
 1

Batch Scheduling on the Cray XT3

Chad Vizino, Nathan Stone, John Kochmar, J. Ray Scott
{vizino,nstone,kochmar,scott}@psc.edu
Pittsburgh Supercomputing Center

ABSTRACT: The Pittsburgh Supercomputing Center has implemented a custom batch
scheduler, Simon, to operate with PBS on one of its massively parallel systems. The
design and implementation of an early custom scheduler on the XT3 as well as a
functional overview and adaptation of Simon to the XT3 will be discussed.

KEYWORDS: simon, scheduling, pbs, xt3, crms, harness, backfilling, easy.

1.0 Introduction

The Pittsburgh Supercomputing Center has implemented
a batch scheduler, Simon, running under OpenPBS[1,3]
on one of its massively parallel systems. The scheduler
has been in production for the last four years and contains
many advanced features. This scheduler is to be ported to
the XT3.

We will give an overview of Simon, its design and
features, and then discuss current scheduling activities on
PSC’s XT3, including a specially designed scheduling
system, and the progress toward implementing Simon in
the XT3 environment.

2.0 Simon

PSC’s Terascale Computing System, LeMieux, is an HP
AlphaServer SC cluster of 3000 Alpha EV68 processors
spanning 750 nodes. Each node is an ES45 quad-
processor server with 4 gigabytes of memory. Quadrics
Elan comprises the interconnect technology, and the
system is capable of achieving 6 teraflops.

The job scheduler, Simon1, used on this system was
custom designed by PSC Systems and Operations staff to
work with the AlphaServer SC architecture and to allow
us to run large jobs and achieve high overall system
utilization. Simon is designed to work under OpenPBS
and to function with the AlphaServer SC resource

1 "Simon" is named for Dr. Herbert Simon (1916-2001),
University Professor of Computer Science and Psychology at
Carnegie Mellon University, and winner of the 1978 Nobel Prize
in Economics. Simon argued that inevitable limits on
knowledge and analytical ability force people to choose the first
option that "satisfices" or is good enough for them. Scheduling
a large computing system often requires making choices with
limited knowledge.

management layer, RMS, and its companion system
database. Although a user may request an arbitrary
number of processors for his/her job, the job is scheduled
to whole nodes so that each node may provide exclusive
access to its resources.

Simon has been in use for the last four years that
LeMieux has been in production and is written almost
entirely in TCL[4], which allows for easy development
and adaptation of new functions. As we have gained
experience with LeMieux, site policies have been created
and extra features have been added to Simon to provide
additional capabilities to further enhance overall system
responsiveness to user demand while maintaining
utilization

2.1 Simon Advanced Features

Simon contains a number of advanced features. Several
of these, including backfilling, reservations, co-
scheduling, and defensive measures will be discussed.

2.1.1 Favoring Large Jobs

One of the main goals of Simon is to fairly run large jobs.
A large job is one that will consume the majority of the
machine’s processors. Through experience in helping
users to scale their codes and so that up to two large jobs
may run on the machine at once, we have established a
large job to be one requiring at least 1024 processors (see
Table 1). We want to run as many large jobs as possible
as soon after they are queued as possible, and not allow
any one user to dominate the machine, filling in the
remainder of the machine with smaller jobs.

The basic strategy of Simon is to completely order all
queued jobs and work through this unified queue, top to
bottom, starting as many jobs in one scheduling cycle as
can fit. Jobs have two required attributes: number of

 2

processors and duration (wall clock time). The set of
queued jobs is ordered into two subsets, or bins, by
number of processors requested: An upper bin (>=1024
processors) and a lower bin (< 1024 processors). Upper
bin jobs are ordered FIFO while lower bin jobs are
ordered in decreasing size by number of processors
requested.

Table 1 LeMieux jobs >= 1024 processors.

Year Percent
processor*hours

2002 6.5
2003 28.6
2004 46.7

Using reservations and allowing backfilling, we are able
to keep a continuous stream of large (or top priority) jobs
running on the system without having to regularly empty
the machine to start large jobs. LeMieux can run at most
two simultaneous large jobs. The list of large jobs is kept
in a FIFO ordered list in such a way as to prevent one user
from dominating the machine.

2.1.2 General Reservations

Simon supports chargeable reservations by allowing a
queue to be bound to a specific set of processors for a
specific duration starting at a specific time. These
reservations are generally used to foster parallel
development and code scaling and for special, dedicated
runs. Unused time within the reservation is billed to the
requesting user’s account.

2.1.3 Co-Scheduling

Two special purpose clusters, one for visualization
services and one for remote networking services,
interoperate with LeMieux. Simon has been implemented
to co-schedule jobs with these clusters by providing
additional internal PBS resources and interaction with the
system RMS database.

2.1.4 Defensive Measures

An important feature of Simon is its pre-job scan module
(the pre-scanner.) The pre-scanner checks a number of
features and services expected to be present on the
processors to be assigned to a job. Specifically, it checks
the following:

• Are file systems mounted and accessible?

• Are the processors busy with left over processes
from a previous run?

• Are the processors busy with system daemon
processes that would interfere with computation?

• Are the processors available and performing
correctly?

• Is the system interconnect functioning properly?

Failure of any of these conditions causes the pre-scanner
to remove these processors from further scheduling and
causes Simon to pick a new set of processors for a job.

3.0 XT3 at PSC

In October 2004, PSC received its initial XT3 system.
This single cabinet system was demonstrated at PSC’s
booth at Supercomputing 2004 running a complement of
applications. Since then, the XT3 system has been
expanded to 10 cabinets in December 2004 with
additional cabinets added in February 2005 for a total of
22 cabinets containing over 2000 compute processors.

Our goal is to have an implementation of Simon running
on our XT3 system. Progression to this goal is not
complete and has happened in a number of smaller steps
and these will be discussed next.

3.1 XT3 Resource Manager Challenges

Under the Cray Resource Management System (CRMS),
the compute processor allocator (CPA) which functions as
the XT3 resource manager layer, has been designed to
provide a centralized means to allocate processors to
either interactive or batch sessions or both, keeping its
state in a system database (the SDB). PBS Pro has been
adapted to function with CPA and provides basic
scheduling capabilities around CPA.

PSC’s initial XT3 ran with an early (pre-CRMS) version
of the XT3 software suite, called Dev Harness, which did
not contain key CRMS features, namely CPA, the SDB
and PBS Pro. These missing features required us to
design and implement replacement functions until CRMS
was available. Problematic under Dev Harness was the
requirement that users needed to interactively address
specific nodes using node identifiers, or nids, when
running applications. Since no centralized mechanism
was present to allocate nids, and manage batch jobs, a
user was left to guess which nids were free and then
address them using yod (the XT3 application launcher)
hoping that he/she did not collide with those nids
requested by colleagues. This was unacceptable in our
environment.

 3

3.2 XT3 Early Solutions

To work around the limitations of the pre-release XT3
software, transitional replacements were designed and are
summarized in Table 2. This table shows the software
component comparison between LeMieux and the phases
of the XT3 Dev Harness and CRMS Simon integration.

Table 2 – PSC Phases in Simon Implementation on XT3
 LeMieux XT3

Initial
XT3
Transitional

XT3
Final

Date Complete October
2004

April 2005 Planned

Software
Suite

Alpha-
Server SC

Dev
Harness

CRMS CRMS

Resource
Mgr.

RMS Custom Custom/CPA CPA

Database mSQL Flat
Files

Files/MySQL MySQL

Batch
System

OpenPBS Torque Torque PBS Pro

Scheduler Simon Custom Custom Simon
App.
Launch

prun pbsyod pbsyod yod

3.2.1 Batch system

Since no batch package existed under Dev Harness, we
selected Torque[5] for several reasons. Torque is, at its
core OpenPBS carried forward with community support
and is Open Source. At the PSC, we had developed quite
a bit of experience with OpenPBS and were comfortable
using it and designing custom schedulers to work with it.
Torque also provided a logical path to using PBS Pro
under the final machine configuration.

Several modifications were made to the Torque source
code to accommodate it under Dev Harness. A “size”
resource, similar to the one to be provided under CRMS
and PBS Pro was added to allow a user to specify the
number of compute nodes and a “nid_list” resource was
added to record which nodes the job was using. The qstat
command was altered to properly show the “size”
resource for each job. Finally, a “nidmask” resource was
added that allowed users provide a mask to guide the
scheduler in picking (or not picking) certain node ids.

3.2.2 SDB and CPA Replacements

No system database (SDB) and no compute processor
allocator (CPA) existed under Dev Harness, and so
replacements were designed for them. For the SDB
replacement, flat files were used to hold processor state
and were managed by the batch scheduler also
functioning as the CPA replacement. The application
launcher, yod, was wrapped with a script called pbsyod

which translated pbsyod to “yod –list <nidlist>” with
<nidlist> set to a specific processor list passed in through
an environment variable, YOD_NIDLIST, set by the
batch scheduler. This variable provided an interface
between the system and user layers (see Figure 1). This
setup also provided users with a way to avoid using messy
processor id lists. For example, “yod –list 10..20,30..60
myapp” became “pbsyod myapp”.

To query the state of the system, a new command,
“shownids”, was designed to query the current available
node set, report availability and show batch job
assignment to nids.

Figure 1 – System—User Interface under Dev Harness

3.2.3 Early XT3 Scheduler

The last missing piece under the Dev Harness system was
a scheduler to tie the others together. Under Dev Harness
the scheduler functioned not only as a decision maker for
selecting compute nodes under Torque but also as a
resource manager managing the allocation process of
recording allocation state in flat files.

Several interesting features were added to this initial
scheduler to adapt it to the early environment. The
scheduler was coded in TCL for easy development of new
modules. TCL is one of three supported languages under
Torque and is the only script-based one. Simon’s
scheduler was written almost entirely in TCL and so this
had a proven record of working well for us.

Important to PSC was the ability to drain the machine for
maintenance along with fairly scheduling jobs of all sizes
in a FIFO ordering. Target drains were implemented so
that we could drain the machine for a specific time. We
also adopted the EASY[2] scheduling algorithm, which
set a reservation for the top job in queue, permitting other
jobs to jump ahead (backfill) in the queue as long as they
did not delay the start of the top job in queue.

System Layer

User Layer

pbsyod

Scheduler

yod

YOD_NIDLIST

 4

As the machine configuration evolved, we ran the
machine as several Dev Harness systems and set up
Torque and the scheduler to dispatch jobs to these smaller
systems.

Booting was a fairly frequent activity, so the scheduler
was designed to recognize boot states and not assign jobs
to a booting Dev Harness system. The scheduler was
even allowed to control the booting of these Dev Harness
systems so that each could be rebooted after a job ran on
them.

As previously mentioned, a “nidmask” resource was
added. Users could specify a nidmask to guide the
scheduler to select or avoid certain ranges of compute
nodes. This helped users navigate around certain parts of
the machine as problems were encountered between
boots.

One of the more important features added to the early,
custom scheduler was the ability to check node
responsiveness in advance of a job running on a set of
nodes. As discussed previously, on PSC’s LeMieux
system, Simon provided an extensive pre-job scan or pre-
scan before each job that was very successful in avoiding
nodes with problems. Using the ping_node utility,
Torque performed a ping_node check to each node in the
job using a job prologue script. Any failures caused the
job to fail to start (put back in queue) with the failing
nodes put into a “bad” list recognized by the scheduler.

To facilitate much faster checking of nodes, we developed
a new Portals-based utility called “ping_list” that
overcame some of the limitations of ping_node. With
ping_node it was possible to check only one node at a
time with a failed check costing about 5 seconds. This
was unacceptable as it often took an hour or more to
check all nids in the machine when many were failing.
Ping_list, however, proved to be much faster. It could
easily scan the entire system in about 1 second, providing
lists of nids that passed and ones that failed. It also
contained a feature to show when the check hung,
providing an indicator utilized by the scheduler to initiate
automatic reboots of some or all Dev Harness systems.

The “bad” list was viewable using “shownids” and the
scheduler avoided assigning nodes from this list. The list
was cleared at boot time since most problems were
transient and cleared with a boot.

3.2.4 Integration with CRMS

In April 2005, the machine was transitioned to CRMS and
was combined into one system of 22 cabinets. With
CRMS CPA, the SDB and PBS Pro were available and so

we transitioned our custom components to use part of this
environment while we investigated complete integration.

As a transitional step and since the SDB was present
under CRMS, the scheduler running under Torque was
changed to synchronize its flat files with the SDB. Even
though CPA was present, it was bypassed by using the
YOD_STANDALONE environment variable, allowing
the previous pbsyod mechanism to continue to work.

Pre-job scanning was maintained and continued to help
provide success in starting applications on sets of
operational compute nodes.

3.3 Future

While the transitional environment has functioned well
under CRMS, we will be evaluating changes to PBS Pro
to accommodate a TCL scheduler and enhance PBS Pro
to function with CPA in a way that will allow the batch
system to query available nids and pass selected nids on
to the CPA through the batch system. We plan to sustain
the location of the node allocation decision making
process within the scheduler which will provide useful
features to us in the future.. When experimentation is
complete, we will transition to using PBS Pro with a
custom scheduler and will plan to integrate Simon more
completely.

Having the allocation decision making process reside in
the scheduler will allow us to investigate node allocation
algorithms by easily replacing allocation modules within
the scheduler, possibly even providing users the ability to
provide hints to the scheduler in helping it to select
certain nids optimal to the application.

As the system matures, we will begin to expand the
number of mom (execution agent) daemons which will
help to provide load balancing among the login nodes.

We also plan to investigate alternative scheduling
languages, possibly Python, to help us better manage and
develop new scheduler code.

Future directions also include, co-scheduling service
nodes such as visualization and data handling ones.

4.0 Conclusion

Having a custom batch scheduler has allowed us to
implement our site scheduling policies within the
scheduler and provide flexibility in policy change. Using
a custom scheduler, Simon, on our AlphaServer SC
system has been successful in accomplishing our

 5

scheduling objectives and we will begin porting features
from it to our Cray XT3 machine environment.

We have met initial challenges with early XT3 software
limitations by implementing our own customized batch
solutions which have helped us to move forward with
application development and benchmarking.

Ongoing investigation and testing will help us to fully
implement our successful Simon scheduler in the XT3
environment.

5.0 References

[1] B. Henderson, “Job Scheduling Under the Portable
Batch System.” Proceedings of the Job Scheduling
Strategies for Parallel Processing, Santa Barbara, CA
April 1995.

[2] D. Lifka, The ANL/IBM SP Scheduling System.
Proceedings of the Job Scheduling Strategies for Parallel
Processing, Santa Barbara, CA April 1995.

[3] Portable Batch System: http://www.openpbs.org/.

[4] Tool Control Language: http://www.tcl.tk/.

[5] Torque Resource Manager:
http://www.clusterresources.com/products/torque/.

About the Authors

Chad Vizino is a member of the Systems and Operations
group currently working on scheduling systems, resource
management and accounting. Nathan Stone is Senior
Research Analyst and is responsible for software
infrastructures for data management and administrative
scalability issues. John Kochmar is High Performance
Systems and Operations Manager. Ray Scott is Director,
Systems and Operations, in charge of all computing
platforms at the PSC. They can be reached at PSC, 4400
5th Ave., Pittsburgh, PA 15213. Phone: 412-268-4960. E-
mail: {vizino,nstone,kochmar,scott}@psc.edu.

