
Tuning Vector and Parallel Performance

for Molecular Dynamics Codes

on the Cray X1e

Konrad Wawruch, Lukasz Bolikowski, Wojciech Burakiewicz,
Maciej Cytowski, Maria Fronczak, Mariusz Kozakiewicz,

Michal Lopuszynski, Franciszek Rakowski, Joanna Slowinska
Interdisciplinary Center for Modeling, Warsaw University

May 18, 2005

Abstract

ICM development team has ported and optimized several molecular dynamics codes on Cray Vector Ar-
chitecture. present Cray X1e performance comparison with the PC Opteron cluster on these codes, de-
scription of porting issues, vectorization and parallelism tuning. The applications we have worked on are
CHARMM, DFTB, VASP, CPMD, Siesta, GROMOS.

KEYWORDS: Cray X1, CHARMM, DFTB, CPMD, VASP, Siesta, GROMOS, vectorization, molecular
dynamics

1 Introduction

ICM is Interdisciplinary Center for Modeling, located at Warsaw University in Poland. To serve its purpose
for the scientists using our supercomputers, ICM has worked on porting and optimizing selected Molecular
Dynamics Chemistry applications on Cray X1.

The applications we have selected for development are:

• CHARMM – Chemistry at Harvard Macromolecular Mechanics, a program for macromolecular en-
ergy, minimization and dynamics calculation;

• DFTB – Dense Functional – Tight Binding Method code;

• CPMD – Car-Parrinello Molecular Dynamics code;

• VASP – Vienna Ab-Initio Simulation Package;

• SIESTA – Spanish Initiative for Electronic Simulations with Thousands of Atoms, ab-initio package.

• GROMOS – molecular dynamics code.

2 CHARMM

The CHARMM, Chemistry at Harvard Macromolecular Mechanics, a program for macromolecular energy,
minimization and dynamics calculation, is one of the most popular software packages at ICM.

1

The CHARMM code size is about 17.5MB and is grouped into 41 directories, which correspond to
different calculation types provided by the package. The majority of them is not computationally demanding.
In principle, the program is used by scientists to calculate energy and forces for a huge molecules in solvent
environment. Thus, this calculations have several steps which are ”bottle neck” for program flow. The main
one are non-bonding interactions grouped in the code in directory nbond. Another approach to interaction
calculations is to use Ewald summation technique that is very demanding either. Generally, 6% of the code
is responsible for over 90% of computations time.

We have performed porting of two CHARMM releases to Cray X1/X1e. Both versions: c29b1 and c31b1
were successfully ported, and all types of calculations with CHARMM offers were tested. Several test were
not passed and required additional work.

2.1 Initial Performance

The table below presents the initial performance for the selected types of calculations with CHARMM c31b1.

Test set # CPU X1 Time PC Time
Molecular dynamics, 15000 steps 1 3.24 h 55.4 min
GTP in water, Verlet Algorithm
Molecular dynamics 1000 steps 1 3.51 h 37.8 min
Cytochrome in water, counterions, CPT algorithm
Molecular dynamics, 1000 steps 1 1.24 h 39.52 min
Cytochrome in water, counterions, Ewald summation

The tests were conducted with SSP binaries. The PC reference time is the time of test execution on
single Intel(R) Pentium(R) 4 CPU 2.66GHz computer.

As one can see all test clearly show that the CHARMM efficiency after straight forward porting without
optimization is lower than on PC computer. Thus we focused on optimization of selected types of calculation
with are of special interest of the majority of scientific groups.

Focusing on crucial for the molecular dynamics calculations of non-bonding interactions, the percent-
age time contribution of procedures is presented below. Those procedures are collected in source/nbonds
directory.

Samp Cum.Samp Function Source
90.1% 90.1% enbfs8p enbfs8p.f
3.9% 93.9% nbondma nbondm.f
2.5% 96.4% nbonda nbonda.f
1.0% 97.4% mkimat upimag.f

2.2 Development

The optimization effort was directed towards the computationally demanding procedures responsible for
non-bonding interactions. Despite some work, optimizing has not resulted with decreasing the computation
time for this part of calculations.

As far as Ewald summation technique is concerned, the contributions of procedures is as follows:

2

Samp Cum.Samp Function Source
28.4% 28.4% fill ch grid pme.f
18.3% 46.7% rewald ewald.f
18.0% 64.7% grad sumrc pme.f
9.5% 74.2% nbondma nbondm.f
8.9% 83.0% mkimat upimag.f
8.4% 91.4% nbonda nbonda.f
2.0% 93.4% cfftb1 pmeutil.f
2.0% 95.3% cfftf1 pmeutil.f

The vectorization which was performed has changed the summary report to the following form:

Samp Cum.Samp Function Source
39.3% 39.3% rewald ewald.f
19.3% 58.6% nbondma nbondm.f
16.6% 75.2% nbonda nbonda.f
9.2% 84.4% fill ch grid pme.f
2.5% 86.9% mkimat upimag.f
1.8% 88.8% cfftf1 pmeutil.f
1.8% 90.6% cfftb1 pmeutil.f
1.5% 92.1% grad sumrc pme.f

Subroutine rewald was partially vectorized, achieving the contribution of 40%, and when it was fully vec-
torized, the score remains at the same level. Also, some work was done to optimize procedures: fill ch grid ,
nbondma ,nbonda .

2.3 Results

All single processor optimizations, including vectorization, resulted in the following test results for SSP
processors. For comparison, PC reference time and X1 execution time before performing any optimizations
was included.

Test set X1 Time X1 Time PC Time
(before) (after)
SSP SSP

Molecular dynamics, 1000 steps 1.24 h 35 min 39.5 min
Cytochrome in water, counterions, Ewald summation

As for today, only small fraction of the code was already optimized. The code selected for optimization
(1 100KB out of 17 500KB) represents over 90% of calculation time for all usual CHARMM calculations.
Currently, approximately 20% of the selected code was optimized, achieving significant speedup, though
more improvement may be expected. We are planning to complete vectorization of the remaining part of
the code. That should speed up CHARMM code on Cray X1 to the level competitive with the fastest PC
CPUs on the market (including AMD Opteron and Intel Itanium 2). After finishing vectorization, parallel
code tuning may be performed.

3 DFTB

Self-Consistent Charge Density-Functional Tight-Binding (SCC-DFTB) is the theoretical method allowing
the description of atomic systems in terms of Kohn-Sham density functional theory. It was introduced by

3

Th. Frauenheim and his coworkers and first applied in solid state physics. Then it was extended also to
molecular systems and applied in biophysics and chemistry. The formulation of the method allows for very
efficient energy calculations for systems consisting of hundreds of atoms. This is due to the semi-empirical
approach which involves the parameterization of the computationally demanding energy terms. The method
was first implemented as Fortran 77 scalar code DFTB and then parallelized using parallel versions of the
lapack library routines. Currently the code is being rewritten using Fortran 90, however the new version is
not yet available. Basic features of the program are:

• singe point energy calculation,

• atomic structure optimization,

• molecular dynamics,

• IR spectra calculation,

• reaction pathway search (using external module neb).

The source code of the DFTB program consists of 15,466 physical lines of code (SLOC) from which
13,002 are written in pure Fortran 77 and 2,464 in its dialect Ratfor.

There were not any special difficulties with porting the non-parallel DFTB code on the Cray X1 platform.
Compilation was made for both MSP and SSP, and with the third level of optimization switched on.

3.1 Initial profiling

Test set X1 Time PC Time
1 MSP 1 PE 2.66GHz

kinase energy point 470.871 s 618.79 s

Comparison was made for timing of PC computer Intel(R) Pentium(R) 4 CPU 2.66GHz. The X1 Time
is presented as it was before optimization. Calculations were carried out on 1 MSP (4 SSP). The percentage
time of contribution of procedures was:

Samp Cum.Samp Function Source
81.9% 81.9% atomenerg atomen.f
4.9% 86.8% dnrm2 LibSci library
1.1% 87.9% dlaed4 LibSci library
1.1% 89.0% eglcao eglcao.f
1.0% 90.0% bcopy prv
0.9% 90.9% daxpy LibSci library
0.8% 91.7% dgemmnn@
0.7% 92.4% dgemmnt@
0.7% 93.1% F90 FCD ASG
0.7% 93.8% dscal LibSci library
0.6% 94.4% dsymv LibSci library
0.4% 94.8% ewevge ewevge.f
0.3% 95.2% dgemv LibSci library

Apart from the library functions two procedures are on the list of the most time consuming items, thus
they were the subject of the optimization: atomenerg and eglcao.

4

3.2 Development

In the subroutine atomenerg the total electronic energy is calculated as the sum of the contributions of every
atomic orbital. In the original code this summation was done separately for the set of atomic orbitals located
on each atom. Due to the fact of multi-nested loops and short runs of each of it, the efficient vectorization
and multi-streaming were not possible:

32. 1 c do i=1,ndim
33. 1 c do mu=1,ind(l+1)-ind(l)
34. 1 c do ls=1,nn
35. 1 c do nu=1,ind(ls+1)-ind(ls)
36. 1 c eat = eat + occ(i) * a(ind(l)+mu,i) * a(ind(ls)+nu,i)
37. 1 c & * hamil(ind(l)+mu,ind(ls)+nu)
38. 1 c end do
39. 1 c end do
40. 1 c end do
41. 1 c end do

The upper loop was restructured, and the summation is taken over entire set of atomic orbitals regardless
of the atoms. This change significantly improved vectorization and multi-streaming.

46. 1 !dir$ nointerchange, prefervector, preferstream
47. 1 MV-------< do nu=ind(1)+1,ind(nn+1)
48. 1 MV r-----< do i=1,ndim
49. 1 MV r r---< do mu=ind(l)+1,ind(l+1)
50. 1 MV r r eat = eat + occ(i) * a(mu,i) * a(nu,i) * hamil(mu,nu)
51. 1 MV r r---> end do
52. 1 MV r-----> end do
53. 1 MV-------> end do

In the procedure eglcao, Hamiltonian and Overlap matrices are to be updated:

201. 1 c do j = 1,nn
202. 1 c indj = ind(j)
203. 1 c indj1 = ind(j+1)
204. 1 c do k = 1,j
205. 1 c indk = ind(k)
206. 1 c indk1 = ind(k+1)
207. 1 c
208. 1 c do n = 1,indk1-indk
209. 1 c do m = 1,indj1-indj
210. 1 c a(indj+m,indk+n) = hamil(indj+m,indk+n)
211. 1 c b(indj+m,indk+n) = overl(indj+m,indk+n)
212. 1 c end do
213. 1 c end do
214. 1 c end do
215. 1 c end do

and,

5

253. 1 c do i = 1,nn
254. 1 c do li = 1,lmax(izp(i))**2
255. 1 c do j = 1,i
256. 1 c do lj = 1,lmax(izp(j))**2
257. 1 c a(ind(i)+li,ind(j)+lj) = a(ind(i)+li,ind(j)+lj)
258. 1 c & +0.5*overl(ind(i)+li,ind(j)+lj)*(shift(i)+shift(j))
259. 1 c end do
260. 1 c end do
261. 1 c end do
262. 1 c end do

To optimize the performance new auxiliary array was declared, and initialization of the Hamiltonian
and Overlap matrices was added. Introducing the redundant upper triangle assignments we were able to
restructure the loop achieving better efficiency of calculations.

221. 1 !dir$ nointerchange, preferstream, prefervector
222. 1 MV-------< do n=ind(1)+1,ind(nn+1)
223. 1 MV r-----< do m=ind(1)+1,ind(nn+1)
224. 1 MV r a(m,n) = hamil(m,n)
225. 1 MV r b(m,n) = overl(m,n)
226. 1 MV r-----> end do
227. 1 MV-------> end do

268. 1 !dir$ nointerchange, preferstream, prefervector
269. 1 m--------< do i=1,nn
270. 1 m MVw----< do li=ind(i)+1,ind(i+1)
271. 1 m MVw tmpshift(li) = shift(i)
272. 1 m MVw----> end do
273. 1 m--------> end do
274. 1
275. 1 !dir$ nointerchange, preferstream, prefervector
276. 1 MV-------< do n=ind(1)+1,ind(nn+1)
277. 1 MV r-----< do m=ind(1)+1,ind(nn+1)
278. 1 MV r a(m,n) = a(m,n) + 0.5*overl(m,n)*(tmpshift(m)+tmpshift(n))
279. 1 MV r-----> end do
280. 1 MV-------> end do

3.3 Results

The table below presents code profile after optimizations:

6

Samp Cum.Samp Function Source
27.4% 27.4% dnrm2 LibSci library
8.1% 35.6% dlaed4 LibSci library
4.9% 40.5% daxpy LibSci library
4.9% 45.4% dgemmnt@
4.7% 50.1% bcopy prv
4.5% 54.6% F90 FCD ASG
3.8% 58.4% dgemmnn@
3.6% 62.0% dscal LibSci library
3.2% 65.1% dtrsm llt@ LibSci library
2.9% 68.1% dsymv LibSci library
2.6% 70.7% dgemmtn@
2.1% 72.7% bcopy
2.0% 74.7% dgemv
1.9% 76.6% ewevge ewevge.f
1.2% 77.8% dlasr
1.1% 78.9% dsyr2k LibSci library
1.0% 79.9% repen LibSci library
1.0% 80.9% dtrsv LibSci library

It is clearly shown that the main contribution is due to Linear Algebra procedures and system functions
witch are already optimized for Cray X1.

Additionally the analysis of the average vector length and number of floating operations is presented:

Average vec. length Total FP ops.
Before optimization 25.46 339.098M/s
After optimization 48.54 3 213.275 M/s

The restructurization of the code resulted in the following speed up of the SCC-DFTB program:

Test set X1 Time X1 Time PC Time
(before) (after)
1 MSP 1 MSP 1 PE 2.66GHz

Kinase energy point 470.871 s 48.29 s 618.79 s

The parallel version of SCC-DFTB has been already ported to Cray X1 architecture, we plan to increase
the efficiency of the parallel code.

4 CPMD

Car-Parrinello Molecular Dynamics (CPMD) is the method of performing the dynamics of atomic systems
with ab initio potential. This approach exploits the separation of fast electronic and slow nuclear motion
using special form of the equations of motion based on the Lagrangian. From the energetic point of view
CPMD is similar to DFTB since it incorporates the density functional for solving the electronic problem,
using different basis set however. The method is well implemented in the CPMD code written in Fortran
90 and parallelized using MPI. It has been developed many years afo and extended set of features is now
available in the code. Some of them are the following:

• single point energy calculation,

• wave function and atomic structure optimization,

7

• Car-Parrinello molecular dynamics (in ground and excited states),

• path-integral dynamics,

• many electronic properties.

The source of the CPMD code consists of 149,226 lines of code with more than 98% being written in Fortran
90.

The CPMD supports a number of computational platforms including few older Cray supercomputers
(T3E, T90, YMP). However the suitable configuration files for Cray X1e were not available. Therefore,
appropriate makefiles had to be prepared. Due to platform dependence, a few sections of the code (containing
e.g system calls) needed adjustment as well.

For general performance evaluation four tests were chosen from tutorial inputs provided with the CPMD
(see table below for details).

Test Description
ex B2H6 Energy calculation for diborane.
ex H20 Energy calculation for 32 water molecules.
ex Si64 Energy calculation for silicon super cell with 64 atoms.
ex c120 Energy calculation for 120 atoms of carbon.

For the code compiled in SSP mode with the standard optimization option -O2 the following character-
istics were obtained (for comparison execution time on Opteron 246 included):

Test X1 SSP Time Average vector length Total FP Ops PC Time
ex B2H6 194 s 42.7 1 009M/s 334 s
ex H20 784 s 58.3 1 501M/s 3 014 s
ex Si64 82 s 58.1 1 193M/s 240 s
ex c120 3 092 s 58.7 1 942M/s 19 032 s

Calculating the same tests with the code compiled in MSP mode (optimization option -O2) yielded the
following results:

Test X1 MSP Time Average vector length Total FP Ops PC Time
ex B2H6 119 s 33.2 1 429M/s 334 s
ex H20 389 s 58.0 2 939M/s 3 014 s
ex Si64 59 s 55.4 1 637M/s 240 s
ex c120 1 089 s 52.7 4 220M/s 19 032 s

The above tests show that the CPMD makes use of X1e vector capabilities and provides reasonable
performance. However, the parallel version of the CPMD code is not scaling well, therefore we are planning
parallel optimizations.

5 VASP

The Vienna Ab-initio Software Package 4.6 (VASP) original source package was not ported to Cray X1
platform. The makefiles delivered were unable to use Cray ftn compiler. The last supported Cray vector
supercomputer was Cray Y-MP. The code did not compile after adjusting makefiles.

As Cray Inc. has previously worked on porting VASP to Cray X1, we received information on how to
modify the source code to compile on Cray X1 (modification of compiler options, directives) and to speed
the code up (just by directives modifications). The received information was result of porting VASP 4.4 to
Cray X1, instead of the 4.6 version, and therefore were not directly used.

8

5.1 Initial performance

After completing porting VASP to Cray X1 platform, the following test results were obtained. For compar-
ison, PC execution time was included.

Test set # CPU PC Time X1 SSP Time
Hg 1 222 s 981 s
Hg38 1 408 s 1 277 s
Cu 1 342 s 1 044 s

The tests were conducted with SSP binaries. The PC reference time is the time of test execution on
single Opteron 244 computer.

The performance of the code was ranging from 100MFlops to 300 MFlops, depending on the kind of the
test.

5.2 Vectorization

As the performance of the generally optimized code is far from satisfactory and vectorization ratio is low
(approximately 10% of instructions in the average run were vector instructions), we have decided to review
the code and to rewrite crucial parts, allowing better vectorization.

In the table below, we present the results of the vectorization of functions, that were specified as important
for the VASP performance on Cray X1:

Function name Type Source filename Importance Result
dgemv B n/a 75689 libsci used
eddav@david V davidson.F 62834 Vectorized
zgemmcn@ B n/a 40623 libsci used
fpassm V fft3dlib.F 34329 Partial vectorization
ipassm V fft3dlib.F 22259 Partial vectorization
eccp@hamil V hamil.F 18978 Vectorized
setylm aug V us.F 13859 Vectorized
overl1 V dfast.F 12175 Vectorized
dlaebz L n/a 9983 libsci used
fornl V nonl.F 9330 Vectorized
eddrmm@rmm diis V rmm-diis.F 6561 Partial vectorization
hamiltmu V hamil.F 5466 Partial vectorization
cnormn@dfast V dfast.F 5411 Vectorized
vnlac0@nonl V nonl.F 4661 Partial vectorization
cnorma@dfast V dfast.F 3595 Vectorized
map forward V fftmpi map.F 3463 Partial vectorization
setdij V us.F 3416 Vectorized
map scatter V fftmpi map.F 3245 Partial vectorization
fexcg V xcgrad.F 2649 Partial vectorization
fftwav V fftmpi.F 2484 Inlined
racc0mu@nonlr V nonlr.F 2124 Vectorized
dlagts L n/a 2060 libsci used
rnlpr@nonlr V nonlr.F 1978 Vectorized
strenl V nonl.F 1914 Vectorized
denmp@densta V dos.F 1910 Partial vectorization
map gather V fftmpi map.F 1882 No vectorization
rpromu@nonlr V nonlr.F 1748 Partial vectorization

9

overl V dfast.F 1658 Partial vectorization
rhosyg V symmetry.F 1498 Partial vectorization
ranmar V random.F 1334 Partial vectorization
set dd paw@paw V paw.F 1284 Partial vectorization
elmin V electron.F 1021 Partial vectorization
deple V us.F 1019 Vectorized

Legend:

Function name – function name in the form reported by Cray Performance Analysis Tools.

Type – type of the function:

• V – original VASP function,

• B – BLAS function,

• S – LAPACK function.

Source filename – location of the function source in the VASP source tree.

Importance – level of importance of described function (higher is more important), calculated as the sum
of weighted CPU time occupied by the function for all tests.

Result – result of development efforts.

All remaining functions, not included in the table, represent all together less than 10% of CPU time for
each test.

The vectorization has influenced memory requirements of VASP, though by 20% maximum. It would be
possible to speed the code up by the factor of 1.7, but it would swing memory requirements up 3-4 times.
The initial MSP performance was, for some tests, lower than of SSP version, due to the bugs in the code.
W have corrected such bugs and added compiler mutlistreaming directives.

5.3 Parallel Scalability

VASP includes MPI-based parallel version, though its scalability on Cray X1 is limited. Adjusting MPI
system settings do not solve the scalability problem.

The reason of poor scalability is that MPI allreduce and MPI alltoallv functions behavior on Cray X1
– the load generated by such functions is not well balanced between nodes.

We have attempted to use SHMEM communication that was supported in VASP in earlier releases. The
obtained results are very similar to the MPI – lack of balance of load generated by collective communication.

Due to the lack of success with current code we have started rewriting some communication functions in
Co-Array Fortran to improve scalability. That work is not completed yet.

5.4 Results

All single processor optimizations, including vectorization, resulted in the following test results. For com-
parison, PC reference time was included.

10

Test set X1 SSP Time X1 MSP Time PC Time
Cu 346 s 279 s 366 s
Cu2 481 s 406 s 470 s
Hg 201 s 173 s 257 s
HgIspin 389 s 339 s 465 s
HgLreal 375 s 358 s 527 s
AlNiNi 1 440 s 1 165 s 1 560 s
Ni 269 s 213 s 183 s

The created SSP binaries obtain performance from 800 MFlops to 1 550MFlops (25-50% of peak).

The MSP binaries performance is far from satisfactory, and the development of them was dropped in
favor of MPI version.

The obtained parallel scalability is relatively poor in comparison to the Opteron cluster interconnected
with Gigabit Ethernet:

Test set # CPUs X1 SSP Time X1 Speedup PC Time PC Speedup
HgLreal 1 375 s 1.00 527 s 1.00

2 251 s 1.49 293 s 1.80
4 190 s 1.98 163 s 3.23
8 116 s 3.23 91 s 5.79

16 90 s 4.17 – –

The PC tests were performed on 2 Quad Opteron servers.

In our opinion it would be difficult to improve single SSP CPU performance of VASP without rewriting
large parts of the code and rearranging its structure, or increasing memory requirements 3-4 times.

The scalability of the parallel version of the code is not appropriate and we continuously work on it. As
similar performance problems occurred both for MPI and SHMEM, without any visible reason in the VASP
communication code, it may be a bug in both VASP itself and the Cray Message Passing Library, and it
requires more investigation.

6 Siesta

Siesta (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is a general purpose package
for performing electronic structure calculations in solids within the framework of density functional theory
(DFT). In contrary to majority of solid state codes (e.g. VASP, Wien2k, Pwscf), which apply plane wave
basis set, it uses a linear combination of numerical atomic orbitals. Therefore, molecular systems can be
easily handled as well. For the core electrons the code implements a pseudo potential approach with the
norm-conserving pseudo potentials of the Kleinman-Bylander type. Siesta is designed for fast calculations
involving large systems, especially implementation of so called linear-scaling methods is particularly desired
and unique feature.

Siesta is written in Fortran 90. It is parallelized with the MPI library. On platforms not providing
parallel linear algebra routines the use of Scalapack is recommended.

The porting procedure consisted of the following steps:

• Adapting makefiles to satisfy X1 environment requirements. In this case files provided for T3E served
as a basis.

• Disabling parts of the code responsible for Cray non-standard floating point arithmetic.

11

• Linking scientific library containing Cray Blas and Lapack routines.

One of the main problems, which we encountered during optimization of Siesta, was preparation of the
satisfactory set of tests for large systems. Since Siesta is relatively new code, among users of ICM there
were no groups which could serve us with necessary expertise. So initially we based on the tutorial tasks
provided with the code. Later on the group of Siesta co-author prof. Pablo Ordejon was contacted. On
the basis of obtained information a set of more computationally demanding jobs was prepared (LargeNiCo,
LargeSi, LargeSiKP LargeSiNColl). Used tests are to serve optimization purposes i.e. enable for selecting
the most time-consuming routines and examining to what extent particular option influences calculation
method. Prepared inputs are not meant to be valuable from the scientific point of view.

6.1 Initial performance

The results of initial tests for ported code, compiled with -O2 option in SSP mode are shown in the following
table (PC time was measured on a single node of ICM halo cluster, which uses Opteron 246 platform, package
was compiled with IFORT v. 8.1 and MKL library):

Test X1 tot FP ops X1 time PC time X1/PC time
[M/s] [s] [s]

MgO 21 46 3 17.35
H2O 44 63 4 15.72
Fe 114 1 639 197 8.32
FeLda 111 1 395 163 8.55
FeNoSpin 95 417 45 9.24
FeNodes 120 2 233 288 7.77
SiH 84 1 227 135 9.06
SiHHarris 56 753 69 10.87
SiHPbe 75 1 895 197 9.63
SiHNColl 263 2 667 764 3.49
LargeNiCO 67 10 652 1 215 8.77
LargeSi 85 4 685 683 6.86
LargeSiKP 300 5 649 2 273 2.49
LargeSiNColl 390 2 985 1 383 2.16

Similarly, the results of initial tests for ported code, compiled with -O2 option in MSP mode are shown
in the table below:

Test X1 tot FP ops X1 time PC time X1/PC time
[M/s] [s] [s]

MgO 18 54 3 20.21
H2O 34 79 4 19.55
Fe 253 633 197 3.21
FeLda 253 631 163 3.87
FeNoSpin 152 266 45 5.91
FeNodes 304 909 288 3.16
SiH 51 2 218 135 16.37
SiHHarris 45 1 214 69 17.53
SiHPbe 58 2 694 197 13.68
SiHNColl 216 3 170 764 4.15
LargeNiCO 52 13 924 1 215 11.46
LargeSi 42 9 831 683 14.39
LargeSiKP 176 9 564 2 273 4.21
LargeSiNColl 329 3 384 1 383 2.45

12

The results of initial tests can be summarized as follows:

• Both SSP and MSP versions of the code work considerably slower then PC versions.

• Total FP ops performance is very distant from theoretical limit of 3200 Mflops/sec (SSP) and 12800
Mflops/sec (MSP).

Blas and Lapack from Cray libraries were linked already in the porting phase. In addition, instead of
provided one-dimensional Fast Fourier Transform from Numerical Recipes, the sci-lib zzfft was introduced
during optimization stage.

6.2 Vectorization

During our work with Siesta the code of the following functions was modified in order to improve the use
of X1 vector instructions: diagk, vmat, rhoofd, dfscf, spher harm, atmfuncs, atom, basis io, bessph,
radfft.

In the above cases typical vectorization techniques were applied, namely: adding compiler directives,
loop reordering, splitting loops into vector and non-vector parts etc. However, it has to be emphasized that
in general Siesta code vectorizes poorly, due to frequent dependencies in the loops and rare use of typical
vector/matrix operations.

During optimization the special version of diagk routine with large memory consumption was prepared.
This procedure calculates the eigenvalues and eigenvectors, density and energy-density matrices, and occu-
pation weights of each eigenvector for tasks which require Brillouin zone sampling.

The modified version has the following advantages:

• Instead of two Lapack diagonalization calls, it uses only one.

• Calculation of hamiltonian matrix for each k-point takes place only once.

• Calculation of the hamiltonian matrix vectorizes fully over k-points.

The main disadvantage is large memory space required for temporary storage of hamiltonians and wave
functions, which to a large extent limits its practical applicability. Since the memory requirements grow
linearly with the number of k-points they can easily extend the amount of memory installed on X1 platform
even for systems of moderate size.

However, for really large systems, presumably most suited for efficient calculations on X1 platform, only
Γ-point calculations are feasible anyway. In this case the diagk routine is unused.

6.3 Results

The comparison of results before and after optimizations is shown in the table below (the results do not
include the diagk procedure with high memory usage):

13

Test Before After Ratio Before After Ratio
X1 tot FP ops X1 tot FP ops X1 time X1 time

[M/s] [M/s] [s] [s]
MgO 21 22 1.09 46 42 1.10
H2O 44 82 1.87 63 31 2.02
Fe 114 149 1.31 1 639 610 2.69
FeLda 111 127 1.14 1 395 597 2.33
FeNoSpin 95 146 1.54 417 200 2.08
FeNodes 120 136 1.13 2 233 922 2.42
SiH 84 121 1.45 1 227 892 1.37
SiHHarris 56 72 1.30 753 607 1.24
SiHPbe 75 100 1.33 1 895 1 475 1.29
SiHNColl 263 443 1.69 2 667 1 532 1.74
LargeNiCO 67 136 2.03 10 652 5 068 2.10
LargeSi 85 188 2.22 4 685 2 119 2.21
LargeSiKP 300 458 1.53 5 649 3 700 1.53
LargeSiNColl 390 728 1.87 2 985 1 561 1.91

Additional results for diagk procedure with high memory usage can be found in the following table:

Test Before After Ratio Before After Ratio
X1 tot FP ops X1 tot FP ops X1 time X1 time

[M/s] [M/s] [s] [s]
Fe 114 367 3.21 1 639 279 5.88
FeLda 111 352 3.16 1 395 241 5.79
FeNoSpin 95 230 2.41 417 119 3.49
FeNodes 120 461 3.83 2 233 313 7.14
LargeSiKP 300 423 1.41 5 649 3 308 1.71

The results of tests for most efficient version of the code, compiled with -O2 option in SSP mode are
shown in the following table (PC time was measured on a single node of ICM halo cluster, which uses Opteron
246 platform, package was compiled with IFORT v. 8.1 and MKL library). The results do not include the
diagk procedure with high memory usage.

Test X1 tot FP ops X1 time PC time X1/PC time
[M/s] [s] [s]

MgO 22 42 3 15.79
H2O 82 31 4 7.76
Fe 149 610 197 3.10
FeLda 127 597 163 3.66
FeNoSpin 146 200 45 4.44
FeNodes 136 922 288 3.21
SiH 121 892 135 6.59
SiHHarris 72 607 69 8.77
SiHPbe 100 1 475 197 7.49
SiHNColl 443 1 532 764 2.00
LargeNiCO 136 5 068 1 215 4.17
LargeSi 188 2 119 683 3.10
LargeSiKP 458 3 700 2 273 1.63
LargeSiNColl 728 1 561 1 383 1.13

14

SSP results after including version of the diagk routine with high memory usage (only tests actually
using the diagk are shown):

Test X1 tot FP ops X1 time PC time X1/PC time
[M/s] [s] [s]

Fe 367 279 (11 MB) 197 (23 MB) 2.41
FeLda 352 241 (11 MB) 163 (23 MB) 3.48
FeNoSpin 230 119 (10 MB) 45 (17 MB) 2.65
FeNodes 461 313 (14 MB) 288 (26 MB) 1.09
LargeSiKP 423 3 308 (718MB) 2 273 (1 026 MB) 1.46

Note, that even with the optimization method involving excessively large memory cost the performance
of the code on single SSP was still much lower than obtained on PC platform.

The results of tests for SSP version of the code compiled in MSP mode:

Test X1 tot FP ops X1 time PC time X1/PC time
[M/s] [s] [s]

MgO 21 48 3 18.07
H2O 61 46 4 11.48
Fe 201 388 197 1.97
FeLda 201 387 163 2.37
FeNoSpin 183 161 45 3.58
FeNodes 248 514 288 1.79
SiH 106 1 276 135 9.42
SiHHarris 67 896 69 12.94
SiHPbe 101 1 761 197 8.94
SiHNColl 382 1 846 764 2.42
LargeNiCO 109 6 559 1 215 5.40
LargeSi 153 2 758 683 4.04
LargeSiKP 443 3 753 2 273 1.65
LargeSiNColl 879 1 262 1 383 0.91

From the presented tables it results that after vector optimization significant speed-up was obtained.
However, performance remains very far from theoretical limits for X1. In addition, the vector characteristics
of the code still indicate insufficient usage of X1 vector capabilities, as can be seen in the table below:

Test Average vector length Vector instructions
MgO 7.88 3.20%
H2O 14.30 5.99%
Fe 23.26 6.62%
FeLda 23.28 6.53%
FeNoSpin 24.34 7.00%
FeNodes 26.60 6.25%
SiH 12.19 11.74%
SiHHarris 8.59 8.86%
SiHPbe 7.50 13.92%
SiHNColl 24.05 19.41%
LargeNiCO 15.08 12.23%
LargeSi 17.48 16.38%
LargeSiKP 35.88 18.60%
LargeSiNColl 35.85 27.87%

15

This is mainly due to the following difficulties which we encountered in the vectorization phase:

• Frequent dependencies occurring in the code which prevent us from effective vectorization.

• Lack of more detailed documentation concerning algorithms and data structures used in the code.
Deeper understanding of calculations could possibly enable us for redesigning the crucial parts of the
code in a way advantageous for X1.

• Rare use of typical matrix/vector operations in the important routines.

• Relatively low percentage of time spent in library routines (Lapack, FFT etc.).

In the present stage, despite performed optimizations, the code still works considerably slower on SSP
processor than on a single PC.

According to our experience with Siesta, this code is not suited to run efficiently on X1. Performed
vectorization attempts brought significant speed-up, however afterwards the code still runs with performance
very far from theoretical limit and works much slower on X1 SSP than on single Opteron 246 processor.
Many parts of the code were found not to vectorize well. In addition there does not seem to be many
possibilities for multistreaming optimizations.

Except the above, during our work with Siesta it appeared that current version of the package (1.3f1p)
suffers from a few important shortcomings, which hinder its use:

• Lack of pseudo potential data base. Vast majority of solid state codes is provided with set of pre-
tested pseudo potentials. Siesta provides only the tool for generating them. This results in additional
expertise and effort needed for preparing the inputs.

• Bugs in linear-scaling part of the code. In the present version 1.3f1p the calculations made in the linear
scaling mode give wrong results. According to the information from authors this part of Siesta will be
completely rewritten in the new release of the package.

• Imperfect parallelization. Siesta is prepared to run in parallel on platforms providing MPI, it also makes
use of parallel Scalapack library. However, on our PC cluster at ICM we were not able to observe hardly
any scaling with number of processors. This agrees with experience of some other groups reported on
the Siesta mailing list. Scaling of the code is said to be observed only on platforms with very efficient
communication.

Bearing in mind all the above, we conclude that the practical utility of Siesta code on X1 platform is
very limited, though it may change with the future Siesta releases.

7 GROMOS

The main focus of porting GROningen MOlecular Simulation computer program package (GROMOS), version
96, was on the PROMD program which is the main computational application from the package. The other
programs included in the package play role of the help applications and are used for data preparation and
data analysis and have limited CPU requirements.

GROMOS supplies well known algorithms: Leap – Frog Verlet and 4-D L-F Verlet. Usually they serve
for analyzing structural and conformational changes in big molecules – up to several thousand atoms in
molecule. Owing to trajectory propagation all forces must be calculated, thus following interactions are
taken into account: double bond, angles, dihedrals, improper and on bonded.

Since first four interactions types convey two-, three-, four- body terms are not computationally demand-
ing. The non-bonded interactions are long-rage type and every step of forces calculations requires summing

16

over all atoms in molecule and its environment. This part of simulations consumes significant amount of the
CPU time.

GROMOS package contains 2 main versions of the non-bonded force subroutines: scalar and vector ones.
The vector code however has been developed for old vector systems and its low performance is well known.

To some extend, the scalar code is more prospective since it was used for the development of the parallel
version of the GROMOS. The parallelization has been performed with PFortran and Co-Array Fortran.

The GROMOS original source package was not ported to Cray X1 platform. The makefiles delivered
were unable to use Cray ftn compiler. The last supported Cray vector supercomputer was Cray SV1, and
the code compiled and worked correctly after adjusting makefiles.

Because of this we have performed profiling of both versions, the code has been compiled in SSP mode
with flags -Oaggress,scalar3,inline4,vector3.

The performance of both versions (scalar and vector) was similar and we observed practically no difference
in the computing time.

We have decided to start further work on scalar version since it was used for the parallelization of the
GROMOS package.

7.1 Initial Performance

For the tests we have used reasonably size system (HIV proteasis in water, 50 000 atoms).

As expected most of the CPU time is spent in the subroutine NONBML_MP which evaluates non-bonded
interactions:

Samp% Cum.Samp% Samp Function
100.0% 100.0% 3106 Total
61.2% 61.2% 1902 nonbml mp
7.5% 68.8% 234 nbwith mp
2.4% 71.1% 73 wrfmt
...

Detailed profiling shows that most of the CPU time (40%) is spent in single loop DO 827. This loop is
located inside loop DO 810 which is a long one – loops over all atoms in the system – and is invoked NRAM
times. In the original code, the DO 810 is vectorized partially due to indirect addressing.

7.2 Development & Results

The main loop rearrangements allowed 20% code speedup.

We have decided to use parallel version of GROMOS, written in Co-Array Fortran, adjusting it to the
Cray X1.

The following table presents comparison of initial performance of GROMOS on Cray X1 and reference
PC (Opteron 246):

Test X1 SSP time PC time
jempci.sh 4.68 s 1.96 s
jempcl1.sh 58.63 s 36.99 s
jmdpc13.sh 65.45 s 48.47 s

17

Test results of the parallel scalability of GROMOS is presented in the following table:

CPUs X1 SSP time
1 329 s
2 179 s
4 108 s
8 99 s

12 91 s
16 100 s

The tests were performed for test2 input.

The GROMOS binaries on Cray X1 are slower than binaries for the fastest PC processors. It seems that
it would be impossible to improve vectorization without rewriting main computational kernel in program
promd.

The parallel scalability is limited by the unbalanced calculation distribution between CPUs, not by the
communication media or communication method. To improve the scalability, different calculation distribu-
tion algorithm should be deployed in the code (domain decomposition instead of force decomposition).

8 Summary

After working on multiple scientific codes on Cray X1e, we may draw some final conclusions.

It is possible to obtain reasonable performance of MD codes on Cray X1/X1e, very competitive to PC
clusters. It may require though significant amount of development, depending on the code architecture,
coding style and language constructs used.

The codes that were extremely difficult to optimize are Siesta and GROMOS. We have successfully
optimized VASP, DFTB and CPMD, obtaining significant speedup. CHARMM development also brought
reasonable speedup, though the size of the code requires enormous amount of development.

The common problem of all ported codes is parallel scalability. Due to MPI performance issues on Cray
X1/X1e we have to consider porting communication layer to Co-Array Fortran.

9 About the Authors

The projects were led by Konrad Wawruch, coordinating, together with Lukasz Bolikowski, HPC devel-
opment efforts at ICM. He may be reached at: ICM Warsaw University, Pawinskiego 5A blok D, 02-106
Warsaw, Poland, email: kwaw@icm.edu.pl. Wojciech Burakiewicz, Maciej Cytowski, Maria Fronczak, Mar-
iusz Kozakiewicz, Michal Lopuszynski, Franciszek Rakowski and Joanna Slowinska are Software Developers
at ICM.

18

	Introduction
	CHARMM
	Initial Performance
	Development
	Results

	DFTB
	Initial profiling
	Development
	Results

	CPMD
	VASP
	Initial performance
	Vectorization
	Parallel Scalability
	Results

	Siesta
	Initial performance
	Vectorization
	Results

	GROMOS
	Initial Performance
	Development & Results

	Summary
	About the Authors

