
Applications Development with FPGAs
Simulate but Verify

G. Wenes, J. Maltby, D. Strenski
Cray, Inc.,

411 First Avenue S., Suite 600, Seattle, WA 98104-2860, USA
[geertw, jmaltby, stren]@cray.com,

http://www.cray.com

Abstract

Recon�gurable Computing (RC) exploits hardware,
such as Field Programmable Gate Arrays (FPGAs),
that can be recon�gured to implement speci�c func-
tionality more suitable for specially tailored hardware
than on a general purpose processor. However, ap-
plications development and performance optimization
possible with these systems typically are dependent on
the skill and experience of hardware designers. This
has prevented more widespread use of RC in the High
Performance Computing (HPC) community. Hence,
a current challenge in this area is the establishment
of a methodology that is targeted towards the HPC
software engineer and application developer. We will
present, with examples, such methodology.

Keywords: Field Programmable Gate Arrays,
Recon�gurable Computing, Cray XD1, Synthesis,
Simulation, Veri�cation, Programming Languages.

1 Introduction

1.1 Recon�gurable Computing

The main characteristic of Recon�gurable Computing
(RC) is the presence of logic that can be recon�gured
or reprogrammed to implement speci�c functionality
more suitably than on a general purpose processor.
The term recon�gware (RW) has been coined to sug-
gest how RC systems can join microprocessors and
other programmable hardware in order to take ad-
vantage of the combined strengths of hardware and
software.

1.2 Programmable Logic

There are three basic kinds of electronic devices:
memory, microprocessors, and logic. Logic devices
provide speci�c functions, including device-to-device
interfacing, data communication, signal processing,
data display, timing and control operations, and al-
most every other function a system must perform.
Programmable logic devices (PLDs) are standard, o�-
the-shelf parts that o�er customers a wide range of
logic capacity, features, speed, and characteristics. Of
all types of PLDs, Field Programmable Gate Arrays
(FPGAs) o�er the highest amount of logic density, the
most features, and the highest performance.

1.3 Functionality

Field Programmable Gate Arrays (FPGAs) can be
used to implement just about any functionality.

1.4 Suitability

Just a few years ago, the largest FPGA was measured
in tens of thousands of system gates and operated at
40 MHz. Today, however, FPGAs o�er millions of
gates of logic capacity, operate at 500 MHz, and are
manufactured in state-of-the-art 90nm low-k copper
process. They o�er a new level of integrated functions
such as on-board scalar processors. These advanced
devices also contain substantial amounts of memory,
and o�er features such as clock management systems.

FPGAs have a growing library of intellectual prop-
erty (IP) or cores - these are prede�ned and tested
software modules that customer can use to create sys-
tem functions instantly inside the FPGA. Cores are
similar to libraries in microprocessors: they are ro-
bust, optimized, modular, and correct implementa-
tions of some basic functionality in customers' appli-
cation space.

These two trends conspire to blurr the distinc-
tion between logic and microprocessor devices: FP-
GAs are used increasingly to provide application per-
formance while current processor chip-sets, for in-
stance, may include communication devices. Indus-
tries such as manufacturing, government, research,
media, and biosciences increasingly are deploying FP-
GAs. Their bene�ts are as hardware application ac-
celerators that provide orders of magnitude (10−100)
performance improvement over common microproces-
sors such as Intel's Pentium4. Not every application,
however, is suitable for such performance accelera-
tion: targeted applications are highly parallel at a
�ne grain level (on-chip parallelism), perform limited-
precision �xed-point arithmetic, and have a high op-
eration count per datum. Examples of suitable appli-
cations are: searching, sorting, signal processing, au-
dio/video/image manipulation, encryption, error cor-
rection, coding/decoding, packet processing, and ran-
dom number generation. However, �oating point in-
tensive, but highly pipelined, applications such as
molecular dynamics [11] qualify too.

The remainder of the paper is organized as follows:
Section (2) describes the architecture of the Cray XD1
as a recon�gurable computing platform in some detail,

Section (3) describes the Integrated Development En-
vironment for the Cray XD1, while Section (4) de-
scribes, with examples, the applications development
framework. Section (5) is more speculative in that
it suggests a common development language for both
high performance computing programmers and elec-
tronic device engineers. Finally, Section (6) presents
the conclusions.

2 Cray XD1 Architecture and

FPGA Expansion Module

The Cray XD1 high performance computer is based
on the Direct Connected Processor (DCP) architec-
ture, developed to remove both the communications
bottleneck which limits application performance in 32

and 64-bit clusters and the memory contention which
limits the scale of Symmetric Multiprocessor (SMP)
solutions. The DCP architecture views the system
as a pool of processing, logic, and memory resources
interconnected by a high bandwidth, low latency net-
work. The entry-level con�guration for the Cray XD1
is a single chassis, see Figure (1).

Figure 1: Schematic view of the XD1 Chassis. Each
chassis contains 12 compute nodes (AMD Opteron
32/64 bit, x86 compatible processors, now also avail-
able in dual core), connected via RapidArray Inter-
connect (a 1 Tb/s switch fabric), and 6 Application
Acceleration co-processors. See text for further de-
scription.

Each chassis consists of a main board, 6 com-
pute blades and an optional switching fabric expan-
sion board. Each chassis provides

• 12 AMD Opteron 248 processors, now also avail-
able in dual core, organized as 2-way SMPs;

• A 1 Tb/s per second Rapid Array embedded
switch fabric;

• 12 RapidArray Communications Processors;

• Up to four independent PCI-X I/O slots;

• 0.5 to 8 GB of DDR 400 SDRAM per core;

• 24 RapidArray inter-chassis links with an aggre-
gate 48 GB per second bandwidth;

• 6 Application Acceleration processors for recon-
�gurable computing.

Of most interest here is the expansion module,
shown in Figure (2): parts of an application that
are compute-intensive and highly repetitive can be as-
signed to a speci�c FPGA processor residing on the
expansion module for application acceleration. These
Application Acceleration processors are tightly inte-
grated into the Opteron's memory map and use stan-
dard software programming primitives which treats
the FPGAs as co-processors to the Opteron.

The bandwidth between the FPGA and any SMP
is 3.2 Gbytes/s (or 1.6 Gbytes/s in each direction
simultaneously) while the fabric latency to the lo-
cal SMP memory is approximately a few hundred
nanoseconds. Once a memory access request leaves
the FPGA it travels through a single fabric processor
to get to the local SMP. The delay through the fabric
processor is 50 − 100 ns. The round trip latency for
read operations would be twice the fabric latency plus
whatever time the Opteron memory manager requires
to complete DRAM access. The latency to remote
SMPs will typically involve the delay from two fabric
processors (100 − 200 ns) plus the delay through one
or more switching elements (250 ns each).

Figure 2: Schematic view of the FPGA expansion
module. The expansion module currently supports
three di�erent Xilinx Virtex II Pro devices: the
XC2VP30, XC2VP40, and XC2VP50. See text for
further description.

3 Integrated Software Environ-

ment

3.1 Synthesis and Simulation

Programming logic devices is not common practice in
HPC. Logic programmers need to have a good under-
standing of the physical properties (timing, size,. . .)
and the basic workings of the device, which is contrary
to standard software development practices that ad-
vocate a strict separation of hardware and software.

For low-level development, the minimum toolset
required for programming logic devices on the XD1
is the Xilinx Integrated Software Environment (ISE)
package. This ISE covers HDL synthesis (VHDL or
Verilog) through the generation of the binary pro-
gramming �le. Many third party software packages
are available for synthesis (Synplicity, Mentor, Syn-
opsis, etc.) as well as for simulation (ModelSim, Ca-
dence, etc.)1 The Xilinx ISE package incorporates
VHDL or other cores into the design. The Coregen
tool � included with ISE � will create many stan-
dard cores. In addition, Xilinx and other companies
provide a wide variety of more sophisticated cores
for a fee. Cray provides, for free, the cores for the
QDR SRAM and Rapid Array fabric interface (QDR2
Core, resp., RT Core). These are provided as pre-
synthesized and placed netlists that can be incorpo-
rated by the tools into a user design. For the de-
velopment of new VHDL cores, Xilinx, Mentor, Ca-
dence, Synopsys and others provide extensive software
tools for generating VHDL or Verilog designs. This is
shown schematically in Figure (3).

Figure 3: Program development �ow for FPGAs from
HDL to placed Core.

For programming using any other, or more ab-
stract models, available tools include Mentor, Ca-
dence, Synopsys, Celoxica, and other support for C

1Simulation executes the logic machinery, given a set of in-
puts; synthesis results in the optimized (for size, performance,
power, . . .) structure of the machine.

synthesis. Xilinx o�ers a Forge tool that generates
designs from Java code. Xilinx also supports an inter-
face to MATLAB for DSP designs.

3.2 Programming Languages

High-level abstraction approaches require at a mini-
mum:

• Multi-threaded languages;

• Channels for communications and synchroniza-
tion;

• User-speci�ed and recon�gurable target archi-
tectures;

• Good-to-excellent Quality of Results (QoR)2.

3.2.1 VHDL

Hardware Description Languages (HDL) describe the
FPGA hardware. Two of the most widely used ones
are Verilog and VHDL. They bear some resemblance
to standard programming languages but they are sim-
ulation languages rather than (sequential) program-
ming languages, i.e. HDL statements are not executed
in sequential order during simulation but may be exe-
cuted in parallel. Furthermore, simulation languages
must support the notion of real time, either as an ab-
solute clock or as cycles. VHDL in particular straddles
the fence between general-purpose programming lan-
guages and hardware description languages and has a
rich and verbose syntax.

3.2.2 C-level Languages

C is a sequential language. To introduce paral-
lelism in C, one can introduce manual pragma's
(ImpulseC, www.impulsec.com; Catapult C,
www.mentor.com), or explicit parallel constructs
(Handel-C, www.celoxica.com), or use sophisticated
compilers or a combination of the above. Further-
more, timing signals are added to the standard
ANSI-C compilers. As compared to ANSI-C compil-
ers, full IEEE �oating point arithmetic is usually not
supported, nor pointers; however, arbitrary width
variables and arithmetic are, as are signals and
channels.

3.2.3 Mobius

Mobius (www.codetronix.com) is a Pascal-like CSP
language, based on Hoare's Communicating Sequen-
tial Processes (CSP) and as such includes channels,
communications and synchronizations but also types,
records, arrays, channels, timers, and �oating point
arithmetic. It can generate both C and Verilog code.

2QoR is typically measured in terms of performance, size,
power consumption, . . .

3.2.4 QoR

How well do abstract, higher-level languages compare
to cores that were originally developed in VHDL and
then further �ne-tuned? The answer is mixed. In
Figure (4), we show the QoR for the Data Encryp-
tion Standard (DES) algorithm. DES encrypts and
decrypts data in 64-bit blocks, using a 64-bit key (al-
though the e�ective key strength is only 56 bits). DES
has 16 rounds or permutations � and two additional
rounds of pre- and post-permutations � meaning the
main algorithm is repeated 16 times to produce the
ciphertext (as the number of rounds increases, the se-
curity of the algorithm increases exponentially). Typ-
ically, DES cores are either sequential (they minimize
area but produce results only every 18 cycles) or par-
allel (deeply pipelined cores that produce 64-bit plain
text every cycle but at a cost of area). QoR for se-
quential DES are within a narrow range; however, the
variation in QoR is much larger for the parallel DES.
It is worthwhile pointing out that pipelined versions

Figure 4: QoR for the DES encryption. Data collected
by and courtesy of Codetronix LLC.

operate very close to peak numbers of current memory
buses.

The Advanced Encryption Standard (AES), also
known as Rijndael, is a block cipher adopted as an
encryption standard by the US government, and is
expected to be used worldwide and analysed exten-
sively, as was the case with its predecessor, the Data
Encryption Standard (DES). AES is fast in both soft-
ware and hardware, is relatively easy to implement,
and requires little memory. As shown in Figure (5),
there are many commercial and academic cores avail-
able for it. The throughput results for Mobius are
noteworthy, close to some of the best cores.

3.3 System Administration and Man-

agement

For systems adminstration and management, Cray
makes available a Linux API for the FPGA with the
following functionality:

Figure 5: QoR for the AES algorithm. Data collected
by and courtesy of Codetronix LLC.

• Admininstration Commands

fpga_open: allocate and open fpga

fpga_close: close allocated fpga

fpga_load: load binary into fpga

• Control Commands

fpga_start: start fpga (release from reset)

fpga_stop: stop fpga

• Status Commands

fpga_status: get status of fpga

• Data Commands

fpga_put: put data to fpga SRAM

fpga_get: get data from fpga SRAM

• InterruptBlocking Commands

fpga_intwait: blocks process waits for fpga
interrupt

4 Applications and Application

Development Strategies

Our examples of applications and application devel-
opment strategies were selected to illustrate di�er-
ent aspects of the FPGA expansion module for the
Cray XD1: the interaction between the general pur-
pose microprocessor (AMD/Opteron)and the FPGA
co-processor; how to exercise the DMA engine be-
tween AMD and FPGA in high-speed fashion; and
how to develop algorithmic strategies for the FPGA.
A 4th example, where it all comes together, will be
presented separately [5].

4.1 Basic Linear Algebra

It is well appreciated that the SAXPY (and DAXPY)
basic linear algebra routines, Y ← a × X + Y, test
the memory subsystem on current microprocessors,

especially when exercised with non-unit stride. FPGA
implementations are certainly not expected to outper-
form such microprocessors for two reasons:

1. Bandwidth will continue to be a bottleneck.
Indeed, as shown in Table (1), the streaming
AMD-to-FPGA bandwidth for write operations
� while substantially better than PCI or PCI-X
� are at about 70% of peak. The read band-
widths are substantially worse, due to some
AMD/Opteron limitations. Together these re-
sults suggest to use write-only approaches for
exchanging data between logic and processor;

2. IEEE 32 and 64-bit arithmetic is expensive on
FPGAs. The best 64-bit IEEE cores (K. Under-
wood, private communication) run at close to
200 MHz on the Xilinx XC2VP50 and achieve
1 result (addition or multiplication) per cycle
but are deeply pipelined (15 to 30 stages) and
require ≈ 1000 slices. Nevertheless, current re-
search [13, 14, 15, 3] suggests great progress
in closing the gap between CPU and FPGA
�oating-point performance.

array pointer memcpy
read 5.94 5.95 6.01
write 1260. 1320. 1320.

Table 1: Bandwidths (MB/s) for read and write op-
erations between host and QDR SRAM. From [12].

4.2 Communication Protocols and Li-

braries

Cray provides pre-synthesized and placed netlists for
the cores for the QDR RAM and Rapid Array fab-
ric interface (QDR2 Core, resp., RT Core). These
are low-level device drivers. On top of these interface
cores, communication protocols between SMP node
and FPGA have been developed that can use any or
all of the following memory-based methods:

• The application maps a region on the FPGA's
SRAM into its own address space and makes
normal references to it;

• The application allocates a contiguous block of
DRAM within its own address space that can
be accessed directly by the FPGA;

• The application can read and write to individual
registers provided by the FPGA logic.

Given these protocols, it is now possible to imple-
ment put/get communication libraries between SMP
and FPGA that have functionality similar to the well
known shmem libraries:

• Put and Get Operations: remote write (put)
and remote read (get) operations;

• Non-blocking Put and Get Operations: to initi-
ate multiple concurrent transfers between SMP
and FPGA, perform useful work while the trans-
fers are in progress and then wait or poll for their
completion;

• Atomic Memory Operations: to allow atomic
operation on shared variables (Atomic Memory
Operations). These functions perform atomic
read-and-update and swap operations on a re-
mote data object, usually a register;

• Memory Allocation: to allocate memory at the
same address in each PE and to free memory
allocated previously.

Work is in progress [9] towards similar communication
libraries.

4.3 Convolutions

Many FPGA implementations for image reconstruc-
tion and processing are regarded as valuable intel-
lectual property, but the fundamental operations are
similar in most cases. These algorithms include global
transforms such as Radon transforms, 1D and 2D dis-
crete Fourier transforms; semi-global transforms such
as convolution �lters; and simple pixel manipulations.
We focus here on convolutions.

A 2D-convolution is written as:

Yi,j =

N∑
n=−N

M∑
m=−M

fn,mXi−n,j−m (1)

where X is the input data, f the �lter coe�cients,
constituting a sliding window (typically, N,M =
3, 4, . . . 7, but in more extreme cases of the order of
a few ten) against the input data, and Y the result.
With appropriate choices of the �lter coe�cients, con-
volutions have been used for edge detection, smooth-
ing, noise reduction, etc. in image processing. Fur-
thermore, convolutions can be used to implement �xed
point multiplications: given a multiplier in the range
(2N+1 −1, . . . , 2−N), its approximate binary represen-
tation [bN, bN−1, . . . , b−N), bi = 0, 1] is used as a 1D

�lter of size 2N + 1.
Here, we focus on 1D convolutions for three rea-

sons:

1. It was shown [1] that one can use Singular Value
Decomposition (SVD) to reduce the 2D convo-
lution to approximate a 2D �lter with 2x1D con-
volutions and one low complexity 2D one;

2. In many practical implementations, 2D convo-
lutions are implemented as a string of 1D con-
volutions with appropriate delay lines;

3. In important applications [4] like 3D depth mi-
gration, it was shown how long, one-dimensional
extrapolation �lters can replace 2D �lters, albeit
in iterative fashion.

4.3.1 The Gather Approach

Almost all implementations � whether the target plat-
form is a general purpose processor or logic device
� of the 1D convolution (appropriately rewritten as

yi =
∑N

n=−N fnxi−n) take a very literal approach:
within the convolution unit, the 2N + 1 input data
xi−N, . . . , xi+N get multiplied with the appropriate
�lter coe�cients and the results are summed together
� in binary tree-like fashion � in an adder unit, Σ.
We believe the main disadvantage of this approach is
that the Σ unit contains multiple stages, adding to the
overall depth of the convolution unit and not utilizing
all available adders for a fully parallel operation.

4.3.2 The Scatter Approach

Instead we prefer a scatter approach, shown in Fig-
ure (6) for the case N = 4. Here, each input datum
xi is inspected for the contributions it makes to the
output data yi−N, ..., yi+N, gets multiplied with the
appropriate �lter coe�cient while the results are accu-
mulated. When the next input datum, xi+1 enters the
convolution unit, the accumulated result yi−N leaves
the unit. Clearly, the unit is not as deep as in the
gather approach and all adders and multipliers are
utilized in parallel.

Figure 6: Schematic representation of the data �ow
and logic of a 1D convolution

4.4 Dynamic Programming: Smith-

Waterman

This fully worked out dynamic programming exam-
ple [5] will be presented at another session at CUG.

5 Linear Temporal Logic � The

Logical and Computational

Aspects of a Natural Language

Interface for Veri�cation

The previous sections demonstrated the need for a
high level of abstraction in designing and developing
for recon�gurable architectures. A number of high-
level languages were described that bene�ts the ease-
of-use, time-to-market, and QoR of programmable
logic development. However, we believe that the ap-
plication of formal veri�cation techniques will yield
additional and signi�cant bene�ts in algorithm and
system design for FPGAs.

Veri�cation is not testing; testing is the practice
of running the system and checking that it performs
as expected. Testing becomes rather cumbersome,
if not unreliable, for complex systems. Veri�cation,
however, connects the model with its speci�cations
and generates a positive answer if the model complies
with the requirements and a counterexample other-
wise. Veri�cation is done by a model checker. How-
ever, formal veri�cation requires deep computer sci-
ence expertise that hinders its wide-spread deploy-
ment. Furthermore, veri�cation is a hard problem
which suggests that one should aim for a methodology
that satis�es the speci�cation by construction, i.e., a
correct-by-construction methodology.

We suggest that a remedy for this situation is the
adaption of a natural language interface for hardware
or program veri�cation. We further suggest that such
an interface already exists and, in fact, has a proven
track record. Indeed, Linear Temporal Logic (LTL) [8]
quantitatively and succinctly analyzes or synthesizes
the behavior of complex systems in a language sim-
ilar to natural languages. LTL has proven very ef-
fective as a speci�cation language in the concurrency
and computer-aided software engineering industries.

5.1 Linear Temporal Logic

Linear Temporal Logic (LTL) speci�es the temporal
behavior of tasks in a �nite state machine in terms of
formulae to construct �rst-order predicate logic and
arithmetic assertions which evaluate TRUE or FALSE.
Elementary formulae in LTL are TRUE, FALSE, and
p where p belongs to the set of predicates. Those typ-
ically are events e or activities a. Propositional Logic
(the mathematics of Boolean values TRUE and FALSE

and the logical operators, ∨,∧,¬,≡,⇒) is augmented
with predicate logic (with quanti�ers ∃ and ∀) applied
to discrete time. The application of predicate logic on
formulae results in a new formula.

It can be shown that the above procedures lead to
an inductive de�nition of LTL formulae:

• TRUE, FALSE, and p are LTL formulae;

• If φ1, φ2 are LTL formulae, so are φ1 ∧ φ2 and
¬φ1;

• If φ1, φ2 are LTL formulae, so are ◦φ1 and
φ1 U φ2;

• There are no other LTL formulae.

Here the unary operation ◦φ, or Nφ, is pronounced
next φ and evaluates TRUE if φ is true at the next
instance while φ1 U φ2 reads φ1 until φ2 and is sat-
is�ed when φ1 is statis�ed until φ2 is satis�ed.

In the simple example below, we show how numeri-
cal operations � the 1D convolution � can be expressed
in terms of LTL formulae. With the de�nitions and
formulae given as in the previous Section 4, our obser-
vations are the �lter coe�cients f, the incoming data
stream x, and the results of additions a, and multipli-
cations m. The output formula y is then given by:

mi,k+1 ≡ ◦mi,k = ◦(xk ∗ fi);
ai,k+1 ≡ ◦ai,k = (ai−1,k + mi,k);
yk−5 = (◦(a−4,k) ∧ (k > 5)) U (k > N + 5).

(2)

5.2 Forward Looking Statements

There is a substantial body of work, starting from the
original work of Pnueli [8], demonstrating the useful-
ness of LTL in the veri�cation of concurrent programs
such as network communication protocols and oper-
ating systems [2, 6, 7]. Recent work [10] also suggests
the applicability of LTL to complex dynamical sys-
tems and networks.

Until recently, languages used to specify design
properties have been largely proprietary and limited
to electronic design. One notable exception is the tem-
poral logic languages LTL (and also CTL, Computa-
tion Tree Logic). In fact, these languages served as the
basis for some of the proprietary languages that were
developed later. However, electronic designers are in-
timidated by the scienti�c notation and the rather ab-
stract nature of these academic languages. Neverthe-
less, the emergence of LTL in what has been tradi-
tionally high performance computing disciplines such
as modeling and simulation of complex and concur-
rent dynamical systems suggest a common framework
for application programmers and electrical engineers
alike.

6 Conclusion

We described the Cray XD1 architecture with empha-
sis on its Recon�gurable Computing capabilities. We
showed how current system software, libraries, com-
pilers, and tools lower the e�ort required in program-
ming logic devices. We developed a framework for ap-
plications development in RC that is familiar to the
HPC programmer. We suggested that a natural lan-
guage interface for program veri�cation will shorten
the program development cycle.

Acknowledgements

We would like to acknowledge input from Per Ljung
of Codetronix, LLC, and Jim Rutt of the Santa Fe
Institute. Steve Margerm of Cray Canada contributed
to our understanding of the Xilinx Integrated Software
Environment.

References

[1] C-S Bouganis, G. A. Constantinides, and P. Y. K.
Cheung. A Novel 2D Filter Design Methodol-
ogy for Heterogenous Devices. In Proceedings of
IEEE Symposium on Field Con�gurable Comput-
ing Machines, 2005.

[2] E. Clarke, D. Peled, and O. Grumberg. Model
Checking. MIT Press, 1999.

[3] Y. Dou, S. Vassiliades, G. K. Kuzmanov, and
G. N. Gaydadjiev. 64-bit �oating point fpga ma-
trix multiplication. unpublished, 2005.

[4] D. Hale. 3d depth migration via mcclellan trans-
formations. Geophysics, 56(11):1778�1785, 1991.

[5] J. Maltby, J. Chow, and S. Margerm. FPGA Ac-
celeration of Bioinformatics on the XD1: A Case
Study. In Proceedings of the Cray User Group
Meeting, 2005.

[6] Z. Manna and A. Pnueli. The temporal Logic of
Reactive and Concurrent Systems: Speci�cation.
Spreinger-Verlag, Berlin, 1992.

[7] K. L. McMillan. Symbolic Model Checking.
Kluwer Academic Publishers, 1993.

[8] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th Annual IEEE Symposium
on Foundations of Computer Science, pages 46�
57, 1977.

[9] D. Strenski, M. Babst, and R. Swift. Evaluation
of running FFTs on the Cray XD1 with attached
FPGAs. In Proceedings of the Cray User Group
Meeting, 2005.

[10] P. Tabuada and G. J. Papas. Linear time logic
control of discrete-time linear systems. unpub-
lished, 2005.

[11] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi,
A. Suenaga, N. Takada, and A. Konagaya. Pro-
tein Explorer: A Peta�ops Special-Purpose Com-
puter System for Molecular Dynamics Simula-
tions. In Proceedings Supercomputing 2003, 2003.

[12] J. L. Tripp, H. S. Mortveit, A. A. Hansson, and
M. Gokhale. Metropolitan Road Tra�c Simula-
tion on FPGAs. In Proceedings of IEEE Sympo-
sium on Field Con�gurable Computing Machines,
2005.

[13] K. D. Underwood. Fpgas vs cpus: Trends in
peak �oating-point performance. In Proceedings
of the ACM International Symposium on Field
Programmable Gate Arrays (FPGA 2004), pages
171�180, February 2004.

[14] K. D. Underwood and K. S. Hemmert. Clos-
ing the gap: Cpu and fpga trends in sustainable
�oating-point blas performance. In Proceedings
of the IEEE Symposium on Field-Programmable
Custome Computing Machines (FCCM 2004),
April 2004.

[15] L. Zhuo and V. K. Prasanna. Scalable and mod-
ular algorithms for �oating-point matrix multi-
plication on fpgas. In Proceedings of the 18th

International Parallel and Distributed Process-
ing Symposium (IPDPS'04, pages 94�103, April
2004.

