
Applications Development with
FPGAs

Simulate but Verify

G. Wenes, J. Maltby, D. Strenski
CUG 2005

Albuquerque, NM

Simulate but Verify
 Applications Development with

FPGAs
 Reconfigurable Computing

(RC)
 Applications acceleration with

dedicated or special-purpose HW
 Programmable environment

 Not a familiar or common
programming paradigm in HPC

 Emerging Class of Applications in
Complex Network Analysis (CNA)
 Verification, rather than

simulation, at their core
 Roots in circuit design but …

 Much indebted to theoretical
computer science

 HPC class type of applications
 EDA
 KDD

XD1 Architecture and FPGAs

Cray XD1

Six SATA
Hard Drives

Four 133
MHz PCI-X

Slots

0.5 Tb/s
Switch

12 x 2
GB/s

Ports to
Fabric

Connector for 2nd

0.5 Tb/s Switch
and 12 More
 2 GB/s Ports

 to Fabric

Fans

Chassis Rear

Chassis Front

Six Two-way
Opteron Blades

Six
FPGA

Modules

Three I/O Slots
(e.g. JTAG)

Cray XD1 System Architecture
Compute
 12 AMD Opteron 32/64

bit, x86 processors
 High Performance Linux

RapidArray
Interconnect

 12 communications
processors

 1 Tb/s switch fabric

Active Management
 Dedicated processor

Application Acceleration
 6 co-processors (FPGAs)

Processors directly connectedProcessors directly connected
via integrated switch fabricvia integrated switch fabric

Application Acceleration FPGA

SuperLinearSuperLinear speedup for speedup for
key algorithmskey algorithms

Application Acceleration
 Reconfigurable Computing
 Tightly coupled to Opteron
 FPGA acts like a programmable co-

processor
 Performs vector operations
 Well-suited for:

 Searching, sorting, signal
processing, audio/video/image
manipulation, encryption, error
correction, coding/decoding,
packet processing, random
number generation.

Application Accelerator

Applications Acceleration

Application Acceleration FPGA

Fine-grained parallelismFine-grained parallelism
applied for 100x potentialapplied for 100x potential

speedupspeedup

Well suited for:

Searching, sorting, signal processing,
audio/video/image manipulation,
encryption, error correction, coding/decoding,
packet processing, random number generation …

But also:

Seismic imaging, molecular dynamics,
bioinformatics, …

Application Acceleration FPGA
...
do for each array element

.

.

.
end
…

…

…

Fine-grained parallelismFine-grained parallelism
applied for 100x potentialapplied for 100x potential

speedupspeedup

Compute
Processor

Application Acceleration FPGA

DataSet

Reconfigurable Computing

The Barriers to Reconfigurable Computing

• Starving the FPGA
• Bandwidth and latency to the FPGA limited by PCI bus

• FPGA, Processor Interaction
• Job scheduling, Linux integration, memory mapping

• Programming Tools
• Programming hardware requires special tools, special expertise

Application Acceleration Co-Processor

QDR SRAM

3.2 GB/s

Application Acceleration
Xilinx Virtex II Pro

AMD Opteron
HyperTransport

Cray RapidArray
Interconnect

3.2 GB/s

2 GB/s2 GB/s

3.2 GB/s

RAP

3.2 GB/s

3.2 GB/s

3.2 GB/sRapidArray

Processor to FPGA and vice versa

• Since the Acceleration FPGA is connected to the local processing node through its
HyperTransport I/O bus, the FPGA can be accessed directly using reads and writes.

Req Req
RespResp

• Additionally, a node can also transfer large blocks of data to and from the Acceleration
FPGA using a simple DMA engine in the FPGA’s RapidArray Transport Core.

RAPProcessor FPGA

D
M

A

RapidArray
Transport

HyperTransport

• The Acceleration FPGA can also directly access the memory of a processor. Read and
write requests can be performed in bursts of up to 64 bytes.

• The Acceleration FPGA can access processor memory without interrupting the processor.

• Memory coherency is maintained by the processor.

Processor to FPGA and vice versa

Req Req
RespResp

RAPProcessor FPGA

D
M

A

RapidArray
Transport

HyperTransport

6.015.955.94Read(MB/s)
132013201260Write (MB/s)

memcpypointerarray

J. Tripp et al, FCCM’05

Reconfigurable Computing

The Barriers to Reconfigurable Computing

• Starving the FPGA
• Bandwidth and latency to the FPGA limited by PCI bus

• FPGA, Processor Interaction
• Job scheduling, Linux integration, memory mapping

• Programming Tools
• Programming hardware requires special tools, special expertise

FPGA Linux API

 Administration Commands
 fpga_open – allocate and open fpga
 fpga_close – close allocated fpga
 fpga_load – load binary into fpga

 Control Commands
 fpga_start – start fpga (release from reset)
 fpga_stop – stop fpga

 Status Commands
 fpga_status – get status of fpga

 Data Commands
 fpga_put – put data to fpga ram
 fpga_get – get data from fpga ram

 Interrupt/Blocking Commands
 fpga_intwait – blocks process waits for fpga interrupt

Programmer sees get/put and messageProgrammer sees get/put and message
passing programming modelpassing programming model

Reconfigurable Computing

The Barriers to Reconfigurable Computing

• Starving the FPGA
• Bandwidth and latency to the FPGA limited by PCI bus

• FPGA, Processor Interaction
• Job scheduling, Linux integration, memory mapping

• Programming Tools
• Programming hardware requires tools, expertise

Applications Development Framework

FPGA Development Flow

VHDL,
Verilog,
C

Modelsim

Synplicity,
Leonardo,
Precision,
Xilinx ISE

Xilinx ISE

Simulate

ImplementSynthesize HDL

Xilinx
ChipScope

From Command
line or Application

Cores

Download

Verify

RAP I/F,
QDR RAM I/F 0100010101

1010101011
0100101011
0101011010
1001110101
0110101010

Binary File

Metadat
a

Not a common or familiarNot a common or familiar
HPC programming paradigm!!HPC programming paradigm!!

Three-Phase Implementation

• Traditional Programming Model
• VHDL, Verilog

• Off-The-Shelf Libraries
• Cray and third party acceleration libraries
• Prepackaged, turnkey applications

• High-Level Compilers
• C, Graphical, Matlab, …

• Leverage of existing IP Cores (Xilinx, OpenCore.org)
or industry/academic initiatives(OpenFPGA)

• Academic collaborators

First Level Abstraction: VHDL
http://www.eda.org/fphdl/
Floating-Point HDL Packages Home Page

Working on a floating point synthesis package for VHDL and Verilog based on IEEE 754. We
are a task force assigned to the 1076.3 working group and will be releasing our code as part
of that IEEE PAR.

Group Objectives:
Create a parameterized package for variable width floating point in both VHDL and Verilog.

Higher Level Abstractions: C Languages

 Requirements
 At a minimum:

 Multi-threaded
 Communication and

synchronization channels
 Bit level manipulations

 Others:
 Good-to-excellent QoR
 Target architectures
 Standards?

Higher Level Abstractions: Mobius
(www.codetronix.com)

 Pascal-like CSP based language
 Types ,records, arrays, fp arithmetic

 Synchronization and communication by handshaking over
channels

 Generate HW, SW or HW/SW code
 General purpose & dataflow algorithms

FPGA Applications: DES

FPGA Applications: AES

FPGA Applications

FPGA Applications: 1D Convolution

!
"=

"=
N

Nn

niPnwiP)()()(*

FPGA Applications: 1D Convolution

!
"=

"=
N

Nn

niXnfiY)()()(

Example: Smith-Waterman

Biosciences: Molecular Design
 RC for Molecular Modeling &

Docking
 Reduced Precision

 Fidelity of observed macro
phenomena

 High frequency/low
frequency

 Critical resource: hard
multipliers

 O(N logN) methods

Gromacs CPMD

Linux

Y. Gu et al, FCCM’05

Sample Applications for Acceleration
Kirchhoff Pre-stack Time Migration

• Estimated or preliminary speed-ups of 10-50 versus 2.4 GHz
Pentium 4

 50M Kirchhoff summations per second
• Power consumption < x2
• Footprint ~ x1.0

Cost Analysis
 Commodity industry cost

structure is driven by
 Cost of infrastructure
 Cost of operation (power,

cooling, …)

 Move processing infrastructure
closer to acquisition
infrastructure

(TAMU)(TAMU)

Verification Languages

Verification Languages and LTL

 Linear Temporal Logic (LTL)
 The usual Boolean propositional logic (AND, OR, NOT)
 Temporal operators (NEXT, UNTIL)
 Quantifiers (FORALL, EXIST-ONE)

 In EDA:
 Mathematical basis of verification languages

 Mathematical syntax akward

 In CS:
 Concurrency and computer-aided SW verification

 In CNA (complex network analysis):
 Control (output regulation, stabilization, …) of complex

systems

Goal:

Develop comprehensive, mathematically rigorous, and empirically
grounded framework within which to understand complex networks and
apply understanding to real world problems.

Applications of interest:

• Social systems (e.g., terrorist networks, WMD programs,
socioeconomic systems);

• Biological networks (e.g., gene regulatory networks, metabolic,
protein interaction);

• Technological systems (e.g., EP grids, computer networks);

• Information systems (e.g., www);

Analysis:

• Information extraction

• Network control

What is Network Analysis…?

Nodes:

• Extremely simple dynamic systems

• (low cognition agents, Boolean), …

Edges:

• Uni/bi-directional

Interaction (Control, Communication, and Synchronization):

• Linear Temporal Logic (LTL)

Questions asked:

• Is there a solution?

• Finite number of transitions?

• Is there a path?

• What is the shortest path?

What are Networks …?

Drosophila gene regulatory network

Standard model for segment polarity gene network admits
finite bisimulation which preserves state space equilibrium
structure and, therefore, gene expression patterns.

gene interaction network sample vertex update
rules

Gene Regulatory Networks in LTL

Drosophila gene regulatory network (Colbaugh, Glass
analysis)

initial state normal equilibrium

wg

en

mutant equilibrium

