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ABSTRACT: Oak Ridge National Laboratory recently received delivery of a Cray XT3. 
The XT3 is Cray’s third-generation massively parallel processing system. The system 
builds on a single processor node—the AMD Opteron—and uses a custom chip—called 
SeaStar—to provide interprocessor communication. In addition, the system uses a 
lightweight operating system on the compute nodes. This paper describes our initial 
experiences with the system, including micro-benchmark, kernel, and application 
benchmark results. In particular, we provide performance results for important 
Department of Energy applications areas including climate and fusion. We demonstrate 
experiments on the partially installed system, scaling applications up to 3,600 processors.  
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1 Introduction 
Computational requirements for many large-scale 

simulations and ensemble studies of vital interest to the 
Department of Energy (DOE) exceed what is currently 
offered by any U.S. computer vendor. As illustrated in 
the DOE Scales report [30] and the High End 
Computing Revitalization Task Force report [17], 
examples are numerous, ranging from global climate 
change research to combustion to biology. 

Performance of the current class of HPC 
architectures is dependent on the performance of the 
memory hierarchy, ranging from the processor-to-cache 
latency and bandwidth to the latency and bandwidth of 
the interconnect between nodes in a cluster, to the 
latency and bandwidth in accesses to the file system. 
With increasing chip clock rates and number of 
functional units per processor, this dependency will 
only increase. Single processor performance, or the 
performance of a small system, is relatively simple to 
determine. However, given reasonable sequential 
performance, the metric of interest in evaluating the 
ability of a system to achieve multi-Teraop 
performance is scalability. Here, scalability includes the 
performance sensitivity of variation in both problem 
size and the number of processors or other 

computational resources utilized by a particular 
application.  

ORNL has been evaluating these critical factors on 
several platforms that include the Cray X1 [1], the SGI 
Altix 3700 [13], and the Cray XD1 [14]. This report 
describes the initial evaluation results collected on an 
early version of the Cray XT3 sited at ORNL. Recent 
results are also publicly available from the ORNL 
evaluation web site [25]. We have been working closely 
with Cray, Sandia National Laboratory, and Pittsburgh 
Supercomputing Center, to install and evaluate our 
XT3. 

2 Cray XT3 System Overview 
The XT3 is Cray’s third-generation massively 

parallel processing system. It follows the successful 
development and deployment of the Cray T3D and 
Cray T3E [28] systems. As in these previous designs, 
the system builds upon a single processor node, or 
processing element (PE). The XT3 uses a commodity 
microprocessor—the AMD Opteron—at its core, and 
connects these processors with customized 
interconnect. In the case of the XT3, Cray has designed 
an ASIC (application specific integrated circuit), called 
SeaStar, to manage the communication fabric. 

2.1 Processing Elements 
As Figure 1 shows, each PE has one Opteron 

processor with its own dedicated memory and 
communication resource. The XT3 has two types of 

EARLY EVALUATION: This paper contains 
preliminary results from our early delivery system, 
which is smaller in scale than the final delivery 
system and which uses early versions of the 
system software. 
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PEs: compute PEs and service PEs. The compute PEs 
are optimized for application performance by running a 
lightweight operating system kernel—Catamount. In 
contrast, the service PEs run SuSE Linux and are 
configured for I/O, login, network, or system functions.  

The XT3 uses a blade approach for achieving high 
processor density per system cabinet.  On the XT3, a 
compute blade hosts four compute PEs (or nodes), and 
eight blades are contained in one chassis. Each XT3 
cabinet holds three chassis, for a total of 96 processors 
per cabinet. In contrast, service blades host two service 
PEs and provide PCI-X connections for extensibility, 
such as I/O. 

The ORNL XT3 uses Opteron model 150 
processors. As Figure 2 shows, this model includes an 
Opteron core, integrated memory controller, three 16b 
800 Mhz HyperTransport (HT) links, a L1 cache, and a 
L2 cache. The Opteron core has a 2.4 Ghz clock, three 
integer units, and one floating-point unit which is 
capable of two floating-point operations per cycle [2]. 
Hence, the peak floating point rate of this processor is 
4.8 GFLOPS.  

The memory structure of the Opteron contains a 
64KB 2-way associative L1 data cache, a 64KB 2-way 
associative L1 instruction cache, and a 1MB 16-way 
associative, unified L2 cache. The Opteron has 64b 
integer registers, 48b virtual addresses, 40b physical 
addresses, sixteen 64b integer registers, and sixteen 
128b SSE/SSE2 registers. The memory controller data 
width is 128b. Each PE has 2 GB of memory but only 1 
GB is usable with the current kernel. The memory 
DIMMs are 1 GB PC3200, Registered ECC, 18 x 512 
mbit parts that support Chipkill. The peak memory 
bandwidth per processor is 6.4 GBps.  

 
Figure 1: Cray XT3 Architecture (Image courtesy of Cray). 

 

As a 100-series processor, the 150 does not support 
SMP configurations. Although it contains three HT 
links, none of these links support coherent HT. The 
benefits of supporting only uniprocessor configurations 

are realized in the memory subsystem because the 150 
can have memory access latencies in the 50-60 ns 
range. In contrast, processors that support SMP 
configurations can have memory latencies that are 
considerably worse, due to the additional circuitry for 
coordinating memory accesses and managing the 
memory coherence across processors in the SMP. For 
comparison, current Intel processors use a separate 
chip—typically referred to as the ‘Northbridge’—for 
the memory controller, which increases the latency for 
each memory access, in general. 

The Opteron’s processor core has a floating-point 
execution unit (FPU) that handles all register operations 
for x87 instructions, 3DNow! operations, all MMX 
operations, and all SSE and SSE2 operations.  This 
FPU contains a scheduler, a register file, a stack 
renaming unit, a register renaming unit, and three 
parallel execution units. The first of these three 
execution units is known as the adder pipe (FADD); it 
contains a MMX ALU/shifter and floating-point adder. 
The next execution unit is known as the multiplier 
(FMUL); it provides the floating-point 
multiply/divide/square root operations and also an 
MMX ALU. The final unit supplies floating-point 
load/store (FSTORE) operations. 

 
Figure 2: AMD Opteron Design (Image courtesy of AMD). 

 

2.2 Interconnect 
As Figure 1 illustrates, each Opteron processor is 

directly connected to the XT3 interconnect via a Cray 
SeaStar chip. This SeaStar chip is a routing and 
communications chip and it acts as the gateway to the  
XT3’s high-bandwidth, low-latency interconnect. The 
PE is connected to the SeaStar chip with a 6.4 GBps HT 
path. The router in SeaStar provides six high-speed 
network links to connect to six neighbors in the 3D 
torus/mesh topology. Each of the six links has a peak 
bandwidth of 7.6 GBps. With this design, the Cray XT3 
bypasses communication bottlenecks such as the PCI 
bus. The interconnect carries all message passing traffic 
as well as I/O traffic to the global parallel file system.  
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2.2.1 SeaStar 
As described earlier, the SeaStar ASIC provides 

communication processing and routing facility on a 
single chip. Each communication chip is composed of: 

• a HyperTransport link [3] --- this enables the 
chips inside of a computing system and network 
and communication devices to communicate with 
each other over parallel links without bus 
arbitration overheads. 

• a PowerPC 440 processor --- the communications 
and management processor cooperates with the 
Opteron to synchronize and to schedule 
communication tasks. 

• a Direct Memory Access (DMA) engine --- the 
DMA engine and the PowerPC processor work 
together to off-load message preparation and 
demultiplexing tasks from the Opteron processor.  

• an interconnect router ---  the router provides six 
network links to the six neighboring processors in 
the 3D torus topology. The peak bidirectional 
bandwidth of each link is 7.6 GB/s with a sustained 
bandwidth of around 4 GB/s.  

• a service port --- this port bridges between the 
separate management network and the Cray 
SeaStar local bus. The service port allows the 
management system to access all registers and 
memory in the system and facilitates booting, 
maintenance and system monitoring. Furthermore, 
this interface can be used to reconfigure the router 
in the event of failures. 

2.3 Topology 
The Cray XT3 sited at ORNL is currently a 40 

cabinet system, with 3,748 compute PEs and 46 service 
PEs. These PEs are connected in a 10 x 16 x 24 (X x Y 
x Z) configuration with a torus in X and Z dimensions, 
and a mesh in the Y dimension.  

Later this year, the system will be upgraded to 56 
cabinets, totaling 5,212 compute processors and 82 
service processors. It will be connected as 14 x 16 x 24 
using a torus in X and Z with a mesh in Y. Depending 
on our experience as the full system is deployed, the Y 
dimension may also be converted to a torus. 

2.4 System Software 
The Cray XT3 inherits several aspects of its 

systems software approach from a sequence of systems 
developed and deployed at Sandia National 
Laboratories: ASCI Red [22], the Computational Plant 
[7, 26] (also known as Cplant), and Red Storm [5].  The 
XT3 uses a micro-kernel operating system on its 

compute PEs, a user-space communications library, and 
a hierarchical approach for scalable application start-up. 

2.4.1 Operating Systems 
The XT3 uses two different operating systems: 

Catamount on compute PEs and Linux on service PEs.  
Catamount is the latest in a sequence of micro-kernel 
operating developed at Sandia and the University of 
New Mexico, including SUNMOS [21], Puma [33], and 
Cougar.  (Cougar is the product name for the port of 
Puma to the Intel ASCI Red system.)  For scalability 
and performance predictability, each instance of the 
Catamount kernel runs one single-threaded process and 
does not provide services like demand-paged virtual 
memory that could cause unpredictable. Unlike the 
compute PEs, service PEs (i.e., login, I/O, network, and 
system PEs) run a full SuSE Linux distribution to 
provide a familiar and powerful environment for 
application development and for hosting system and 
performance tools. 

2.4.2 Communication Library 
The XT3 uses the Portals [8] data movement layer 

for flexible, low-overhead inter-node communication. 
Portals provide connectionless, reliable, in-order 
delivery of messages between processes. For high 
performance and to avoid unpredictable changes in the 
kernel’s memory footprint, Portals deliver data from a 
sending process’ user space to the receiving process’ 
user space without kernel buffering. Portals support 
both one-sided and two-sided communication models. 
For flexibility, Portals support multiple higher-level 
communication protocols, including protocols for MPI 
message passing between application processes and for 
transferring data to and from I/O service PEs. 

2.4.3 Scalable Application Launch 
Like Cplant, the XT3 uses a hierarchical approach 

for scalable loading of parallel applications using the 
yod utility [5, 6]. On the XT3, launching a parallel 
application involves three steps: 

1. yod determines the set of compute nodes allocated 
to the application; 

2. yod delivers information about the application such 
as the user’s environment and the application 
executable to the Process Control Thread (PCT) in 
the Catamount kernel running in the application’s 
primary compute node; and 

3. the PCT in the primary compute node multicasts 
the application information to the PCTs in the 
application’s other compute nodes. 

In the third step, a hierarchical communication structure 
(i.e., a multicast tree) is used for scalability. PCTs in 



 - 4 - 

different branches of the tree can transmit messages in 
parallel to limit the latency for distributing job launch 
information.   

2.5 Programming Environment 
The Cray XT3 programming environment includes 

compilers, communication libraries, and correctness 
and performance tools [11].  The Portland Group’s C, 
C++, and Fortran compilers are available.  Cray-
provided compiler wrappers ease the development of 
parallel applications for the XT3 by automatically 
including compiler and linker switches needed to use 
the XT3’s communication libraries. The primary XT3 
communication libraries provide the standard MPI-2 
message passing interface and Cray’s SHMEM 
interface.  Low level communication can be performed 
using the Portals API (see Section 2.4.2).  The Etnus 
TotalView debugger is available for the XT3, and Cray 
provides the Apprentice2 tool for performance analysis. 

2.6 Math Libraries 
The primary math library is the AMD Core Math 

Library (ACML) version 2.5.0. It incorporates BLAS, 
LAPACK and FFT routines, and is designed to provide 
excellent performance on AMD platforms. This library 
is available both as a 32-bit library, for compatibility 
with legacy x86 applications, and as a 64-bit library that 
is designed to fully exploit the large memory space and 
improved performance offered by the new AMD64 
architecture. 

We also have installed and tested BLAS libraries 
for the AMD Opteron which were developed by 
Kazushige Goto [16]. 

3 Evaluation Overview 
As a function of the Early Evaluation project at 

ORNL, numerous systems have been vigorously 
evaluated in the context of important DoE applications.  
Recent evaluations have included the Cray X1 [12], the 
SGI Altix 3700 [13], and the Cray XD1 [14].  

The primary goals of these evaluations are to 1) 
determine the most effective approaches for using the 
each system, 2) evaluate benchmark and application 
performance, both in absolute terms and in comparison 
with other systems, and 3) predict scalability, both in 
terms of problem size and in number of processors. We 
employ a hierarchical, staged, and open approach to the 
evaluation, examining low-level functionality of the 
system first, and then using these results to guide and 
understand the evaluation using kernels, compact 
applications, and full application codes. The distinction 
here is that the low-level benchmarks, for example, 
message passing, and the kernel benchmarks are chosen 

to model important features of a full application. This 
approach is also important because a number of the 
platforms contain novel architectural features that make 
it difficult to predict the most efficient coding styles 
and programming paradigms. Performance activities are 
staged to produce relevant results throughout the 
duration of the system installation. For example, 
subsystem performance will need to be measured as 
soon as a system arrives, and measured again following 
a significant upgrade or system expansion.  

3.1 Test Systems 
For comparison purposes, performance data is also 

presented for the following systems: 
• Cray X1 at ORNL: 512 Multistreaming processors (MSP), each 

capable of 12.8 GFlops/sec for 64-bit operations. Each MSP is 
comprised of four single streaming processors (SSPs). The SSP 
uses two clock frequencies, 800 MHz for the vector units and 400 
MHz for the scalar unit. Each SSP is capable of 3.2 GFlops/sec 
for 64-bit operations.  

• Cray XD1 at ORNL: 144 AMD 2.2Ghz Opteron 248 processors, 
configured as 72, 2 way SMPs with 4GB of memory per 
processor. The processors are interconnected by Cray’s 
proprietary RapidArray interconnect fabric. 

• Earth Simulator: 640 8-way vector SMP nodes and a 640x640 
single-stage crossbar interconnect. Each processor has 8 64-bit 
floating point vector units running at 500 Mhz. 

• SGI Altix at ORNL: 256 Itaninium2 processors and a NUMAlink 
switch. The processors are 1.5 GHz Itanium2. The machine has an 
aggregate of 2 TB of shared memory. 

• HP/Compaq AlphaServer SC at Pittsburgh Supercomputing 
Center (PSC): 750 ES45 4- way SMP nodes and a Quadrics 
QsNet interconnect. Each node has two interconnect interfaces. 
The processors are the 1GHz Alpha 21264 (EV68). 

• IBM p690 cluster at ORNL: 27 32-way p690 SMP nodes and an 
HPS interconnect. Each node has two HPS adapters, each with 
two ports. The processors are the 1.3 GHz POWER4. 

• IBM SP at the National Energy Research Supercomputer Center 
(NERSC): 184 Nighthawk(NH) II 16-way SMP nodes and an SP 
Switch2. Each node has two interconnect interfaces. The 
processors are the 375MHz POWER3-II. 

4 Microbenchmarks  
The objective of microbenchmarking is to 

characterize the performance of the specific 
architectural components of the platform. We use both 
standard benchmarks and customized benchmarks. The 
standard benchmarks allow consistent and widespread 
historical comparisons across platforms. The custom 
benchmarks permit the unique architectural features of 
the system (e.g., global address space memory) to be 
tested with respect to the target applications.  

Traditionally, our microbenchmarking focuses on 
the arithmetic performance, memory-hierarchy 
performance, task and thread performance, message-
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passing performance, system and I/O performance, and 
parallel I/O. However, because the XT3 has a single 
processor node and it uses a lightweight operating 
system, we focus only on these areas:  

1. Arithmetic performance, including varying 
instruction mix, identifying what limits peak 
computational performance.  

2. Memory-hierarchy performance, including levels 
of cache and shared memory.  

3. Message-passing performance, including intra-
node, inter-node, and inter-OS image MPI 
performance for one-way (ping-pong) messages, 
message exchanges, and collective operations 
(broadcast, all-to-all, reductions, barriers); 
message-passing hotspots and the effect of 
message passing on the memory subsystem are 
studied.  

Current, detailed microbenchmark data for all 
existing evaluations is available at our Early Evaluation 
website [25].  

Table 1: STREAM Triad Performance. 
Processor Triad Bandwidth 

(GBps) 
Cray XT3 5.1 
Cray XD1 4.1 
Cray X1 MSP 23.8 
IBM p690 2.1 
IBM POWER5 4.0 
SGI Altix 3.8 

 

4.1 Memory Performance 
The memory performance of current architectures 

is a primary factor for performance on scientific 
applications. Table 1 illustrates the differences in 
measured memory bandwidth on the triad STREAM 
benchmark. The very high bandwidth of the Cray X1 
MSP clearly dominates the other processors, but the 
Cray XT3’s Opteron performs the best with respect to 
the other microprocessor-based systems. 

Table 2: Latency to Main Memory. 

Platform 
Measured Latency to 

Main Memory (ns) 
Cray XT3 / Opteron 150 / 2.4 Ghz 51.41 
Cray XD1 / Opteron 248 / 2.2 Ghz 86.51 
IBM p690 / POWER4 / 1.3 Ghz 90.57 
Intel Xeon / 3.0 Ghz 140.57 

 

As discussed earlier, the choice of the Opteron 
model 150 was motivated by low latencies to main 
memory. As Table 2 shows, our measurements revealed 
that the Opteron 150 has lower latency than the Opteron 
248 configured as a 2-way SMP in the XD1. 
Furthermore, it has considerably less latency than either 

the POWER4 or the Intel Xeon, which both support 
multiprocessor configurations. 

The memory hierarchy of the XT3 compute node is 
obvious when measured with the CacheBench tool [24]. 
Figure 3 shows that the system hits a maximum of 32 
GBps when accessing vectors of data in the L1 cache. 
In the L2 cache, the maximum bandwidth is 
approximately 9 GBps. Finally, when data is accessed 
from main memory, the bandwidth drops to about 3 
GBps, with the exception of the ‘C memset function’ 
which maintains a bandwidth of about 6 GBps. 
Interestingly, we found that this ‘read’ bandwidth was 
limited by the complier’s inability to optimize the 
benchmark loop. Additional manual unrolling of the 
loop generated results consistent with the other tests. 

 
Figure 3: CacheBench results for XT3 compute 

node. 
 

4.2 MPI 
A very important part of system performance 

depends on the message passing performance. Latency 
and bandwidth provided through the Message Passing 
Interface (MPI) library [29] are particularly relevant 
because most contemporary applications are built on 
MPI. 

Figure 4 and Figure 5 shows the latency and 
bandwidth for the MPI PingPong benchmark, 
respectively. We observe a latency of about 30 
microseconds for a 4 byte message, and a bandwidth of 
about 1.1 GBps for messages over 1 MB.  

Figure 6 and Figure 7 show the latency and 
bandwidth for the exchange benchmark, respectively, at 
3,648 processors. This test separates all tasks into two 
groups, and then uses the MPI_SendRecv operation to 
transfer data between pairs of tasks, where the 
endpoints are in separate groups. As opposed to the 
PingPong operation, which transfers messages between 
only two tasks, the exchange benchmark has all pairs 
transferring messages at the same time. The average 
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latency of these transfers are higher, on the order of 90 
microseconds for a 4 byte message. The bandwidth is 
also less than that for the PingPong test, but it reaches 
an average of nearly 1 GBps for an individual transfer, 
in the context of 1,824 simultaneous transfers. 
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Figure 4: Latency of MPI PingPong. 
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Figure 5: Bandwidth of MPI PingPong. 
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Figure 6: Latency of Pallas exchange operation. 
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Figure 7: Bandwidth of Pallas exchange operation. 

 

The latency for an Allreduce operation across 
3,648 processors, as shown in Figure 8, is, on average, 
600 microseconds for a 4 byte payload. The Allreduce 
operation is particularly important in large-scale 
scientific applications because it can be used multiple 
times on every timestep. Further, its blocking semantics 
also requires that all tasks wait for its completion before 
continuing, so latency for this operation is very 
important to good scaling.  
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Figure 8: Latency for MPI_Allreduce of across 3,648 

processors. 
 

As mentioned earlier, we are using preliminary 
versions of the system software for these tests. We 
expect future versions of the software to improve both 
the latency and bandwidth of these MPI operations. In 
fact, two other sites are reporting latencies as low as 5 
microseconds on MPI PingPong operations.  

4.3 Scientific Operations 
We use a collection of microbenchmarks to 

characterize the performance of the underlying 
hardware, compilers, and software libraries. The 
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microbenchmarks measure computational performance, 
memory hierarchy performance, and inter-processor 
communication. Figure 9 compares the double-
precision floating point performance of a matrix 
multiply (DGEMM) on a single processor using the 
vendors’ scientific libraries. The XT3 Opteron achieves 
4 Gflops, about 83% of peak.  

Figure 10 compares the vendor library 
implementation of an LU factorization (DGETRF) 
using partial pivoting with row interchanges. As 
expected, the X1 does very well for large matrix ranks; 
however, the XT3 and XD1 perform best for matrix 
ranks less than about 150. 

Libraries undergo continuous optimization by their 
authors, so we constantly compare the performance of 
these libraries on common routines. A comparison of 
the ACML 2.5 and Goto libraries, as shown in Figure 
11, on our current system shows small advantages to 
the Goto libraries.  

 
Figure 9: Performance of Matrix Multiply. 

 

 
Figure 10: Performance of LU factorization. 
 

 
Figure 11: Comparison of ACML and Goto libraries 

on XT3. 
In other testing, we compare vendor libraries with 

code generated by the optimizing FORTRAN compiler. 
Figure 12 shows the performance (Mflops) of Euroben 
mod2b, a dense linear system test, for both optimized 
FORTRAN and using the BLAS from the vendor 
library. In these tests, the advantages of the vendor 
libraries are clear when compared to the compiler 
optimized code. 

 
Figure 12: Performance of EuroBen mod2b. 

 
Fast Fouier Transforms are another important kernl 

operation performed by many scientific and signal 
processing applications. Figure 13 compares a 1-D FFT 
using the FFTW benchmark [15]. Both the XD1 and 
XT3 perform well when compared to the SP3 and SP4, 
but the higher floating point rate of the Altix’s Itanium 
allows it to generate higher performance. Alternatively, 
the vendors provide FFT libraries. Figure 14 plots 1-D 
FFT performance using the vendor library (-lacml, -
lscs, -lsci or -lessl), where initialization time is not 
included. Again, the X1 does very well for long vectors, 
but the Opteron is competitive with other 
microprocessors. 
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Figure 13: Performance of 1-D FFTW. 

 

 
Figure 14: Performance of 1-D FFT using vendor 

libraries. 
 

In general, our micro-benchmark results show the 
promise of the Cray XT3 compute nodes for scientific 
computing.  Although the Cray X1’s high memory 
bandwidth provided a clear benefit over the other 
systems we considered, and the SGI Altix and IBM 
Power5 systems gave better performance for several 
micro-benchmarks, the XT3 showed solid performance 
with these other systems, and in many cases, it 
performed better at very short vector lengths. Further, 
the benefits of using optimized libraries are very clear, 
given our performance comparisons. 

4.4 HPC Challenge 
The DARPA High Productivity Computing 

Systems program has recently sponsored the 
development of the HPC Challenge benchmark suite to 
emphasize the diverse application requirements of 
DARPA and its mission partners. Details and the latest 
version of the benchmark are available from the HPC 
Challenge website [20]. Initial versions (0.8b) of HPCC 

on our XT3 at 2,048 processors (9.8 TFLOPS) are 
producing an HPL result of 7.4 TFLOPS (75%), and a 
MPI Random Access result of 0.055 GUPS. Final 
numbers will be posted at the HPC Challenge website 
following installation of the final system. 

5 Kernels  
Next in our evaluation process, we focus on 

moderately-sized kernels that represent either common 
operations performed in scientific applications or 
operations extracted from target application codes. 
These kernels exercise multiple architectural features 
together, and provide a venue to examine the 
performance impact of a variety of coding styles and 
programming models. For example, on some systems, 
we have observed dramatic performance improvements 
by using UPC or Co-Array FORTRAN to implement 
communication operations in a critical application 
kernel.  

The kernel-based evaluation is driven by the choice 
of the application codes. Whenever possible, standard 
kernels will be used, but profile data from the 
application codes will be the ultimate determinant. For 
example, it may be necessary to use code fragments 
extracted directly from the application code. 

5.1 PSTSWM 
The Parallel Spectral Transform Shallow Water 

Model (PSTSWM) [34] represents an important 
computational kernel in spectral global atmospheric 
models. As 99% of the floating-point operations are 
multiply or add, it runs well on systems optimized for 
these operations. PSTSWM exhibits little reuse of 
operands as it sweeps through the field arrays; thus it 
exercises the memory subsystem as the problem size is 
scaled and can be used to evaluate the impact of 
memory contention in SMP nodes. PSTWM is also a 
parallel algorithm testbed, and all array sizes and loop 
bounds are determined at runtime. 

On the XT3, we used PSTSWM to analyze 
compiler optimizations, evaluate performance of the 
memory subsystem, and compare performance with 
other supercomputers. Figure 15 and Figure 16 show 
comparisons of optimization options. The comparisons 
are presented as computation rate versus horizontal 
resolution for two vertical resolutions. The problem 
sizes T5, T10, T21, T42, T85, and T170 are horizontal 
resolutions. Each computational grid in this sequence is 
approximately 4 times smaller than the next larger size. 
Although the two Figures are for 1 and 18 vertical 
levels, this aspect of the problem size does not change 
the compiler option comparison. PSTSWM manages its 
own heap, and all loop bounds and array sizes are 
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defined at runtime. From the figure, we see that this 
seems to limit some of the possible performance 
optimizations probably because the compiler is limited 
in what it can achieve.  

 
Figure 15: Impact of compiler optimizations on 

PSTSWM (1 level). 
 

 
Figure 16: Impact of compiler optimizations on 

PSTSWM (18 levels). 
 

Figure 17 compares performance across all 
problem sizes, showing impact of memory hierarchy.  

 
Figure 17: Performance of PSTSWM with varying 

numbers of vertical levels. 
 

Most of the work is coupled most tightly 
horizontally, so additional vertical levels spreads data 
throughout memory, increasing access latency. Large 
problems drop from more than one Gop to 600 MFlops 
quickly as a function of number of vertical levels, but 
stay at the 600 MFlop rate from then on. Smaller 
problems drop more slowly, but to a lower asymptotic 
rate. The one and two processor per node comparison 
shows that this behavior is unaffected by both 
processors exercising memory simultaneously, so using 
both processors does not decrease memory performance 
or, in other words, increase memory contention.  

 
Figure 18: Performance of PSTSWM. 
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Figure 19: Single processor performance of 

PSTSWM for T85 while varying the number of 
vertical levels. 

 

Figure 18 shows a platform comparison. Note that 
for these tests, FFTW was used for FFTs were used 
instead of the vendor’s optimized math library FFTs. 
The top chart in the figure compares single processor 
performance for various horizontal resolutions and a 
fixed 18 vertical levels. The X1’s superior performance 
is due to the much higher processor/memory 
bandwidth. Figure 19 compares single processor 
performance with PSTSWM for T85 horizontal 
resolution and a range of numbers of vertical levels. 

5.2 SMG2000 
SMG2000 [9, 31, 32] is a parallel semicoarsening 

multigrid solver for the linear systems arising from 
finite difference, finite volume, or finite element 
discretizations of the diffusion equation  on logically 
rectangular grids. The code solves both 2-D and 3-D 
problems with discretization stencils of up to 9-points 
in 2-D and up to 27-points in 3-D. Applications where 
such a solver is needed include radiation diffusion and 
flow in porous media. This benchmark includes both 
the setup of the linear system and the solve itself. Note 
that this setup phase can often be done just once, thus 
amortizing the cost of the setup phase over many 
timesteps. This trait is relatively common in implicit 
timestepping codes. For these experiments, we report 
only the solve time. These test scale the matrix size 
with the number of processors (‘weak scaling’).  

As Figure 20 shows, the performance of SMG2000 
shows the best performance on the Cray XD1, and, 
then, the XT3. Scalability on the XT3 is good out to 
3,584 processors. 
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Figure 20: Performance of SMG2000. 

 

6 Applications 
Because a system’s behavior when running full 

applications is the most significant measure of its 
performance, we have investigated the performance and 
efficiency of applications relevant to the DOE Office of 
Science in the areas of global climate, fusion, 
chemistry, and bioinformatics. In addition to measures 
of performance and scalability common to evaluations 
of microprocessor-based MPP systems, the extent to 
which Cray compilers and tools can effectively utilize 
reconfigurable computing elements application codes 
will be investigated. The extent to which localized 
tuning can improve efficiency will also be investigated. 

The evaluation team has worked closely with 
principal investigators who are leading the Scientific 
Discovery through Advanced Computing (SciDAC) 
application teams to identify important applications. As 
described above, initial steps in each domain was the 
detailed understanding of selected kernels and critical 
aspects of the system.  

6.1 Parallel Ocean Program (POP) 
The Parallel Ocean Program (POP) [18] is the 

ocean component of CCSM [4] and is being developed 
and maintained at Los Alamos National Laboratory 
(LANL). The code is based on a finite-difference 
formulation of the three-dimensional flow equations on 
a shifted polar grid. In its high-resolution configuration, 
1/10-degree horizontal resolution, the code resolves 
eddies for effective heat transport and the locations of 
ocean currents. 

We used a benchmark configuration (called x1) 
representing a relatively coarse resolution similar to 
that currently used in coupled climate models. The 
horizontal resolution is roughly one degree (320x384) 
and uses a displaced-pole grid with the pole of the grid 
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shifted into Greenland and enhanced resolution in the 
equatorial regions. The vertical coordinate uses 40 
vertical levels with a smaller grid spacing near the 
surface to better resolve the surface mixed layer. 
Because this configuration does not resolve eddies, it 
requires the use of computationally intensive subgrid 
parameterizations. This configuration is set up to be 
identical to the actual production configuration of the 
Community Climate System Model with the exception 
that the coupling to full atmosphere, ice and land 
models has been replaced by analytic surface forcing. 

 
Figure 21: Performance of POP. 

 

 
Figure 22: Performance of POP barotropic phase. 

 
Figure 21 shows a platform comparison of POP 

throughput for the x1 benchmark problem. The XT3 
performance is similar to that of Cray XD1. Figure 22 
shows the performance of the barotropic portion of 
POP. This component is dominated by solution of 2D 
implicit systems using conjugate gradient solves and is 
known to scale poorly. Figure 23 shows the 
performance of the baroclinic portion of POP, which is 
known to scale well on many systems. The Cray XT3 
did not scale as well as other systems we evaluated for 
the POP barotropic portion, perhaps due to known 
interconnect performance problems with the current 

system.  On the other hand, the XT3 showed good 
scalability on the POP baroclinic portion.  

 
Figure 23: Performance of POP baroclinic phase. 

 

6.2 GYRO 
GYRO [10] is a code for the numerical simulation 

of tokamak microturbulence, solving time-dependent, 
nonlinear gyrokinetic-Maxwell equations with 
gyrokinetic ions and electrons capable of treating finite 
electromagnetic microturbulence. GYRO uses a five-
dimensional grid and propagates the system forward in 
time using a fourth-order, explicit, Eulerian algorithm.  

GYRO has been ported to a variety of modern HPC 
platforms including a number of commodity clusters. 
Since code portability and flexibility are considered 
crucial, only a single source is maintained.  Ports to 
new architectures often involve nothing more than the 
creation of a new makefile. 

 
Figure 24: GYRO Performance for B1-STD input. 

 
For our evaluation, we ran GYRO for two 

problems: B1-std and B3-gtc.  The two problems differ 
in size and computational and communication 
requirements per node.  The B1-std problem is smaller 
but requires more work per grid point than the B3-gtc 
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problem.  GYRO tends to scale better for the B1-std  
problem (Figure 24) than the B3-gtc problem (Figure 
25). The B3-gtc problem can use an FFT-based 
approach or a non-FFT approach. 

 

 
Figure 25: GYRO performance for B3-GTC input. 

 

 
Figure 26: GYRO communication fraction for B1-

STD input. 
 

Figure 26 shows the communication fraction of the 
GYRO runtime for several different platforms. The 
excellent bandwidth of X1, XT3, and XD1 contribute to 
their low communication fraction on this strong scaling 
problem. The XT3 number is an estimate generated 
from actual GYRO experiments on the XT3 combined 
with timing estimates for IO activities on a smaller XT3 
configured with Lustre. Figure 27 and Figure 28 show 
the differences in GYRO performance when using the 
different filesystems. As expected, both scaling and 
overall IO fraction for GYRO is much better for Lustre 
than for the scratch IO through Yod. 

 
Figure 27: GYRO phases for B1-STD using Lustre 

filesystem. 
 

 
Figure 28: GYRO phases for B1-STD using scratch 

filesystem. 
 

6.3 sPPM 
sPPM [23, 31, 32] solves a 3-D gas dynamics 

problem on a uniform Cartesian mesh, using a 
simplified version of the Piecewise Parabolic Method. 
The algorithm makes use of a split scheme of X, Y, and 
Z Lagrangian and remap steps, which are computed as 
three separate sweeps through the mesh per timestep. 
Message passing provides updates to ghost cells from 
neighboring domains three times per timestep. 

sPPM has been tested on numerous computer 
systems, and it is easy to scale the problem (weak 
scaling) to any number of processors. As we see in 
Figure 29, the scaling of sPPM scales very well across 
four platforms. On the XT3, scaling from 4 to 2,560 
processors has 91.1% parallel efficiency. Because 
sPPM sends very large messages infrequently, MPI 
latency impacts performance less than bandwidth. 
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Figure 29: Performance of sPPM. 

 

7 Future Performance 
Expectations 

Because the Cray XT3 is a new product and the 
ORNL XT3 is only partially installed, we expect both 
hardware and software improvements as the system 
continues to be deployed. With our current version of 
software, we are measuring MPI unidirectional 
latencies of approximately 28 microseconds. We 
expect, and several Cray XT3 installations are reporting 
these same latencies on the order of 5 microseconds. 
With this goal in mind, we are using locally-developed 
predictive performance models to estimate the 
performance improvement on important DoE 
applications with this improved latency. 

We predict the communication performance of two 
scientific codes, GYRO and POP, using LogGP models 
of communication. The LogGP parameters, L (latency), 
o (overhead), g (gap per message) are G (gap per byte) 
calculated using the logmpi software [19]. The MPI 
traces for the two applications are generated using 
parameterized simulation models of communication. 
LogGP models of communication define the latencies 
the communication latencies for point-to-point (Ptp), 
MPI_ALLREDUCE (Allreducebinary), and 
MPI_ALLTOALL (Alltoalllinear) operations for a 
message size m as follows [27]: 
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Figure 30 and Figure 31 show predicted runtimes 

for GYRO and POP, respectively, with 30μsec and 
5μsec latencies. GYRO has a large number of 
MPI_ALLTOALL and MPI_ALLREDUCE operations. 

On the other hand, POP performs a large number of 
small nearest-neighbor operations: point-to-point and 
frequent MPI_ALLREDUCE call with 8 bytes 
messages. Hence, POP is comparatively more sensitive 
to communication latencies than GYRO because of 
small message sizes.  We predict that a significant 
performance improvement will be achieved after the 
XT3 MPI latencies are reduced to 5μsec, particularly 
with large processor counts. 
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Figure 30: Performance prediction for GYRO. 

 
POP (X1 grid, 4 simulation days)
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Figure 31: Performance prediction for POP. 
 

8 Conclusions and Plans 
Oak Ridge National Laboratory is in the process of 

receiving and installing a 5,200 processor Cray XT3. In 
this paper we describe our initial experiences with the 
system, including micro-benchmark, kernel, and 
application benchmark results. In particular, we provide 
performance results for important Department of 
Energy applications areas including climate and fusion. 
We demonstrate experiments on the partially installed 
system, scaling applications up to 3,600 processors. All 
of the components of the system are performing well 
with the exception of MPI latencies; we expect this 
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feature to improve dramatically with new software 
releases. Even given this issues, we have demonstrated 
that our system works well on several important 
applications at scale. We are eagerly anticipating the 
expansion to the final delivery size of 5,200 processors; 
we expect our application performance to improve as 
we receive additional firmware and software upgrades 
to the interconnect, compilers, and runtime libraries. 
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