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ABSTRACT: The ability to design nano-structured materials presents significant 
future scientific and technological opportunities. To realize this potential realistic 
quantum mechanical simulations of real nanomaterials are required. These usually 
involve large problem sizes in the range of thousands to millions of atoms. Interestingly, 
recent advances in the locally self-consistent multiple scattering (LSMS) method, a first 
principles order-N scaling technique specifically implemented to exploit massively 
parallel computing, are making the direct quantum simulation of nano-structures 
possible. In this paper we show that this effectively accomplishes the first step towards 
understanding the electronic and magnetic structure of nanoparticles with dimension 
size as large as 5 nanometers (nm). We demonstrate, as an example, the electronic and 
magnetic structure calculated for an iron nanoparticle embedded in iron aluminide 
crystal matrix. We also indicate to what extent future petaflop computing systems may 
enable the study of the dynamics of the magnetic switching process.  
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1. Introduction 
 
Nanotechnology – which refers to research and 

development activities at the 1 to 100 nanometer scale (1 
nanometer = 10 Å = 10−9 meter) – is one of the most 
rapidly growing areas of materials R&D.  Even though 
the making of nanomaterials appeared rather early in 
human history, for example the use of nanoparticles as 
decorative pigments can be traced back to Roman times, 
precision manufacturing of nanomaterials of desired 
shape and size did not become possible until the 1980s 
following breakthroughs in atomic scale synthesis and 
characterization. The discovery of Fullerenes – novel 
forms of carbon – and the invention of the scanning 
tunneling microscope (STM) – which allows imaging and 
manipulation of individual atoms – were two of the 
events that sparked a whole new science.  Notably, these 
two breakthroughs both resulted in Nobel Prizes; the 
former in Chemistry (1996) and the latter in Physics 
(1986). Clearly, the ability to design materials at the 
nanoscale holds significant future scientific and 
technological opportunities. 

The excitement that nanoscience and technology has 
engendered is based on the fact that nanostructured 

materials can have physical and chemical properties that 
are characteristic of neither isolated atoms nor their bulk 
counterparts. Indeed, the special confinement 
characteristic of nanoparticles can even result in the 
emergence of totally new physical phenomena. Given this 
complexity, realizing the ultimate potential of 
nanoscience will require understanding of the atomic 
interactions which underpin these new structures and 
phenomena – interactions that are mediated by electrons 
and which, therefore, are fundamentally quantum 
mechanical.  Over the last two-three decades there has 
been significant progress in our ability to calculate the 
properties of materials at the first principles – quantum – 
level. These advances have largely been based on the 
local density approximation (LDA) to density functional 
theory (DFT); a theory for which Walter Kohn received 
the 1998 Nobel Prize in Chemistry (along with John 
Pople).  However, nanoscience places new demands on 
these first principles methods because of the large 
numbers of atoms that are present in even the simplest of 
nanostructures – to set the scale recall that a 5nm cube of 
Fe contains the order of 12,000 atoms.  In this paper we 
report on one approach to scaling up of current LDA-
DFT methods to this regime.  
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The locally self-consistent multiple scattering  
(LSMS) method  is an ab initio order-N scaling technique 
(Wang et al, 1995). It is specifically implemented to 
exploit massively parallel computing and to make first 
principles quantum simulations of systems which contain 
large numbers of atoms possible. Previously, the method 
has been used to simulate ~103 atoms. Here, based on a 
new implementation of the method, we report on the first 
steps towards the direct simulation of the physical 
properties of a realistic model of a nanoparticle; namely, 
the calculation of the electronic and magnetic structure of 
an iron nanoparticle embedded in an iron-aluminide 
crystal matrix. We also indicate to what extent future 
petaflop computing systems may enable the study of the 
dynamics of the magnetic switching process. 

This paper is organized as follows. The next section 
is a short discussion of theoretical approaches to materials 
science simulation. It is followed by a brief description of 
the LSMS method. We show the parallel performance and 
linear scaling properties of the method. The application of 
the LSMS method to the electronic and magnetic 
structure of nanoparticles is demonstrated in section 4, 
followed by an outlook of how petaflop computing may 
assist us to study more complex problems in nano-
structured materials. 

 
 

2. Approaches to Materials Simulation 
 
Materials simulation is to perform experiments with a 

computer rather than laboratory instruments. Though the 
results of such simulations have to be validated by real 
experiment, it is known that in many cases we may rely 
on them as much as on the true experimental values. The 
information generated from these simulation methods can 
in principle be used to fully characterize the physical and 
chemical properties of the system. In addition simulation 
is an invaluable tool to interprete the results of complex 
experimental probes of material properties. 

There are in general two broad classes of methods for 
calculating the inter-atomic interaction potential: quantum 
and classical. The former, because they are based on the 
most fundamental description of matter, have the 
potential to be highly accurate and unbiased. The most 
rigorous implementations of the quantum formalism, so 
called ab initio methods, do not require any experimental 
data other than a handful of basic physical constants 
(speed of light, electron mass, elementary charge, etc). 
Classical methods, on the other hand, derive a model for 
the energy function, or inter-atomic interaction potential, 
which is then fitted to some basic experimental 
observations or, in recent years, first principles quantum 
mechanical calculations for simple systems. Even though 
any particular empirical model need not be derivable from 
more rigorous theory, say quantum, good models should 
have a sound scientific justification to yield useful results. 
Obviously, the parameters entering into the functional 

form must be known in advance for all types of atoms (or 
molecules) comprising the system; finding these can itself 
be a difficult task. In general classical approaches are less 
accurate and system specific than ab initio methods but, 
because of their relative simplicity, are applicable to 
much larger systems (106-109 atoms) using standard 
Monte-Carlo and Molecular Dynamics techniques. 

The density-functional theory (Hohenberg and Kohn, 
1964; Kohn and Sham, 1965) based ab initio methods 
were originally developed to provide physical insight 
about the electronic structure for crystalline solid state 
materials. After decades long improvement, they have 
become an important tool in the theoretical prediction of 
physical properties and in aiding the interpretation of new 
experimental results. Their applications can be widely 
seen in physics, chemistry, biology, and materials science, 
for the study of structural, electronic, and dynamical 
properties of large molecules, chemical complexes, 
defects in metals, and random alloys. The reason for their 
utility lies both in the ability of ab initio methods to treat 
systems of relatively large sizes compared to other non-
empirical approaches (e.g. quantum chemical 
approaches), and in the systematic and relatively high of 
accuracy that can be achieved over wide classes of 
materials and materials properties.. 

Ab initio electronic structure calculations generally 
involve a self-consistent process that cycles between two 
stages: solving the Kohn-Sham one-electron Schrödinger 
equation (Kohn and Sham, 1965) to obtain the electron 
and magtnetization densities; and solving the Poisson 
equation to obtain the electrostatic potential and hence 
DFT one-electron potential. The self-consistent process 
iterates until the ground state is found. In DFT all of the 
complicated many electron interactions, that make solving 
the many electron Schrodinger equation so difficult, are 
encapsulated in an exchange/correlation potential and 
energy density which, while formally an exact mapping, 
is unknown. Within the LDA (Hedin and Lundqvist, 
1971; von Barth and Hedin, 1972) and generalized 
gradient approximation (Perdew and Wang, 1986; 
Perdew et al. 1996) (GGA) approximations are made to 
this exact exchange correlation potential that render the 
theory tractable while still retaining high accuracy. 

Modern ab initio electronic structure calculation 
techniques are capable of determining fundamental 
electronic and magnetic properties, such as electrical 
conductivity, magnetic moments, exchange interactions, 
and magneto-crystalline anisotropy, of bulk materials or 
atom clusters. There exist several DFT based ab initio 
methods. They are usually classified according to the 
form of the one-electon effective potential in the Kohn-
Sham equations (all electon, pseudopotentaial) and 
according to the basis functions used in its solution. 
These latter usually fall into two broad classes: local 
atomic-like orbitals (e.g. Gaussian-type functions, linear-
muffin-tin orbitals) and plane-waves. Of course, it is 
possible to avoid using a basis function representation 
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altogether by numerically solving the Schrödinger 
equation on grids or finite elements. The choice of the 
technique and the basis functions is made to minimize the 
computational costs and ease the programming efforts, 
while maintaining a sufficient numerical accuracy. 
Currently, the most popular ab initio method for the 
electronic structure calculation is probably the plane-
wave based pseudopotential method. 

A theoretical approach to materials simulation 
usually starts with constructing a unit cell that repeats 
itself along x, y, and z directions to fill the entire space. 
The unit cell consists of the constituent atoms in a 
predetermined proportion and in a real space distribution 
to mimic the atomic composition and spatial arrangement 
in the actual material. A fundamental problem arises, 
however, with conventional ab initio methods when 
applied to unit cells containing a large number of atoms 
(>100). That is the amount of computational work, or 
more precisely, the number of floating point operations, 
increases as the third power of the number of atoms (Na) 
in the unit cell [ ]. In plane-wave based ab initio 
methods, for example, the orthogonalization step scales as 

3( aO N )

2
pN N× , where N is the number of Kohn-Sham orbitals 

and 
pN  is the number of plane waves, and the electron 

density calculation step using FFT scales as 
logp pN N N× × . Note that both N and 

pN are 
proportional to . Since the steps involving aN

( log )p pO N N N×  scaling have a dominant pre-factor, 

for a moderate number of atoms, the electronic structure 
calculation scales approximately as . 

However, for large , the computing time spent on the 
orthogonalization step, which essentially scales 
as

( )2 loga aO N N

aN

( )3
aO N , will become dominant. Another problem with 

conventional ab initio methods is the lack of efficient 
schemes for parallel implementation, especially when the 
number of atoms is large, mainly due to the fact that the 
dominating computational tasks are global in nature. 

Because of the problems mentioned above, applying 
conventional ab initio methods to the electronic structure 
calculation for nanostructured materials is obviously 
prohibitive. Fortunately, much effort has been made since 
early 1990s to develop approximate methods to solve the 
electronic structure of large unit cell systems with an 
acceptable computational cost. The result is the so-called 
order-N methods, for which the computational effort of 
the methods scale linearly with respect to the number of 
atoms in the unit cell.  

 
  

3. Locally Self-consistent Multiple Scattering 
(LSMS) Method 

 

The LSMS method (Wang et al, 1995) is an order-N 
all-electron approach to ab initio electronic structure 
calculations. By all-electron, we mean that electronic 
states for both valence and core electrons are treated on 
equal footing – in contradistinction to pseudopotential 
methods where core electrons are not explicitly treated. In 
particular, the LSMS method is based on real space 
multiple scattering theory (Korringa, 1947; Kohn and 
Rostoker, 1954) (MST) in that the electron, under the 
influence of the DFT-LDA (or GGA) potential, sees each 
atom in the crystal as a scatter, and the electronic 
movement is treated as a multiple scattering problem. In 
the framework of MST, the Green function for the Kohn-
Sham one-electron Schrödinger equation is readily given 
in such a convenient algebraic expression (Faulkner and 
Stocks, 1980) that its numerical calculation is clearly 
feasible; particularly when advantage is taken of the 
analytic properties of the Green’s function. 

An advantage of using the Green function is that it 
makes the calculation of the crystal wave functions 
unnecessary, and, as a result, there is no need for the 
time-consuming orthogonalization and normalization 
procedure. Another advantage is that the only global 
operation required for obtaining the Green function is the 
calculation of a multiple scattering matrix for each atom. 
It is, however, this step that accounts for the major 
portion of the floating point operations of the entire 
electronic structure calculation.  

In general, given the Green function, the electron 
density and the magnetic moment density in the vicinity 
of the ith atom can be conveniently obtained as follows: 

[ ]
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where the Green function ( , ; )iG εr r  is a 2 × 2 matrix in 
the spinor space and is calculated in the vicinity of atom i. 
The x, y, and z components of vector σ  are the 
corresponding Pauli matrix, and εF is the Fermi energy. 
The energy integration usually takes place along an 
energy contour in the upper half complex plane to avoid 
the singularities of the Green function on the real energy 
axis. In non-magnetic cases, the Green function matrix is 
reduced to a scalar function, and the magnetic moment 
density is simply zero. For ferromagnetic states, the 
Green function matrix is diagonal in the frame of 
references that the z-axis is along the magnetization 
direction, and the computational procedure can be much 
simplified by carrying out a spin-polarized calculation, 
for which the Green function for spin up and spin down 
states is decoupled and is calculated separately. For non-
collinear magnetic states, the Green function matrix is 
non-diagonal and its calculation, also known as a spin-
canted calculation, usually takes four times longer than 
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the spin-polarized calculation and eight times longer than 
a non-spin-polarized one. 

Of course use of MST Green’s function methods 
does not, a priori, circumvent the ( )3

aO N  scaling. This is 

due to the fact that obtaining the multiple-scattering 
matrix still requires inverting a matrix whose size is 
proportional to the number of atoms in the unit cell. The 
crux to making multiple scattering theory order-N scaling 
is an approximation that neglects multiple scattering 
processes around an atom if they involve atoms from a 
distance greater than some cut-off radius (RLIZ). The 
space within RLIZ is called local interaction zone (LIZ). 
The idea behind this approximation is based on the 
observation that the scattering processes involving far 
away atoms influence the local electronic states less and 
less as the distance form the scatter under study is 
increased – an example of nearsightedness (Kohn, 1996). 
Technically, this approximation is implemented as 
follows: we draw a sphere (or LIZ), with a predefined 
radius, around atom i, we calculate the multiple scattering 
matrix only for the multiple scattering processes 
involving the atoms enclosed by the sphere, and we 
calculate the Green function and use equation (1) to 
compute the electron and magnetic moment density in the 
vicinity of the atom. This procedure is repeated for each 
atom in the unit cell.  

The LSMS method described above has three 
obvious advantages. Firstly, the time cost for calculating 
the Green function for an atom does not depend on the 
number of atoms in the unit cell, rather it depends on the 
size of the LIZ, i.e., the number of atoms included in the 
sphere mentioned above and since we only have to repeat 
the Green function calculation for each atom, the time 
cost for the entire electronic structure calculation only 
scales linearly with respect to the number of atoms in the 
unit cell. Secondly, parallelism is intrinsic to the method 
since the Green function calculation for each atom and 
each energy point along the complex contour is 
essentially independent. Consequently, there are no global 
operations involved in the process of calculating the 
Green function. Thirdly, since the only global operations 
are trivial sums to calculate the total charge in the system 
and hence the electron chemical potential, the code is 
highly parallel.  

The LSMS method has proved to be a very useful 
tool for the study of the electronic and magnetic 
structures of substitutional and amorphous alloys. The 
source code of this method became the first scientific 
application to pass the teraflop computing speed barrier 
while investigating the magnetic properties of a non-
collinear magnetic structure of 1458 iron atoms 
(Ujfalussy et al., 1998). Recent applications of the LSMS 
method include the study of core state chemical shifts in 
intermetallic alloys (Faulkner, Wang, and Stocks, 1998), 
the investigation of non-collinear magnetism in Fe 
(Stocks, et al, 1998) and INVAR alloys (Wang, et al., 

1998), the calculation of magnetic structure of multilayers 
(Oparin et al., 1999; Stocks et al, 2002), the 
determination of energetics of quasi-crystal aluminides 
(Widom, et al., 2000), and the magnetic structure of Fe-
based bulk amorphous metals (Wang et al., 2003.) 

The LSMS method was originally developed in the 
mid-1990s. A detailed description of the method can be 
found in the literature. In its original implementation, the 
LSMS code was designed to associate each atom in the 
unit cell with a processor on a massively parallel 
processing (MPP) supercomputer. This design is 
convenient to implement, but has one obvious limitation: 
the problem size can not exceed the maximum number of 
available processors. This one (atom) to one (processor) 
mapping, however, was necessary in the early days 
because of the  limited computing power and memory 
size of  MPP processors of that time – Intel IPSC/35, /75 
and /150 series and Intel Paragon.  Because of the 
tremendous increases in both processor speed and 
memory size since the 1990s, eliminating the one-to-one 
mapping limitation in the original implementation became 
an urgent task. Recently, we have redesigned the code 
entirely to make better use of modularization and, most 
importantly, to allow flexible association between atoms 
and processors such that multiple atoms can be mapped 
onto one processor.  

This new code has been tested for portability on a 
variety of computer systems with different combination of 
hardware architectures, operating systems, and compilers. 
Its performance on CRAY XT3 and Compaq AlphaServer 
at Pittsburgh Supercomputing Center is shown in figure 1, 
where the computing time for the electronic structure 
calculation for a ferromagnetic Fe nanoparticle embedded 
in FeAl matrix is plotted against the number of processors 
employed in the calculation. This is a spin-polarized 
calculation and data is shown for the first five iterations 
towards self-consistency. The nanoparticle is about 5 nm 
wide along the diagonal, and contains 4286 Fe atoms 
arranged on a body centered cubic (bcc) lattice. The FeAl 
matrix is in B2 binary alloy structure. There are 8192 
atoms, including both Fe and Al, in total, and the LIZ for 
each atom is chosen to include 26 neighboring atoms (or 
3 neighboring shells). With 4 atoms on each processor, 
this calculation completed in less than 500 seconds on 
2048 processors of a CRAY XT3 machine.  

 
 
4. Electronic Structure Calculation for 
Magnetic Nanoparticles 

 
Magnetic nanoparticles are of great interests to us 

because of their potential applications in data storage and 
magneto-electronics industry. The data storage and 
magneto-electronics industries are developing ever 
smaller magnetic structures and are already in the 
nanometer regime. Of critical importance for magnetic 
storage is the length of time for which a magnetic bit, 
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once written, is stable at operating (room) temperature. 
Ideally this should be several years; typically 10 years is 
used as the industrial design criterion.  Quite generally the 
stability of the (ferromagnetic) moment orientation 
(up/down or 0/1) against thermal fluctuations depends on 
the particle volume and an anisotropy constant (that pins 
the moment along some crystallographic direction). Thus, 
as the particle volume decreased in the drive for increased 
storage density, the moment orientation becomes 
increasingly unstable. This gives rise to increased noise, 
false response, and long-term memory loss. Thus 
understanding the relationship between materials 
properties and magnetic stability is of crucial importance.  

Another motivation for our interests in magnetic 
nanoparticles is related to permanent magnets where the 
energy product, the area under the second quadrant of the 
hysteresis loop, needs to be as large as possible. 
Unfortunately, conventional permanent magnets have 
energy products that are only a fraction, less than 50%, of 
what is thought to be possible. Here exchange-spring 
magnets (Zeng, et al, 2003), nanocomposites made of 
nanoparticles of magnetically hard and soft phases that 
interact via magnetic exchange coupling, are promising 
candidates. However, the requirement that both the hard 
and soft phases are controlled at the nanometer scale, to 
ensure efficient exchange coupling, poses significant 
preparation challenges. Clearly, new techniques, both 
experimental and theoretical, are required for 
characterizing the magnetic structures and the exchange 
couplings on nanometer size scales and over a wide range 
of time scales, from picoseconds to years.  

Fortunately, the latest advances in LSMS method 
now made the direct quantum mechanical simulation of 
magnetic nanoparticles a realistic possibility. Here we 
make a preliminary report of our ongoing studies of 
magnetic nanoparticles using LSMS method. In 
particular, we considered magnetic Fe nanoparticles 
embedded in an iron-aluminide matrix. More specifically, 
we considered a Fe nanoparticle embedded in a 
stoichiometric FeAl binary compound having a B2 (CsCl) 
structure. The Fe nanoparticle itself is in bcc lattice 
structure, and has the same lattice constant, 2.868 Å, as 
the FeAl matrix.  The nanoparticle, whose shape is shown 
in figure 2, contains 4,409 Fe atoms, and its diameter (the 
length between the diagonal corners) is about 5 nm. The 
surrounding matrix contains 11,591 Fe and Al atoms. 
Altogether, the unit cell contains 16,000 atoms.  

As a proof-of-concept demonstration, we performed 
the first five iterations of a spin-polarized LSMS 
calculation for the Fe-nanoparticle in FeAl-matrix system 
described above. We also simplified the calculation by 
making the atomic sphere approximation (ASA) to the 
potential in which the one-electron potential around each 
atom is assumed to be spherically symmetric within an 
atomic sphere whose size is equal to the atomic volume 
(or Wigner-Seitz volume in 1 atom per unit cell case). 
This is a reasonable approximation for most simple and 

transition metals. In this preliminary calculation, we 
choose the LIZ for each atom to include only 26 
neighboring atoms – somewhat too small to give well 
converged moments but sufficient for demonstration 
purposes. The calculation is performed on 1,600 
processors, with 10 atoms per processor, and the job is 
finished in less than 20 minutes.  

We present the calculated results in figures 2, 3, and 
4. Figure 2 shows the shape of the nanoparticle, as well as 
the distribution of the local magnetic moment associated 
with the individual atoms comprising the nanoparticle. 
The magnitude of these local moments is encoded in the 
coloring of the Fe atoms – shown as balls. The reddish 
colored balls represent the atoms with larger moment, and 
the gray colored balls represent the atoms with smaller 
moment.  Figure 3 is a sliced view of the charge 
distribution within the nanoparticle and the atoms of the 
surrounding FeAl matrix. The amount of net charge on 
each atom is color-coded. The silver colored balls in the 
interior region of the nanoparticle represent the Fe atoms 
with the very few excess electrons (i.e. are charge 
neutral), the dark blue colored balls in the boundary 
region represent those Fe atoms gaining a significant 
amount of electrons, and the green colored balls in the 
FeAl matrix represent the Al atoms which lose a 
significant number of electrons to Fe.  

A more detailed picture of the charge distribution and 
the moment distribution is shown in Figure 4, where 
16,000 data points, each of which corresponds to the 
number of excess electrons or the magnetic moment on 
each atom, are plotted against the atom distance measured 
from the center of the nanoparticle. Not surprisingly, we 
see that atoms in the center of the nanoparticle have 
essentially the same amount of magnetic moment as in the 
bulk and carry no extra charges. Note that the Fe moment 
in the bcc Fe is expected be 1.85 Bohr Magneton (µB) if 
we use the same LIZ size (27 atoms) for the bulk 
calculation. Moving away from the center, we observe 
that the excess amount of electrons on each Fe atom in 
the nanoparticle increases gradually but the magnetic 
moment essentially stays the same until around 13 Å from 
the center, where both excess electrons and magnetic 
moment values start to drop. More dramatic changes are 
seen in the region of the boundary between the 
nanoparticle and the matrix. While all the Al atoms lose 
electrons to Fe atoms and carry very little magnetic 
moment (in an opposite direction to the moment on Fe 
atoms), the Fe atoms can either gain or lose electrons 
depending on the location, and their magnetic moment 
varies from atom to atom, again, depending on the atom 
location. A further study is necessary to determine the 
underlying mechanism that correlates the charge and 
moment of the Fe atoms with the location on the 
boundary. Finally, deep into the FeAl matrix, each Fe 
atom carries approximately 1.0 µB moment. 

Knowing the charge and moment distribution within 
a nanoparticle helps to understand the size effect as well 
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as the effect of the surrounding environment. It also helps 
to determine the electrostatic interaction and the exchange 
coupling between nanoparticles. A multi-scale model for 
complex nanocomposites or nano-structured devices in 
which each nanoparticle is treated as a point particle with 
proper charge and multipole moment, determined from 
the quantum mechanical calculation, can also be built. 

 
 
5. Towards Petaflop Computing 

 
In summary, ab initio calculations employing LSMS 

method are clearly possible for the large unit cells 
necessary for modeling interfaces, surfaces, defects, and 
especially, the nano-structured materials while allowing a 
rigorous treatment of their electronic and magnetic 
properties. In particular the new multi-atom/processor 
LSMS method implemented on multi-teraflop high-
performance computing technology has enabled us to 
perform the first ab initio calculations of physical systems 
of a length scale of several nanometers. 

Despite these early successes with our new code it is 
clear that nanotechnology, especially new discoveries in 
nano-structured spintronic devices, pose challenges that 
go much beyond the capability we just demonstrated. To 
meet the challenges, we are required to develop 
computational techniques capable of characterizing the 
electronic and magnetic structures on sub-hundred 
nanometers length scales and over a wide range of time 
scales.  Evidently, going from several nanometers to sub-
hundred nanometers, an order of magnitude increase in 
length scale, increases the problem size from tens of 
thousands to millions of atoms, and consequently 
increases the computational cost by a factor of hundreds, 
even assuming the continued order-N scaling of our 
methods – an assumption that will require considerable 
effort to realize. In addition to the challenges in terms of 
the length scale requirement, we are also facing the 
challenges in terms of the time scale requirement which 
can range from picoseconds, for the simulation of the 
magnetic moment rotation, to tens of nanoseconds or 
more, for the simulation of nanoparticle movement. 
Clearly, the success of direct quantum mechanical 
simulation of nanostructured electronic devices relies on 
the birth of petaflop computing technology. 

To be prepared for the new dawn in high-
performance computing technology, we need to make 
advances on two “work-fronts”. One is ab initio spin-
dynamics simulation, which is necessary for the physical 
systems with non-collinear magnetic structure and for the 
study of moment dynamics resulting from thermal effects 
and/or switching by an external field. Statically, non-
collinear magnetic structure evidently exists in large 
varieties of materials, ranging from those as simple as 
metallic Cr to those as complex as magnetic amorphous 
alloys. Past efforts to develop LSMS method with the 
ability to perform spin-canted calculations have enabled 

the study of non-collinear magnetic structure in γ-Fe 
(Stocks et al, 1996) and Fe-rich FeNi alloys (Wang et al, 
1997). Especially, the implementation of constrained 
local moment model (Stocks et al, 1998) in LSMS 
method allows for ab initio spin dynamics simulation 
(Antropov et al, 1996) and makes it possible to determine 
complex magnetic structure of the ground state from the 
first principles. This work-front needs to be pushed 
further by applying ab initio spin-dynamics simulation to 
such complex problems as magnetic domain wall 
movement, exchange coupling between magnetic 
nanoparticles or between magnetic nanoparticle and 
substrate, and etc. 

The other work-front is ab initio molecular dynamics 
simulation. In the earlier implementation of LSMS 
method, either a muffin-tin or an ASA approximation has 
to be used. These approximations assume the one-electron 
potential and the electron density are spherically 
symmetric around each atom. These approximations work 
well if the target physical system possesses a regular 
underlying lattice and is dominated by the metallic 
bonding. Lately, full-potential multiple scattering theory 
has been implemented to allow electronic structure 
calculations without theses shape approximations for the 
potential and density. Given the full-potential capability, 
this latest version of the LSMS code will make possible 
not only the calculation for the structures involving strong 
covalent bonding, such as nanoparticles of semicoductors 
and insulators, but also the determination of the force 
acting on each atom.  

Being able to calculate the force in a straightforward 
manner is an essential requirement for the structural 
relaxation and molecular dynamics simulation. 
Considering the fact that the core electrons can be treated 
in a simplified scheme that results in a spherical core 
charge, we handle the electrostatic force from the core 
electrons in the manner described by Papanikolaou 
(Papanikolaou et al, 1997). The resulting expression for 
the force is a straightforward function of the electron 
density and the dipole part of the one electron potential: 
 

Coul 3 core

0
( ) ( ) ( )i i i i ir

Z v d r vρ
=

⎡ ⎤= ⋅ ∇ − ∇⎣ ⎦ ∫F r r r , (2) 
 
where Zi the atomic number of atom i,  is the 
Coulomb part of the one-electron potential  in the 
vicinity of the atom, and  is the spherical 
component of the core electron density. A careful analysis 
of this expression reveals that if we expand the potentials 
in terms of the spherical harmonics, the only non-zero 
contributions to the two terms in the force expression are 
from the l = 1 components. Since the spherical harmonic 
expansions of the potential and density are actually used 
in the multiple scattering theory implementation, it turns 
out the force can readily be calculated. With the help of 
ab initio molecular dynamics simulation, it is possible to 

Coul ( )iv r
( )iv r

core ( )i rρ
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study such problems like the underlying mechanism for 
the self-assembly of nanoparticles. Ultimately, coupling 
first principles MD and first principles spin dynamics 
opens previously unimagined areas to first principles 
studies and will usefully occupy even multi-petaflop 
computers. 
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Figure 1. The scaling of LSMS code on CRAY XT3 and Compaq AlphaServer systems. The measurement 
is performed at Pittsburgh Supercomputing Center.  
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Figure 2. Magnetic Fe nanoparticle that contains 4409 Fe atoms, represented by the colored balls, located on a 
body centered cubic lattice. The characteristic size of this particle is about 5 nm. The magnitude of the 
magnetic moment on each atom is coded in the coloring of the balls. The reddish colored balls represent the 
atoms with larger moment, and the gray colored balls represent the atoms with smaller moment. 
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Figure 3. A sliced view of the magnetic Fe nanoparticle together with the surrounding FeAl matrix. The charge 
distribution within the nanoparticle and its surrounding atoms is indicated by the color change from the center to 
the edge. The silver colored balls in the interior region of the nanoparticle represent the Fe atoms with very little 
excess electrons, the dark blue colored balls in the boundary region represent those Fe atoms gaining a significant 
amount of electrons, and the green colored balls represent the Al atoms which lose a significant amount of 
electrons to Fe. 
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Figure 4. The number of excess electrons (left) and the magnetic moment (right) on each of 16,000 atoms are 
plotted versus the atom distance from the center of the nanoparticle.  The red circles are the data point from Fe 
atoms, and the blue squares are the data point for Al atoms.  
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