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Cray and HPCC:
Benchmark Developments and Results from the Past Year

Nathan Wichmann, Cray Inc.

ABSTRACT: The High Performance Computing Challenge (HPCC) benchmark
continued to evolve in 2004 and 2005. HPCC developments will be discussed with
particular emphasis on what has changed since CUG 2004. Results will be given for a
number of different Cray machines.
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Introduction
The High Performance Computing Challenge (HPCC)
benchmark was first introduced in November 2003, and
this author first presented results for Cray machines at
CUG 2004.  At that time HPCC consisted of five to six
primary test benchmarks, with each of those benchmark
sometimes having multiple sub results.  But since the
spring of 2004 HPCC has continued to evolve.  Several
new tests have been added, some stressing global
bandwidth, while other test single CPU performance.

At the same time, HPCC has started to show up in
procurements of real machines.  This is a very exciting
development that seems to show HPCC gaining traction,
not only as a method of testing one’s machine and
comparing it to others, but as a tool in deciding how to
spend real money.  But as was the case one year ago,
there is no standard method of using numbers generated
by HPCC when comparing machines.

This paper will look at both of these areas.  First, we will
review each sub benchmark in the HPCC suite.  Along the
way, we will point out the newest tests, or in some cases
how tests have changed since the spring of 2004.

We will also review the different methods of comparison
when using HPCC.  There is no such thing as a perfect
method, so the author will attempt to simply point out the
pros and cons of each.

HPC Challenge Suite
Let’s look at the eight primary tests in the HPCC suite to
see what each test implies about real world application
performance, and to look at how individual systems score
across this breadth of tests. As Partridge observes, ”The
HPC Challenge benchmark suite reflects a spectrum of
attributes required to attain HPC success. While some
systems may score well on individual tests, such as
Linpack, balanced platforms, such as Cray's, achieve high
marks across a broad range of benchmarks, attesting to
designs that offer the requisite balance of compute and
communication capabilities.”

The HPC Challenge benchmark suite is intended to test
multiple attributes that can substantially contribute to the
real-world performance of HPC systems.  The
collaborators’ goal was to augment the Linpack
benchmark with additional benchmarks tests that would
allow HPC users to examine performance of HPC
architectures; tests that would provide performance
indicators for not only processing power, but also
interconnect and memory system performance. To do this,
the test suite needed to use kernels that reflect real-world
communication patterns for memory access patterns and
interprocessor data exchange. The resulting suite includes
23 tests (see Table 1) in eight categories, and stresses not
only the processors, but also the memory system and the
interconnect maps each test category to the aspects of the
HPC system it evaluates.
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Table 1 - HPC Challenge Benchmark Suite

HPC Challenge
Benchmark Test

Description

Indicators of Process Performance

1 HPL: Linpack TPP benchmark
which measures the
floating point rate for
solving a linear system of
equations (not considered
here)

2 DGEMM measures the floating
point rate of execution of
double precision real
matrix-matrix multiplication

Indicators of Communication Performance

7
&
8

MPI Random
Ring latency test
( beff) &
bandwidth

(MPI bandwidth & latency
test): a set of tests to
measure the latency and
bandwidth of a number of
simultaneous
communication patterns

5 FFTE measures the floating
point rate of execution of
double precision complex
one-dimensional Fast
Fourier Transform

2 PTRANS (parallel matrix transpose)
measures global network
bandwidth

Indicators of Memory System Performance

3 Random Access measures the rate of
random updates of
memory

4 STREAM
SN-STREAM
(single node)
EP-STREAM
(embarrassingly
parallel)

measures sustainable
memory bandwidth for
simple array accesses

High Performance Linpack (HPL)
G-HPL primarily tests processor performance and is
included in this suite to allow comparison with the Top
500, which is based on the very same test.   This test
involves solving a randomly generated dense linear
system of equations in double floating-point precision
(IEEE 64-bit) arithmetic using MPI and is measured in
teraflops, or trillions of calculations per second
(TFLOPS).  Figure 1 – HPL results for 128 CPUS shows
LINPACK numbers for a number of systems with similar

numbers of CPUS.  One can see that the Cray X1(E) do
get considerably higher performance for an equal number
of CPUS but they are vector processors and are often
purchased in lower CPU counts.
Figure 1 - HPL results for 128 CPUS
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Figure 2 shows the results on systems with larger CPUS
counts.  Here the XT3 stands out with a combination of
large CPU counts, very good peak per CPU, and very
good percentage of peak.  The IBM Blue Gene machine is
much lower, it has a very low peak CPU rate AND a low
percentage of peak, even on LINPACK.

Figure 2 - HPL Results for large processor counts
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DGEMM
The DGEMM test measures the floating point rate of
execution of double precision real matrix-matrix
multiplication in gigaflops per second (GFLOPS) using
the DGEMM BLAS library routine.
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DGEMM is the purest measure of processor floating point
performance, as this routine is very coarse grained, and
places no load on the interconnect and almost none on the
memory system. DGEMM is useful as a measure of the
very best performance one could ever achieve on highly
computational intensive codes.

This is a new test first added in the summer of 2004.
While it is considered by many to be one of the 8 primary
tests, this author really views it as a sub test of HPL,
much like Single Node and Embarrassingly parallel
versions of Random Access are subtest of Global Random
Access.  Result for DGEMM correlate strongly with per
CPU HPL results.

One source of confusion surrounding the new DGEMM is
that it may be run on a node, as opposed to a single
processor.  This can favor nodes with more processors,
such as the 4-way nodes in the IBM Power4 SMP
systems.

PTRANS
The PTRANS (parallel matrix transpose) benchmark
implements a parallel matrix transpose for two-
dimensional block-cyclic storage. This is an important
benchmark because it exercises the communications of
the computer heavily on a realistic problem where pairs of
processors communicate with each other simultaneously.
PTRANS is a useful test of the total communications
capacity of the network, measured in gigabytes per
seconds (GB/s).

Figure 3 shows the performance of PTRANS on similar
CPU counts.  Again, the Cray X1 shows up as powerful,
but the XT3 is also very high.
Figure 3 - GPTRANS  Results

PTRANS for 128 Processor Systems
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Figure 4 shows the performance of PTRANS on large
system.  Here the Cray XT3 clearly stands out and is
much better than the IBM Blue Gene.  In fact, a 272 XD1
system is twice and good as a 1024 Blue Gene machine.

Figure 4 - PTRANS results on large processor counts
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Several molecular dynamic codes and most climate
models must transpose large arrays to perform multi-
dimensional Fast Fourier Transforms (FFTs), relying
heavily on the processor’s ability to exchange data
quickly.   Applications such as CPMD (a computational
chemistry code that simulates static and dynamical
properties of solids, liquids and disordered systems),
FPMD, and VASP molecular dynamics simulation codes
and climate spectral models, are most likely to perform
well on systems that do well on the PTRANS benchmark.

One problem this author has seen with PTRANS is that
performance can vary significantly with a small change in
the parameter settings.  This behavior has been observed
on multiple platforms.  To counter this, in the HPCC input
file there is a way to specify running the PTRANS test
with several different blocking factors.  The best results is
selected and reported in the final summary.  While this
helps one get better numbers, the underlying behavior still
can make it difficult to interpret PTRANS numbers.

STREAM EP–Triad
STREAM is a simple synthetic benchmark that measures
sustainable memory bandwidth to local memory, in
gigabytes per second, and the corresponding computation
rate for a simple vector kernel. EP-STREAM is run in an
embarrassingly parallel manner, with each node
performing the calculation at the same time.

STREAM provides a good approximation for high
memory bandwidth codes or codes that need sections of
high memory bandwidth.   It is worth noting that
STREAM assesses bandwidth to memory only, and does
not stress interprocessor communications, or I/O
communications   .    

Figure 5 shows the results per processor for EP-STREAM
and SN-STREAM.  Comparing the SN Triad/ CPU
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number to the EP Triad/ CPU number for a given system
indicates how the system performance will degrade as the
load approaches capacity.   The Cray X1E show
significant degradation between SN and EP.  This is not
surprising as it was a major processor upgrade to the Cray
X1 with little to no change in the memory subsystem.  On
the other hand, the Cray XT3 and the Cray XD1 show
little to no degradation going from SN to EP results.  One
can expect per CPU performance to be constant, even as
you load up the system.

One thing to note here is the IBM result is actually for a
run where a “node” equals 4 CPUS.  It is not clear from
the material on the web site if this means that STREAM
was run using shared memory parallelism across 4 CPUS
or if this means that only 1 CPU was running but still had
zero contention access to the bandwidth normally used by
4 CPUS?  Either way, this makes the IBM results look
much large than it really is.

Figure 5 - STREAM Results
STREAM for 128 CPUs
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A very informative way of looking at these results is to
multiple the per process EP-TRIAD result by the number
of processes, creating a Cumulative Bandwidth number.
Figure 6 shows the results of that calculation.  Here one
can clearly see that the combination of large processor
counts, very good bandwidth per CPU and zero
contention between CPUs makes the Cray XT3 stand out.
The Cray XT3-1200 has over 6 times the cumulative
bandwidth of an IBM Blue Gene using only 10% more
CPUs.

Figure 6 – Cumulative STREAM TRIAD bandwidth
for large processor counts
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Random Access
The Random Access test measures the rate at which the
computer can update pseudo-random locations of its
memory, expressed in billions (giga) of updates per
second, or GUPS. By testing gather-scatter functions, the
Random Access kernel provides an indication of how
codes, such as those that use adaptive mesh refinement
(AMR), that need frequent, random access to data, will
perform on a given system. In adaptive mesh calculations,
the decision to refine the grid is made cell-by-cell and
cycle-by-cycle continuously throughout the problem, thus
placing frequent, random demands on memory access.

Figure 7 shows the results of solving the Global Random
Access problem on a number of machines with
approximately 128 CPUS.  Here we see that the Cray
X1(E) gets a much higher GUPS number compared to the
other machines.  This is due to two reasons.  First, the
version run on the Cray X1(E) is written using Unified
Parallel C, or UPC.  UPC allows one to set up a
distributed array called TABLE, and then, using simple C
syntax, directly access that TABLE.  This not only greatly
simplifies the algorithm, but also eliminates the overhead
associated with using MPI.  The second reason for the
very high results is that the Cray X1 can then vectorize
the main loop containing all of the updates to TABLE.
This means that the Cray X1 can maintain thousands of
outstanding memory references per CPU to locations
across the machine.
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Figure 7 – Global Random Access Results
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It is still valuable to directly compare the results for the
microprocessors using MPI.  Figure 8 shows the Cray
XD1 having very good performance in this area, over 4
times the performance of a similar sized SGI and 30 times
the performance of IBM.  The Cray XT3’s performance,
while better than the IBM, is not as good as the XD1.
This is not surprising given the early state of the XT3 and
the fact its MPI is not yet optimized.

Figure 8 – Global Random Access Results for
Microprocessors
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MPI and Random Ring Latency and
Bandwidth
These tests compare latency and bandwidth for MPI and
Random Ring communication patterns. While frequently
you will see vendors publish results for the MPI Ping-
Pong Latency test, as it is relatively easy to measure, the
MPI test measures a transfer of only 1 byte between only
2 processors in a system. The Random Ring latency test

uses a more realistic scenario where all processors in the
system communicate with their logical, but not
necessarily physical, neighbors, at approximately the
same time. As this communication pattern is very
common in codes that break the problem up into sections
of a grid, the Random Ring tests are better predictors of
real world performance.

Codes that send many small messages are very latency
sensitive. For example the widely used ocean modeling
code, Parallel Ocean Program (POP) from Los Alamos
National Laboratory, and LS-DYNA engineering software
from Livermore Software Technology Corp. (LSTC) are
highly dependent on global summations, which require
the processors to communicate frequently with small
messages.  The computing system’s latency is a
significant factor in how well POP or LS-DYNA will run
on that system, and therefore, Random Ring latency is a
good predictor of real world performance for applications
that place heavy demands on simultaneous
communications.

Figure 9 – Random Ring Latency Results shows the Cray
XD1 system in the lead with a significantly lower latency
than any other system, followed by the SGI Altix.  Again
we see the Cray XT3 with long latency, but we expect
that to improve dramatically as the MPI library is
optimized.

Figure 2 - Random Ring Latency Results
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Figure 10 shows the results for Random Ring Bandwidth
test on a per CPU bases.  Here both the Cray XD1 and the
Cray XT3 are virtually equal and much better than any
other system.
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Figure 3 - Random Ring Bandwidth Results
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FFTE
The FFTE test measures the floating point rate of
execution of complex one-dimensional Fast Fourier
Transforms, when using double precision. The global
FFTE exercises the computation and the all-to-all
communications capabilities of the computer, providing a
useful test of the total communications capacity of the
computers network, or interconnect. It is measured in
gigaflops per second.

The version supplied is a conversion of Fortran to C, as a
result, a significant amount of dependence information is
lost along the way.  Furthermore, it is written in a non-
vector friendly format.  These two realities significantly
hurt performance on vector machines compared to what is
achievable.  There have been some optimizations done to
regain the dependence information and allow some
vectorization, but in the future I would like to explore the
use of other FFTE packages that are more vector friendly.

Figure 11 – Global FFT Results
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Figure 11 shows the performance of G-FFT on machines
of approximately 128 CPUs.  We see that both the Cray
XT3 and the Cray XD1 are clearly ahead of everyone
else.  In particular, that XT3 has over 8 times the
performance of the POWER4+ based IBM.

Cray has experience problems running the Global FFT
test on all three of our platforms.  HPCC seems to run
small G-FFT problems, both in terms of memory size and
number of CPUS, without difficulties, but errors occur as
problem sizes grow.  The problem seems to occur in
initialization and has nothing to do with the actually
computation of the FFT.  Cray has contacted the authors
who were already aware of the problem on other
platforms, so it is not unique to Cray.  We are working
internally as well as with the authors to try and debug the
problem.

Machine Comparisons
With so many numbers being produced by HPCC, it is
sometimes useful to try and make high-level comparisons
between different machines using the data produced.
There are many differing opinions on how this should be
done, we will discuss two methods here.

There is one comparison technique new to the HPCC web
site, and that is the ability to create Kiviat diagrams.  A
Kiviat diagram is a two dimensional graph of radially
extending lines where each line corresponds to a different
metric.  To create the diagram, the web site first turns
each of the main 8 test results into a per process number.
The scores are then normalized so that the machine with
the highest per process score in each test is given a value
of 1 (one) and all other scores are given a value between
zero and one, where zero would be zero performance and
one would be equal to the best performance.  Finally,
these point are graph on the Kiviat diagram and a
perimeter is drawn, connecting all of the points for any
given machine.  Figure 12 shows an example of a Kiviat
diagram comparing SGI machines of different sizes.

As with any method of comparison, there are pros and
cons with using Kiviat Diagrams to examine HPCC
results.  On the positive side, it is visually simple.  The
color-coordinated perimeters are easy to identify and
follow.  The diagram strongly implies that the larger the
area inside the perimeter, the “better” the machine
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Figure 4 – Kiviat diagram for SGI systems with
differing numbers of CPUS.

However the Kiviat diagram also has some negatives.
The most obvious negative is that by plotting the results
on a per processor basis the end result makes smaller
machines look better!  In Figure 12 above, 4 machines are
displayed, all are SGI Altix systems but with different
number of CPUs.  One can see that the SGI system with
only 32 CPUs consistently has the best results in each
category.  The SGI system with 1008 CPUS has much
smaller per process values and thus has a much smaller
area inclosed within the perimeter.  Any person looking at
this graph, but without being told what machines the lines
represented, would conclude that the machine
corresponding to the yellow is much, much better, and
more powerful than the machine corresponding to the red
line.  This would obviously be incorrect.  Thus, one
cannot use the Kiviat diagram with per process scores to
determine which of two systems is the more powerful
machine.  Other problems are that the diagram effectively
shows all 8 tests weighted equally where people may not
agree with that weighting.  Finally, I was not able to plot
optimized results on the same graph as base results,
although this is probably something that can be easily
corrected.

The Kiviat Diagram may be useful when comparing 2
systems of similar number of CPUs.  Figure 13 shows the
results for a 1008 processor SGI system vs. a 1024
processor Blue Gene system from IBM.

Figure 13 – Kiviat diagram for two systems with
similar numbers of CPUS.

By examining figure 13 it is obvious that each machine
has different strengths.  The SGI system is obviously
better at CPU intensive test like TRIAD, DGEMM, and
HPL, and is also better at PTRANS and Random Ring
Bandwidth.  The IBM has good Random Ring Latency
and Random Access, and surprisingly, good Global FFT
performance.  It appears that the SGI has the superior
performance overall because the area inside it’s perimeter
is larger than the IBM’s, but this might just be due to how
the different tests are arranged.

An alternative way to compare machines has been
developed inside of Cray by the author called the App
Kernel Power Rating.  The power rating attempts to
combine the scores for the 5 main kernels; HPL,
PTRANS, Cumulative TRIAD Bandwidth, Global
Random Access, and Global FFT, and combine them into
a single number.  To do this, the result for each machine
in each test is divided by the total power of all the
machines in that category to create a unitless number.
The unitless number is actually equal to the percentage of
the total power in the category.  These 5 numbers are then
combined into a single number.  The numbers generated
for each machine is that machines Power Rating and can
be directly compared to any other machine on the list.

Again, each method of comparison has its pros and cons,
and the App Kernel Power Rating is no different.  In this
case, the pros are that a single number is created which
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can be directly compared to other machines.  This results
in an obvious “winner”.  Obviously that winner can be
debated, but at least this defined method of comparison
comes up with a single answer.  The method is also very
simple to understand.  The normalizations are
straightforward and the weighting is clear, and could
easily be changed to accommodate other’s opinions.
Another positive is that it focuses on kernels that actually
do real work, and thus are better predictors of end
performance.  While the MPI tests are very useful, it is
difficult to determine how they effect performance or real
applications, and even more difficult to combine with the
other numbers into a Power Rating.  This author thinks
that it is best to simply examine those numbers in
isolation, and perhaps to use them to better understand the
performance of the other kernels.  Finally, the most
important positive feature about the App Kernel Power
Rating is that larger machines are considered more
powerful, and this is obvious from the score.  This is both
intuitive and useful for eventually making decisions about
which machines are better for customers.

One negative of the App Kernel Power Rating is that all
of the tests are considered equal.  While this can be easily
changed, there is no other obvious weighting.  Another
negative is that the MPI tests are not included.  This is
largely the result of finding it difficult to include those
results in a meaningful way, even after normalization.

FIGURE 14 App Kernel Power Rating for 128 CPU
machines
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Figure 14 shows the App Kernel Power Rating for
machines with approximately 128 CPUS.  From this
graph the Cray X1 and the X1E have very high Power
Ratings.  This is the result of their exceptionally high
Global Random Access scores.  We can still examine the
other machines, ignoring the vector machines for the
moment.  We see that the Cray XT3 is the most powerful
with the XD1 close behind.  Both are more powerful than
the SGI Altix despite the Altix having a higher theoretical
peak performance.  The IBM is a distant last, with less
than half the performance of the XD1 and about one third
the performance of the Cray XT3.
The definition of the Power Rating had to be adjusted to
accommodate the problems with large Global FFTs

mentioned earlier.  For simplicity, the Global FFT was
simply left out, combining the remaining 4 kernels.

FIGURE 15 App Kernel Power Rating for large
systems
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There are two things I would like to point out in figure 15.
First, the 3744 processor Cray XT3 is clearly the most
powerful machine on the list, more than 4 times as
powerful than the SGI Altix despite having fewer than 4
times the number of CPUS.  Second, notice that the 272
processor Cray XD1 is actually more powerful than the
IBM Blue Gene, even though the IBM has 4 times the
number of CPUs and the difficulties of trying to scale to
those higher CPU counts.

Conclusions
It is obvious from the events of the last year that HPCC
continues to grow in both its usefulness and adoption.  It
has appeared in several recent benchmarks and it is likely
to be included in more in the future.  As people begin to
use it more, people will try and make high-level
comparisons of different machines.  This author will
continue to watch how those results are used and
interpreted in the coming year.
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