Batch Scheduling on XT3

etworks

etworks

ataDi

Chad Vizino <vizino@psc.edu> Pittsburgh Supercomputing Center CUG 2005

Simon Scheduler
Design
Features
XT3 Scheduling at PSC
Past
Present
Future

...to the Future!

PITTSBURGH SUPERCOMPUTING CENTER

Scheduler Design Goals

Support PSC Scheduling Goals
 Encourage Large Jobs
 Foster Parallel Development
 Fair
 Maintain good utilization

Terascale Computing System (LeMieux)

<u>Summary</u>

- 750 Compute Nodes
- 3000 EV68 processors
- 6 Tf (peak, est >4Tf on LSMS)
- 3. TB memory
- 27 TB local disk
- Multi-rail fat-tree network
- Redundant monitor/ctrl
- WAN/LAN accessible
- Parallel visualization
- File servers: 30TB, ~32 GB/s
- Resource Management System (RMS)

PITTSBURGH SUPERCOMPUTING CENTER

Simon Batch Scheduler

OpenPBS

- □ 6,500 lines of TCL
 - Rapid prototyping in TCL (pbs_tclsh)
 - Easy to add new modules
 - Only scripting language supported by OpenPBS
- Over four years in production
- Backfill
- Reservations
- Node Maintenance

PITTSBURGH SUPERCOMPUTING CENTER

Simon Batch Scheduler

Co-scheduling

Visualization cluster
Application GateWay nodes

Pre-job scanning
Ties to Usage Accounting

Queue statistics
Reservation charges

Simon Namesake

- Simon" is named for Dr. Herbert Simon (1916-2001), University Professor of Computer Science and Psychology at Carnegie Mellon University, and winner of the 1978 Nobel Prize in Economics.
- Argued that inevitable limits on knowledge and analytical ability force people to choose the first option that "satisfices" or is good enough for them.
- Scheduling a large computing system often requires making choices with dimited knowledge. CUG 2005

PSC Scheduling

Batch Queue

LeMieux >= 1024 Processor Usage

Year	% Processor*Hours
2002	6.5
2003	28.6
2004	46.7

PITTSBURGH SUPERCOMPUTING CENTER

There are no spare cycles...

Average Daily % Utilization of TCS (lemieux.psc.edu) 750x4p Alpha EV68

PBS-RMS Relationship

Scheduling Support for Job Success

Pre-Scan

- File Systems
- Orphan/busy processes
- CPU availability/accuracy
- Interconnect availability and performance
- Failure removes the node from scheduling
- Job Profiling
 - Disk Performance
 - Live network connections
 - Application Fingerprints

ITTSBURGH SUPERCOMPUTING CENTER

Move to the recent past...

...the XT3

PITTSBURGH SUPERCOMPUTING CENTER

Single Cabinet System

Single cabinet October 2004 Demonstrated Running Applications at SC04

PITTSBURGH SUPERCOMPUTING CENTER

XT3 First Row Installed

Row 1 December 2004

PITTSBURGH SUPERCOMPUTING CENTER

XT3 Second Row Installed

Row 2 February 2005

PITTSBURGH SUPERCOMPUTING CENTER

Challenges

System ran dev harness

- No SDB
- No CPA
- No functional batch system
 - » Major setback for efficient applications work
- Boot login nodes to clear bad nids
- Yod –list 10..20,30,50,90..100
- Lack of unique, writable file system on login nodes
- System partitioned into separate dev harness systems

Solutions

■ Use Torque (OpenPBS)

- Builds on 64-bit platforms
- Open source
- Free
- Have lots of experience with it
- Can write custom scheduler
- Use RAM file system and load /var/spool/torque loaded from /usr/users (NFS mounted)
- Let flat files act as the SDB
- Let scheduler be the CPA
- Batch and interactive can be handled

SDB/CPA Replacement

SDB processor table

- /opt/harness/default/ssconfig/sysN/node_list
 - » Cray managed (HW list)
- /usr/users/torque/nids_list_loginN
 - » Scheduler managed
 - » Holds state of nids (enabled/disabled/allocated)
 - » Query via shownids
- ∎ Yod
 - pbsyod reads YOD_NIDLIST from scheduler
 - -size, -base options to stack in job

Harness Layout

Harness PBS Configuration

PITTSBURGH SUPERCOMPUTING CENTER

Early Scheduler Features

Adaptation to harness

- Schedule to multi-cab arrangement

Backfilling

- System drains
- Use aggressive backfilling (EASY)
 - » Switchable (can just use First Fit)
- Top job (largest) gets reservation
 - » Use FIFO ordering
- Other jobs can run as long as they don't delay the start of the top job (backfill)
- Pre-scan

Defensive Mechanisms

- Maintain lists of node categories
 - Checking
 - Bad
- Started calling ping_node
 - After job finished
 - Slow
- Call ping_list before job starts
 - Fail nodes
- Develop new, faster ping_node
 - ping_list -l 12..15,17..95,200..295
 - Returns good and bad lists
- Automated reboots
 - Let scheduler control

On to CRMS...

Installed late April
Needed to integrate harness scheduling setup with CRMS
CPA present
SDB present
Booting handled differently

PBS-CPA Relationship

PITTSBURGH SUPERCOMPUTING CENTER

Initial CRMS PBS Configuration

Integration with CRMS

■ At phase one with Torque Use "interactive" mode for processors – processor table in SDB - YOD STANDALONE to bypass CPA » pbsyod Be gentle with SDB reads - Scheduler synchronizes itself with processor table every 5 minutes Logging tools

CRMS Phase 2

Move to Phase 2 (in test)

□ Use PBS Pro (instead of Torque)

- Build pbs_sched with TCL interpreter
- New resources
- Mom adaptation
 - » CPA calls

Adapt scheduler to query SDB directly
 Most of the other code will stay the same

PITTSBURGH SUPERCOMPUTING CENTEI CUG 2005

Progress on Phase 2

- Build PRO pbs_sched with TCL interpreter -Done
- New resources to PBS Pro Done
 - nid_list
 - linux_nid_list
 - Nidmask
- Changes to pbs_mom Done
 - Read nid_list assigned by scheduler
 - Pass to CPA
- Changes to harness scheduler In test

Future

More defensive node health checking ■ Add more moms and schedule to these Integrate more features from Simon Investigate node allocation algorithms – No longer in CPA - Scheduler modules – Application specific Recode in Python Co-schedule service nodes – Viz – Data, etc.

Successes facilitated by Batch System

Other PSC XT3 Talks

Early Applications Experience on the Cray XT3

– Nick Nystrom, 2:30pm Today, Taos

Integrating External Storage Servers with the XT3

– Jason Sommerfield, 2pm Thursday, Taos