cycles required to complete the operation. We 
constructed two designs to observe these characteristics. 
The first design performs each of the 64 stages in a single 
clock cycle, while the second design performs each stage 
in five steps, resulting in a total of 320 clocks to complete 
a block operation. Both designs utilize the same data 
exchange operations to obtain data from the host and store 
results back to host memory. For this application, the host 
program writes data into FPGA memory using write-
combining Programmed I/O operations. The FPGA 
DMAs the result to host memory when the operation 
completes. 

4.2 MD5 Results 
Both MD5 designs were compiled for the XD1’s 

FPGAs. As expected, the design that performed the 
computations in a single cycle had a much lower clock 
rate than the multi-cycle design (66 MHz vs. 190 MHz). 
A test application was constructed to measure the amount 
of time required for a host application to perform the 
MD5 computation for data sets of varying lengths using 
software alone and the two hardware accelerators. The 
results of these tests are presented in Figure 5. 
Unfortunately, the serial data flow of the computation did 
not result in an architecture that was faster than the host 



application. As these measurements indicate, the 
improvements in clock rate obtained by the multi-cycle 
design were not sufficient to compensate for the larger 
number of clock cycles required to complete the 
operation.  
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Figure 5: Processing Time for the MD5 Algorithm 

5. Sorting Example 
Our third application is a simple hardware 

implementation of a sorting algorithm for fixed width 
matrices. Sorting is a fundamental task in computer 
science for which many algorithms have been proposed. 
In general, the best performing sorting algorithms are 
efficient because they are optimized for the von Neumann 
style of processing architecture that is the basis for 
modern CPUs. This architecture assumes that a CPU has a 
small number of comparison units, a small amount of 
internal memory, and that it is expensive to bring data 
values into the CPU. An example of an algorithm that is 
customized to these assumptions can be found in 
quicksort [10]. Quicksort compares unsorted values to a 
pivot point instead of other unsorted values in order to 
reduce the number of data values that are pulled into the 
CPU. FPGAs free designers from the constraints of the 
von Neumann architecture and enable us to consider 
custom architectures for an algorithm. Our approach to 
implementing a sorting engine is to create a linear array of 
simple sorting elements that operate in a streaming 
manner. While this approach can only sort as many values 
as the FPGA has capacity for sorting elements, the 
hardware can be utilized as a building block for more 
complex operations. 

5.1 Sorting Array 
The hardware constructed for this work is a one-

dimensional array of sorting elements. Each sorting 
element is comprised of a register for storing a single 64-
bit data value, a comparison unit, and logic for 
sequencing data flow. The sorting element has two modes 
of operation: evaluate and flush. During the evaluate 

mode, a sorting element compares data placed on the 
unit’s input to the internal value. It then places the larger 
of the two values in the element’s internal register and the 
smaller on the unit’s output port. In the flush mode, each 
element first moves its internal value to the output port, 
and in the following cycles moves data on the input port 
to the output port. The sorting element is trivial to 
describe in a hardware description language (90 lines of 
Verilog), and is easily replicated to build a sorting array. 

The sorting array is a one-way pipeline of n sorting 
elements. A new value can be inserted into the array each 
cycle until the array reaches capacity. Once the final data 
value is inserted, the array needs n-1 clock cycles to allow 
all of the values time to bubble into place, and then an 
additional n clock cycles to push the stream of sorted data 
values out of the array. The advantage of this approach is 
that a large number of data values are compared against 
other data values at the same time, resulting in a total 
delay of 3n clock cycles to sort and store n numbers. This 
approach is also advantageous because it operates in a 
streaming manner that does not require the entire input 
data set to be available before sorting can begin. 

5.2 XD1 Implementation 
A design was constructed for the XD1 FPGA to 

enable the sorting of a fixed-length series of 64-bit 
numbers. This design instantiates a DMA engine, a 
sorting array, and a state machine for controlling the flow 
of data through the system, as illustrated in Figure 6. 
Once the FPGA is loaded with the design, a host 
application copies an unsorted array of data values to a 
region of pinned host memory and sends a command to 
the FPGA that specifies the address of the data, the 
address of where the sorted data should be stored, and the 
number of n-length blocks that need to be sorted. Upon 
receiving a command, the FPGA will issue DMA reads to 
pull each block of data into the sorting array. Once a 
block is sorted, it is moved into an outgoing FPGA buffer 
for DMA transfer to the host. Outgoing and incoming 
DMA transfers are scheduled to overlap in order to hide 
overhead when there is more than one block to sort.  
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Figure 6: FPGA-based Sorting Engine 



5.3 Performance Measurements 
Through different experiments, we found that the 

maximum array size that could be implemented in a 
single Xilinx V2P50 FPGA was 128 elements. The entire 
design consumed approximately 87% of the V2P50’s 
logic resources and had a maximum clock rate of 130 
MHz. A host application was constructed to compare the 
design’s performance against a CPU implementation of 
quicksort. In these tests a series of 128 word blocks were 
sorted to determine the sorting rate of both the FPGA and 
quicksort. Figure 7 presents the measured rates for the 
host and two FPGA scenarios. The first is for normal use 
(“Pre/Post Copy”), where the measurement includes the 
amount of time required for the host application to copy 
data into and out of pinned memory that the FPGA can 
work with. The second is for raw performance (“No 
Copy”), where unsorted and sorted data is resident in 
pinned host memory and does not need to be copied. 
Performance is reported in terms of millions of 64-bit 
words sorted per second. 
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Figure 7: Sorting Performance 

 
The host-based algorithm in these tests provides a 

constant sorting rate because the number of elements in a 
block does not change. FPGA performance increases with 
the number of blocks because multiple blocks enable host 
memory reads and writes to overlap. Overall, the FPGA 
accelerator gives a performance gain of 2-4x over the 
software implementation. Based on our experiments with 
smaller block sizes, this gain increases as block size 
increases. There are two areas of future work that are 
immediately clear. First, a simple mergesort engine could 
be placed after the array to buffer results and increase the 
sorting capacity of the FPGA. Second, we believe the 
design could be optimized to enable more sorting 
elements to be housed in the FPGA. Our approach in this 
paper has been to implement simple hardware and rely on 
the synthesis tools to produce a usable design. Hand 
placing sorting element logic would likely yield a denser 
design with faster logic. 

6. Distance Computation 
Our final test application for the XD1 is a simple 

distance computation that is performed in double-
precision floating point. This computation determines the 
length of a triangle’s hypotenuse from the lengths of the 
other two sides of the triangle. Based on the Pythagorean 
theorem, this computation equates to c=sqrt(a2 + b2).  

6.1 Floating Point in FPGAs 
Floating point operations have historically been a 

weakness for FPGAs for multiple reasons. In general, 
floating-point computations are relatively complex 
operations that consume significant amounts of resources 
in an FPGA. Floating-point development is complicated 
by the fact that the IEEE standard for floating point 
contains a number of subtle behaviors for specific cases 
(e.g., rounding) that make full compliance non-trivial. 
While many researchers have implemented floating point 
units for FPGAs in the past, we do not know of any 
publicly available floating-point libraries that offer a 
complete set of operations that function at high speeds. 

As a means of enabling RC research, Keith 
Underwood and K. Scott Hemmert at Sandia National 
Laboratories in New Mexico have developed an internal 
library of single- and double-precision floating-point 
cores for use with Xilinx FPGAs. These cores were 
written in low-level JHDL and hand-placed to maximize 
the performance of the hardware. Double precision 
floating point operations consume roughly 800-3,000 V2P 
slices (4-12% of a V2P50), and operate at speeds between 
130-200 MHz. The library contains operations for add, 
multiply, divide, and square root. More information about 
this work can be found in [11,12]. 

6.2 XD1 Implementations 
The availability of the SNL/NM floating-point cores 

enabled us to construct the distance computation in the 
XD1’s FPGA hardware. The architecture of the unit is 
presented in Figure 8. Similar to the MD5 example, this 
design double buffers input data in a block of FPGA 
memory and requires the host to fill the buffer using 
Programmed I/O operations. The FPGA’s input memory 
is 128-bits wide and 1,024 entries deep. This width 
enables two 64-bit data values to be passed to the 
computational circuitry every clock cycle. The V2P50 
FPGA has enough capacity to implement the full data 
flow for this computation. Two multiplier circuits are 
used to compute a2 and b2 in parallel, followed by an 
addition circuit and a square root circuit. The total number 
of pipeline stages for the floating-point computation is 88. 
Result data is collected in an outgoing buffer and then 
transferred to host memory when a full block of data is 
available. 
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Figure 8: FPGA-Based Distance Calculation 

 

6.3 Performance 
The distance design was compiled for the XD1’s 

V2P50 FPGA, and found to occupy roughly 39% of the 
chip. The maximum clock rate for the design was 159 
MHz. A host application was constructed to exchange 
data with the FPGA in blocks of data that contained 512 
pairs of input data values. Performance results are 
presented in Figure 9 for both the FPGA and an 
application that performs the distance calculation using 
the CPU. From these results we see that the large block 
size chosen for data exchange results in degraded 
performance until 2,048 computations are requested. At 
this point the data exchange pipeline is filled and 
overhead is overlapped. The CPU provides better 
performance until 64K computations are requested, at 
which point the FPGA provides slightly better 
performance. The drop in CPU performance is likely due 
to cache effects. 
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Figure 9: Double-Precision Distance Computation 

7. Observations 
A number of observations can be made from these 

experiments. First, the XD1 provides an architecture 
where FPGA accelerators have high-bandwidth access to 
host memory. An FPGA in the XD1 can read and write 
host memory at over 1,300 MiBytes/s, which is roughly 
10 times greater than the rate that can be achieved in a 
system that employs an FPGA on a 32-bit/33MHz PCI 
interface. However, it is important to note that the 
HyperTransport link connecting the FPGA to the CPU 
operates at half the rate of the HyperTranspot link that 
connects the CPUs. This fact implies that the CPU still 
has a natural processing advantage that RC researchers 
must account for when developing FPGA accelerator 
circuits. 

Another observation about this work is that some 
efforts were successful in obtaining a speedup while 
others were not. While the MD5 computation performs 
bit-wise operations that FPGAs typically excel at, the data 
flow for the algorithm did not enable us to extract enough 
parallelism to make the FPGA implementation 
competitive. However, this application demonstrated how 
a balance must be made between the number of 
operations performed each clock cycle and the total 
number of cycles required to complete the algorithm. The 
sorting and distance calculation algorithms were more 
successful because they provide parallelism that can be 
exploited in the hardware design. These examples 
demonstrate that the FPGA can compete with the host 
processor, even when large blocks of data have to be 
exchanged with main memory. 

Finally, our experiments indicate that the XD1’s 
V2P50 FPGAs are sufficiently large enough for users to 
begin considering their use for small but meaningful 
scientific computations. Using the SNL/NM floating-
point library, we found that the V2P50 has the capacity to 
house a small number (10-20) of double-precision 
floating-point units. While this is a good start, we 
encourage Cray to consider newer, larger FPGAs in their 
future work, such as the Xilinx Virtex4. 

8. Conclusions 
The Cray XD1 is an appealing platform for 

Reconfigurable Computing research because it places 
FPGAs in close proximity to the system’s main memory. 
In this paper we have examined how these FPGAs can be 
utilized as computational accelerators. Four simple FPGA 
applications were constructed to examine the underlying 
performance characteristics of the architecture, and to 
serve as early experimentation into how accelerator 
applications should be constructed. These examples 
demonstrate that the FPGA accelerators can perform 
useful work that is competitive with host-processor 
performance for certain types of algorithms. 
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