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Abstract

All three of Cray’s most recent products, X1/X1E, XD1, and XT3, are built around high performance
interconnects. In this paper we contrast and compare interprocess communication performance for these
three systems. We describe peak point-to-point and collective communication performance, looking
at the performance impact of network topology. We also analyze the performance of two application
benchmarks whose performance is sensitive to communication latency and bandwidth, respectively, to
identify the practical implications of the communication benchmark results.

1 Introduction

The X1 was the first of Cray’s new scalable vector
systems [5, 10]. The X1 is characterized by high-
speed custom vector processors, high memory band-
width, and a high-bandwidth, low-latency intercon-
nect linking the nodes. Oak Ridge National Labo-
ratory (ORNL) installed a 32 processor (MSP) Cray
X1 in March 2003. This grew to a 128 processor
system in July 2003, to a 256 processor system in
October 2003, and to a 512 processor system in June
2004. A 1024 processor X1E will be installed during
the summer of 2005.

The Cray XD1 (formerly from Octigabay) is an
AMD Opteron-based cluster with a low latency Rap-
idArray interconnect [6, 12]. ORNL installed two 72
processor Cray XD1s for evaluation in October 2004.
The systems were reconfigured as a single 144 pro-
cessor system in May 2005.

The Cray XT3 is Cray’s third-generation mas-
sively parallel processing system [7, 16]. The system
builds on a single processor node, using the AMD
Opteron, and uses a custom chip to provide inter-
processor communication. ORNL installed a 96 pro-
cessor system in January 2005. A 1900 processor

system was installed in March 2005. This second
system grew to 3800 processors in April 2005, and
will grow to 5200 processors during the summer of
2005.

The performance of the current class of HPC ar-
chitectures is dependent on the performance of the
memory hierarchy, including that of the intercon-
nect between nodes in a cluster. All three of the
current Cray products provide high performance in-
terconnects, but they utilize different technologies,
resulting in differences in latency, bandwidth, scala-
bility, and price point. In this paper we examine the
impact of these different approaches on performance,
and performance peculiarities, of the interconnects
of all three Cray systems. We use a number of stan-
dard and custom microbenchmarks to examine the
basic characteristics of communication performance.
We then examine the performance of two application
codes that are known to be sensitive to the latency
and bandwidth, respectively, in order to identify the
practical impact of the differences in communication
characteristics.

Note that all three systems are undergoing rapid
development. The XT3 latency is expected to drop
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from 30 microseconds to under 5 microseconds over
the next year. The XD1 has an optional fat tree
configuration that should increase peak bandwidth
significantly. The X1 at ORNL is being upgraded
to an X1E, which will double the contention for in-
ternode bandwidth, decreasing peak communication
performance but increasing peak computational rate
and decreasing price per processor. Thus the perfor-
mance reported will change over time, and this paper
represents a time-sensitive snapshot of the commu-
nication performance characteristics.

The outline of the paper is as follows. Section 2
is an overview of the three Cray interconnects. It
also includes a brief description of all of the systems
mentioned in the paper. Section 3 is a description
of the MPI point-to-point microbenchmark results.
Section 4 is a description of the collective operator
microbenchmark results. Section 5 is a description
of the application benchmark results. Section 6 con-
tains concluding remarks.

2 Interconnect Descriptions

The focus here is on the interconnects of the three
systems. However, larger issues of system design, in-
cluding the processor and symmetric multiprocessor
(SMP) node, are also important to understanding
the interconnect performance, and will be summa-
rized where appropriate.

2.1 Cray X1

The X1 has a hierarchical design with the basic
building block being the multi-streaming processor
(MSP), which is capable of 12.8 GFlop/s for 64-bit
operations (or 25.6 GFlop/s for 32-bit operations).
Each MSP is comprised of four single-streaming
processors (SSPs), each with two 32-stage 64-bit
floating-point vector units and one 2-way super-
scalar unit. The SSP uses two clock frequencies, 800
MHz for the vector units and 400 MHz for the scalar
unit. Each SSP is capable of 3.2 GFlop/s for 64-bit
operations. The four SSPs share a 2 MB “Ecache.”

Four MSPs, 16 memory controller chips (M-
chips), and 32 memory daughter cards form a Cray
X1 node. The memory banks of a node provide 204
GB/s of bandwidth, enough to saturate the paths
to the local MSPs and service requests from remote
MSPs. Local memory latency is uniform for all pro-
cessors within a node. Each bank of shared memory
is connected to a number of banks on remote nodes,
with an aggregate bandwidth of roughly 50 GB/s
between nodes.

The Cray X1 nodes are connected using X1 rout-
ing modules. Each node has 32 1.6 GB/s full duplex
links. Each memory module has an even and odd 64-
bit (data) link forming a plane with the correspond-
ing memory modules on neighboring nodes. Eight
adjacent nodes connected this way form a processor
stack. An X1 cabinet is comprised of 16 node boards
and 4 routing boards (or two processor stacks). Each
routing board has 8 routing modules. The rout-
ing module ASIC is an 8-way non-blocking crossbar
switch supporting worm-hole routing. Communica-
tion latency increases by about 500 ns per router
hop. With 8 or fewer cabinets (up to 128 nodes or
512 MSPs), the interconnect topology is a 4-D hy-
percube. Larger configurations use an enhanced 3D
torus, where one dimension of the torus, the proces-
sor stack, is fully connected.

For most of these experiments the ORNL system
was running with programming environment version
PrgEnv5.3.0.2 and operating system version UNI-
COS/mp 2.5.38. For more information on the sys-
tem specifics and on the performance characteristics
of the ORNL Cray X1, see [10, 1, 11].

2.2 Cray XD1

The experiments described here were run on six
chassis of early access Cray XD1 nodes. Each chas-
sis has 6 SMP nodes, each node with 2 64-bit AMD
Opteron 248 series processors. Each processor in-
cludes a single Opteron core, integrated memory
controller, three 16b 800 MHz HyperTransport (HT)
links, a 64KB L1 instruction cache, a 64KB L1 data
cache, a 1MB L2 cache, and 4 GB of memory. The
Opteron core has a 2.2 GHz clock, three integer
units, and one floating-point unit that is capable of
two floating-point operations per cycle [2], for a peak
rate of 4.4 GFlop/s per processor. The total system
had 72 processors and 288 GB of memory. (The sys-
tem has since been upgraded to twelve chassis and
144 processors.)

Custom RapidArray Communications Processors
interface the Opteron HyperTransport bus to the
RapidArray interconnect fabric. In the direct con-
nect topology used in the ORNL system there are
two network fabrics, main and expansion. The main
fabric has two RapidArray links per node, achieving
4 GB/s per node and 48 GB/s aggregate bandwidth
per chassis. There are also 12 external Rapid Ar-
ray interchassis links, for an aggregate interchassis
bandwidth of 24 GB/s. Utilizing the expansion fab-
ric as well doubles the number of links and the peak
bandwidths. For the ORNL six chassis system, each
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chassis was connected to every other chassis by two
Rapid Array interchassis links for each fabric. An
optional switch can be used to instead construct a
fat tree network, supporting up to 8 GB/s band-
width. This was not available on the ORNL system
at the time of these experiments.

For the experiments presented in this paper the
ORNL system was running Linux version 2.4.21 with
a modified Linux scheduler that supports synchro-
nized system interrupts, which improves application
performance scalability. The MPI communication
library was a port of MPICH 1.2.5.

For more information on the system specifics
and on the performance characteristics of the ORNL
Cray XD1, see [12].

2.3 Cray XT3

The XT3 system utilizes a single processor node, or
processing element (PE), and a custom interconnect.
The XT3 uses a blade approach for achieving high
processor density per system cabinet. On the XT3,
a compute blade hosts four compute PEs, and eight
blades are contained in one chassis. Each XT3 cab-
inet holds three chassis, for a total of 96 processors
per cabinet.

The ORNL XT3 uses 64-bit AMD Opteron
model 150 processors. This model includes a single
Opteron core, integrated memory controller, three
16b 800 MHz HyperTransport (HT) links, a 64KB
L1 instruction cache, a 64KB L1 data cache, a 1MB
L2 cache, and 2 GB of memory. The Opteron core
has a 2.4 GHz clock, three integer units, and one
floating-point unit that is capable of two floating-
point operations per cycle [2], for a peak rate of 4.8
GFlop/s per processor.

Each Opteron processor is directly connected to
the XT3 interconnect via a Cray SeaStar ASIC (ap-
plication specific integrated circuit). The SeaStar
is a routing and communications device. It acts
as the gateway to the XT3’s high-bandwidth, low-
latency interconnect. The PE is connected to the
SeaStar chip with a 6.4 GB/s HT path. The router
in SeaStar provides six high-speed network links to
connect to six neighbors in a 3D torus/mesh topol-
ogy. Each of the six links has a peak bandwidth
of 7.6 GB/s. With this design, the Cray XT3 by-
passes communication bottlenecks such as the PCI
bus. The interconnect carries all message passing
traffic as well as I/O traffic.

The XT3 at ORNL is currently a 40 cabinet sys-
tem. These PEs are connected in a 10 x 16 x 24
(X x Y x Z) configuration with a torus in X and

Z dimensions and a mesh in the Y dimension. The
topology of the ORNL XT3 is illustrated in Fig. 2.1.
Each “logical” 16x24 processor cabinet in the figure
is made up of four 4x24 physical cabinets. The X-
dimension ordering of cabinets is 0-2-4-6-8-9-7-5-3-1.
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X-dimension (torus):  10 cabinets (4 shown here)

Y-dimension (mesh): 16 rows per cabinet

Z-dimension (torus):  24 columns per cabinet

Figure 2.1: Topology of XT3 at ORNL

For these experiments the ORNL system was
running the Catamount operating system version
1.15 on the compute PEs and SuSe Linux version
2.4.21 on the service PEs. The MPI communica-
tion library was a port of MPICH 1.2.5. For more
information on the system specifics and on the per-
formance characteristics of the ORNL Cray XT3,
see [16].

2.4 System Summaries

Table 1 summarizes some of the processor and SMP
node specifications for the three Cray systems. We
also include data for an SGI Altix 3700, an IBM p690
cluster with an HPS interconnect, the IBM SP at
the National Energy Research Scientific Computing
Center (NERSC), and the HP/Compaq AlphaServer
SC at the Pittsburgh Supercomputer Center (PSC)
that we use for comparisons later in the paper.

3 Point-to-Point Benchmarks

The first step in our evaluation was to measure MPI
latency and bandwidth in point-to-point communi-
cations. Table 2 summarizes the performance we
observed with custom microbenchmarks developed
at ORNL. These benchmarks are similar in spirit to
most communication microbenchmarks, and the re-
sults should be comparable to those in other bench-
mark suites.

These data indicate the following.
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X1 XD1 XT3 Altix p690 SP Alpha-
3700 cluster Server SC

Processor Cray AMD AMD Intel IBM IBM Compaq
MSP Opteron Opteron Itanium2 Power4 Power3-II Alpha EV68CB

MHz 800 2200 2400 1500 1300 375 1000
L1 16KB 64KB 64KB 32KB 32KB 64KB 64KB
L2 2MB 1MB 1MB 256KB 1.5MB 8MB 8MB
L3 6MB 128MB/node
GFlop/s/proc. 12.8 4.4 4.8 6.0 5.2 1.5 2.0
proc./node 4 2 1 2 32 16 4
memory/node 16GB 8GB 2GB 16GB 32-128GB 16-64GB 4GB
total proc. 512 144 3800 256 864 6080 764

Table 1: System Descriptions

MPI X1 XD1 XT3 Altix p690 SP Alpha-
cluster Server SC

Latency (8 Byte msg., 1 way, microseconds)
intra-node 7.3 1.7 – 1.1 3 8.6 4.9
inter-node 7.3 1.7 29 1.1 6 17 4.6

Bandwidth (1 MByte msg., unidirectional, MB/s)
intra-node 9503 1087 – 1595 1580 600 733
inter-node 9364 1342 1111 1397 936 320 265

Bandwidth (1 MByte msg., bidirectional, MB/s)
intra-node 17145 1095 – 2286 2402 NA 715
inter-node 16936 2173 2150 2561 985 356 254

Table 2: Measured MPI Performance

• MPI latency is small on both the XD1 and the
Altix.

• MPI latency is relatively large on the X1, and
is very large on the XT3 (currently).

• MPI bandwidth is much higher on the X1 than
on the other systems.

• Bidirectional bandwidth is significantly higher
than unidirectional bandwidth (up to twice
as much) on all of the Cray systems except
intra-node on the XD1. The XD1 results re-
ported here use the current default in which
MPI communication between two processors
in the same node goes through the RapidAr-
ray network fabric. There is also an option on
the XD1 to use a shared memory implemen-
tation of MPI for intra-node communication.
This could change the intra-node performance
characteristics.

As will be shown later in the paper, the
SHMEM communication library [13] and Co-Array
Fortran [15] both provide much lower communica-
tion latency than MPI on the X1. SHMEM is also
available on the XD1 and XT3, but it does not pro-
vide performance superior to MPI on either system
at the current time.

3.1 Distance

The next aspect of communication performance that
we examine is distance, i.e. the extent to which the
physical distance between processors affects commu-
nication performance when all of the other allocated
processors are idle.

Cray X1. The X1 experiments were run on 92
contiguously-numbered MSPs in a nondedicated sys-
tem. Figure 3.1 contains graphs of both bidirec-
tional and unidirectional bandwidth measured for
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a number of different message sizes (8B - 8MB).
While results are somewhat noisy, the variation is
less than 20% for all message sizes with no obvious
distance-related dependencies, with the exception of
intra-node communication (distance 1,2,3) for mes-
sage sizes between 32B and 2048B. Note that uni-
directional bandwidth is 50%-60% of bidirectional
bandwidth for the largest and smallest message sizes,
but rises to 75% for messages of size between 512B
and 2048B.
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Figure 3.1: X1 Distance Sensitivity

Cray XD1. The XD1 distance experiments were
run on 5 chassis where consecutive process ids were
assigned to consecutive processors in a chassis. (The
scheduler by default does not assign processes in
this manner.) Figure 3.2 contains graphs of bidi-
rectional bandwidth only, plotted with both linear
and logarithmic Y-axes. While a difference between
performance within a chassis and between chassis
is apparent for small messages, distance does not
impact performance significantly, except that intra-
node bandwidth is approximately half that of inter-
node bandwidth for the largest message sizes. This
may change if the shared memory implementation
of MPI is used within a node.
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Figure 3.2: XD1 Distance Sensitivity

The graph in Fig 3.3 compares performance both
with and without using the expansion fabric, indi-
cating that enabling the expansion fabric does not
improve performance currently. (Data from exper-
iments using the expansion fabric only go out to a
distance of 47.) The graphs in Fig 3.4 compare uni-
directional and bidirectional bandwidth for a subset
of the message sizes. Unidirectional bandwidth is
approximately 60% of bidirectional bandwidth for
large messages and 50% for small messages.



6 Proceedings of the 47th Cray User Group Conference, May 16-19, 2005

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60  70  80  90

M
By

te
s/

se
co

nd

Distance

Bidirectional Bandwidth (MPI) on the Cray XD1

 (2 processors per node)
2MB      

with exp. fabric
no exp. fabric

256KB      
with exp. fabric

no exp. fabric
32KB      

with exp. fabric
no exp. fabric

4KB      
with exp. fabric

no exp. fabric
512B      

with exp. fabric
no exp. fabric

8B      
with exp. fabric

no exp. fabric

Figure 3.3: Performance Impact of XD1
Expansion Fabric

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60  70

M
By

te
s/

se
co

nd

Distance

Bandwidth (MPI) on the Cray XD1

 (2 processors per node)
2MB      

bidir
unidir

4KB      
bidir

unidir
8B      

bidir
unidir

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70

M
By

te
s/

se
co

nd

Distance

2MB      
bidir

unidir
4KB      

bidir
unidir

256B      
bidir

unidir
32B      

bidir
unidir
8B      

bidir
unidir

Figure 3.4: XD1 Uni- vs. Bi-directional
Performance Comparison

Cray XT3. For the XT3 distance experiments we
first examined each coordinate direction separately.
These results are contained in Fig. 3.5. Even plot-
ted with logarithmic Y-axes, it is clear from these
data that neither distance nor coordinate direction
impact performance in these experiments.
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Figure 3.5: XT3 Distance Sensitivity: X, Y, Z

To verify that these experiments are sufficient to
characterize the impact of distance, Fig. 3.6 contains
plots for a distance experiment over 96 processors
of a 4x24 YxZ subgrid. Figure 3.7 compares unidi-
rectional and bidirectional bandwidth for the same
YxZ subgrid. Here unidirectional bandwidth is al-
most exactly 50% of the bidirectional bandwidth in
all cases.
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Performance Comparison

Distance Summary. MPI bandwidth (and la-
tency) is not sensitive to the distance between com-
municating processors on any of the systems, except
for intranode communication on the X1 and XD1.
(Remember however that latency on the XT3 is very
high currently and this may mask sensitivity to dis-
tance for small messages.) MPI unidirectional band-

width is 50% to 60% that of bidirectional bandwidth,
except on the X1 for 512B to 2048B message sizes
where it is 75%. MPI peak bandwidth on the X1
is much higher than that on the other Cray systems
and MPI latency on the XD1 is much lower than
that on the other Cray systems, both in agreement
with the earlier point-to-point microbenchmark re-
sults. While XT3 MPI performance is degraded by
the current high latency, the peak bandwidth is com-
parable to that on the XD1. Also, the XD1 expan-
sion fabric did not enhance communication in these
experiments.

3.2 Contention

While the distance experiments were an interest-
ing examination of basic performance characteris-
tics, pairs of processes rarely communicate in iso-
lation. A more realistic scenario is when multiple
pairs are communicating simultaneously, perhaps as
one stage in a collective communication operation.
The next set of experiments attempt to examine the
worst possible performance in such a scenario, when
p/2 processor pairs are exchanging messages simul-
taneously, with processor i communicating with pro-
cessor i+p/2 for i = 0, ..., (p/2−1). The X-axes used
in the figures in this section are labelled as “Amount
of Data Sent in Each Direction”. Thus an X value
of 1 MB indicates that each processor in a pair sent
a message of length 1 MB to its partner, for a total
of 2 MB of data being sent simultaneously, 1 MB in
each direction.

Cray X1. For the X1 experiments we used 192
consecutive processors, looking at achieved band-
width per processor pair under contention when 1, 2,
4, 8, 16, 32, 64, and 96 processor pairs are commu-
nicating simultaneously for a range of message sizes.
The results are contained in Fig. 3.8. The first graph
is a linear-linear plot while the second is a linear-log
plot, both of the same data. The two views enable
the examination of large and small message perfor-
mance, respectively.

Contention reduces single pair performance for
large messages significantly (from 20 GB/sec to 500
MB/s in the worst case), and there is no evidence
that a lower bound on the performance degradation
has been identified yet. However, it is clear that
there is little contention for messages smaller than
approximately 1024 Bytes. It is also clear that there
a number of distinct performance curves (intranode,
no more than 32 processors, no more than 128 pro-
cessors, greater than 128 processors), reflecting the
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underlying network topology.
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Figure 3.8: X1 Communication Performance
under Contention

Cray XD1. For the XD1 we again controlled the
placement of processes on processors. We looked
at bandwidth per processor pair under contention
when 1, 2, 4, 12, 18, 24, and 30 processor pairs are
communicating simultaneously. Note that 1,2, and
4 pairs reside in the same chassis, 12 pairs involve
all processors in 2 chassis, 18 pairs use 3 chassis, 24
pairs use 4 chassis and 30 pairs use all processors
in 5 chassis. The results are contained in Fig. 3.9.
Contention within a chassis is the same as the con-
tention when two processors in the same SMP node
are communicating, i.e. bandwidth per processor
pair is halved. When two and four chassis are in-
volved, the performance drops to approximately one
eighth of the maximum performance. (For the di-
rect connect topology the four chasis experiment is
equivalent to running two independent two-chassis
experiments simultaneously, and we would expect
the results to be identical.) The performance for
the three chassis experiment is worse than that for
the two chassis experiments, but performance for the
5 chassis experiment is better than that for the two

chassis experiment. It is not clear at the current
time why the direct connect topology would cause
this effect.

Note that performance degradation due to con-
tention is evident even for small messages, with pro-
cessor pairs residing in the same chassis achieving
the best performance. Again, performance for the
5 chassis experiment is better than that for the
other multiple chasis experiments for small mes-
sages. Now, however, all of the other multiple chas-
sis experiments demonstrate the same performance.
Given that these experiments were all run over a two
day period that did not include any reboots, and
that the 5 chassis experiment was the last to be run
(so if any nodes became “slow” or links went down,
the 5 chassis experiment would also be affected), the
data appears to be internally consistent.
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Figure 3.9: XD1 Communication Performance
under Contention

For Fig. 3.10 we repeated the experiment but
with the expansion fabric enabled. One chassis was
unavailable at the time of the experiment, and only
the 1, 2, 3, and 4 chassis experiments were run.
These data indicate that the expansion fabric does
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not have any impact on the contention experiment
results.
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Figure 3.10: Communication Performance under
Contention with the XD1 Expanision Fabric

To verify the nature of these results, we also ran
contention experiments using only one processor per
SMP node. In this case a 6 pair experiment now
uses 2 chassis, a 9 pair experiment uses 3 chassis,
etc. The results are plotted in Fig. 3.11. As the in-
tranode contention is eliminated and the interchassis
message volume is halved, the performance on a per
SMP node basis is doubled for large message sizes
as compared to the results described in Fig. 3.9, as
expected. The experiments preserve the unexpected
differences between 3 and 5 chassis experiments.
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Figure 3.11: XD1 Node Communication
Performance under Contention

Cray XT3. For the XT3, we begin by examining
the maximum contention in each coordinate direc-
tions, using 5 processor pairs in the X dimension,
8 pairs in the Y dimension, and 12 pairs in the Z
dimension, followed by 32, 48, 64, and 96 pairs in

4x16, 4x24, 8x16, and 8x24 YxZ subgrids, respec-
tively. These results are plotted in Fig. 3.12. The Z
dimension contention appears to represent the worse
case behavior, and there is no performance degrada-
tion for small messages.
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Figure 3.12: XT3 Communication Performance
under Contention

While not necessarily significant, it is interesting
to note that contention in the different dimensions
is not identical, as illustrated in Fig. 3.13. In the
X dimension, 4 pairs show more contention than 5
pairs, possible due to the ability to better exploit the
torus when using 5 pairs. The 4 pair performance
is the same in the X and Y dimensions. The perfor-
mance in the Z dimension is more complicated. The
processor numbering in the Z dimension does not re-
flect physical layout for the middle eight processors
(8-15), rather it is in reverse ordering. The curves for
the “alternative” ordering use the physical ordering.
As can be seen, this increases contention, decreasing
performance. If we were to use a similar alternative
ordering in the 48, 64, or 96 pair YxZ contention
experiments, we expect performance would drop to
this lower performance level as well.
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Figure 3.13: XT3 Communication Performance
under Contention for each Dimension

Platform Intercomparisions. Figure 3.14 con-
tains plots of bidirectional bandwidth with and with-
out contention. Unlike the earlier graphs, the Y-axes
are aggregate bandwidth, i.e. worst case single pair
bandwidth multiplied by the number of simultane-
ous pairs. The first graph compares the three Cray
systems when pairs are a distance of 32 apart for the
X1 and XT3 and 30 apart for the XD1. For the XT3
results we used a 4x16 YxZ processor subset with the
alternative ordering, to maximize contention. Here

we again observe the latency advantage of the XD1
and the maximum bandwidth advantage of the X1.
We also observe a higher aggregate bandwidth on
the XT3 than on the XD1 under contention, even
though the single pair performance is identical for
the two systems.

In the second graph we compare performance for
the X1 and XT3 with that for the SGI Altix and
IBM p690 cluster when the distance between pairs
is 64. For the XT3, the processor subset is the de-
fault produced by the scheduler, a 4x24 YxZ subset
and a 4x8 YxZ subset in the next physical cabinet.
With a separation of 64, the default ordering has
similar contention characteristics to that of the al-
ternative ordering and we used the default order-
ing. Here the Altix demonstrates the lowest latency.
However, when compared with the results in the first
plot, the XD1 latency results appear to be compara-
ble. The X1 maximum bandwidth again is the best
among the four systems. The bandwidth for the Al-
tix and the XT3 are similar for the largest message
sizes.
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Figure 3.14: Communication Performance:
Platform Intercomparisons
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Contention Summary. The contention tests
show that contention can limit the bandwidth
achieved by a single processor pair when multiple
processor pairs are communicating simultaneously.
On the XT3 the details of this effect depend on the
contention “direction”. On the XD1 using 1 proces-
sor per node achieves twice the per pair bandwidth
of using two processors for the same number nodes.
This is equivalent to saying that the aggregate band-
width is a function of the number of communicating
node pairs, not the number of processor pairs. The
X1 MPI peak bandwidth is much higher than that
for the other systems, with and without contention,
as per the specifications, while the XT3 and Altix
achieve similar maximum aggregate bandwidth (for
the given contention experiment). The XD1 perfor-
mance is degraded by contention more than that of
the XT3. For these experiments the XD1 used the
direct connect topology. The XD1 contention per-
formance may be improved if a fat tree topology is
used instead.

4 Collective Operator Bench-
marks

The distance and contention experiments attempt
to measure best and worst case MPI performance
on the respective interconnects. In applications, it
is good practice to use standard collective commu-
nication operators whenever possible, allowing code
sharing with other developers and exploitation of
high efficiency implementations in optimized com-
munication libraries. Here we examine the perfor-
mance of two common operators: halo update and
allreduce.

4.1 HALO

Wallcraft’s HALO benchmark [17] simulates the
nearest neighbor exchange of a 1-2 row/column
“halo” from a 2-D array. This is a common opera-
tion when using domain decomposition to parallelize
(say) a finite difference ocean model. There are no
actual 2-D arrays used, but instead the copying of
data from an array to a local buffer is simulated, and
this buffer is transferred between nodes. Small mes-
sage performance is dominated by latency, whereas
bandwidth limits performance for larger messages.

Figure 4.1 contains plots of HALO performance
for implementations based on different MPI com-
munication protocols. Here 16 processors in a log-
ical 4x4 processor torus are exchanging data. As

halo update communicates only with neighbors in
the logical processor grid, performance for the 16
processor experiment should represent performance
for a range of processor counts, as long as logical
neighbors are approximately physical neighbors and
contention and distance do not increase significantly
with processor count. (The torus connectivity is one
possible reason for this assumption to be invalid for
large processor counts.)
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Comparisons

From these data we see that the MPI proto-
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col can make a difference, especially for small mes-
sages. On the X1, persistent isend/irecv is clearly
the best protocol until message sizes are over 128KB
(16KWords), at which point the sendrecv protocol
is optimal. In contrast, on the XD1 and XT3 the
performance of the persistent protocols is identi-
cal to the nonpersistent analogues. On the XT3,
isend/irecv is best up to messages of size 128KB,
and is the worst proctocol for large message sizes,
and the opposite is true for the sendrecv protocol.

MPI is not the only messaging layer available on
the X1. SHMEM and Co-Array Fortran can also be
used (in the same code with MPI) in order to move
data between processors. HALO includes implemen-
tations using SHMEM and Co-Array Fortran. Fig-
ure 4.2 compares the performance of these different
implementations. Using SHMEM and Co-Array per-
formance on the X1 is similar to MPI performance
on the XD1 for small messages. MPI, SHMEM, and
Co-Array Fortran achieve equivalent (excellent) per-
formance for large message sizes. SHMEM is avail-
able on the XD1 and XT3 as well, but does not have
performance superior to that of MPI currently.
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Figure 4.2: HALO Alternative Implementations
on the X1

Figure 4.3 compares HALO MPI performance on
a number of different platforms. Note that the IBM
p690 data is for performance within a 32-processor
SMP node, so reflects the performance the IBM
shared memory implementation of MPI. The high
bandwith performance of the X1 and XT3 is again
evident, as is the low latency of the XD1. The small
message performance on the X1 is significantly worse
than what the earlier experiments would have indi-
cated. However, there are buffer copies and other
overheads involved in the benchmark, and these may
not be vectorized efficiently (if at all) for the small
message sizes.
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Figure 4.3: HALO MPI Performance: Platform
Intercomparisons

4.2 Allreduce

The allreduce collective operation is an integral part
of many parallel algorithms used in scientific appli-
cation codes. In a reduction, each process in a group
owns a vector whose elements are combined (using
some commutative and associative operator) with
the corresponding elements owned by other pro-
cesses, producing a new vector of the same length.
An allreduce is a reduction in which the result is
replicated on all members of the original group of
processes.

Cray X1. Figure 4.4 describes the performance of
an allreduce using a doubleword sum operator on the
Cray X1 for vectors of length 1, 8192, and 2097152.
The first graph compares the performance when us-
ing the MPI collective command MPI Allreduce and
the best algorithm from among MPI Allreduce and
a number of point-to-point MPI implementations,
demonstrating that MPI Allreduce is near-optimal
in all cases. The second graph examines the perfor-
mance sensitivity of MPI Allreduce to the state of
the cache. While the performance of MPI point-to-
point implementations of collectives are typically not
sensitive to the state of the cache, collectives imple-
mented using lower level protocols often are. Here
we see that performance is halved when invalidat-
ing the cache before the calling MPI Allreduce for a
vector of length 1, but performance in unchanged for
large vectors. Note that which experiment is more
realistic, with or without cache invalidation, is ap-
plication specific. The third graph in Fig. 4.4 com-
pares the performance of MPI Allreduce in Novem-
ber 2003 and May 2005, showing the significant im-
provement for all three vector lengths. While simi-
lar improvements may not be in store for the other,
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newer, Cray systems, periodic rexaminations are im-
portant when evaluating new systems.
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Figure 4.4: X1 Allreduce Performance

Cray XD1. Figure 4.5 compares the perfor-
mance of the “optimal” algorithm with that of
MPI Allreduce on the XD1. Unlike on the X1,
MPI Allreduce is not best for the larger vector
lengths. While not atypical, because small vectors
are most in applications and optimizations are tar-
geted for these cases, it is our hope that the XD1
implementation of MPI Allreduce will also be opti-

mized for large vectors in the future.
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Figure 4.5: XD1 Allreduce Performance: Best
Point-to-Point vs. MPI Allreduce

The graphs in Fig. 4.6 compare optimal allreduce
and MPI Allreduce performance with and without
cache invalidation, respectively. While there is some
impact, it is less than on the X1 and affects perfor-
mance for the smallest vector length only.
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Figure 4.6: XD1 Allreduce Performance: With
and Without Cache Invalidation



14 Proceedings of the 47th Cray User Group Conference, May 16-19, 2005

The graphs in Fig. 4.7 compare optimal allreduce
and MPI Allreduce performance when using one or
both processors in each node, respectively. There
is no difference for MPI Allreduce. In contrast, the
performance of the optimal algorithm is somewhat
better when using only one processor per node for
the largest vector length. As in the contention ex-
periments, using a shared memory implementation
for communication between processors in the same
node may change this behavior.
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Figure 4.7: XD1 Allreduce Performance: One vs.
Two Processors per Node

The graphs in Fig. 4.8 compare optimal allre-
duce and MPI Allreduce performance when using
one or both network fabrics, respectively. As in
the previous experiments, there is no difference for
MPI Allreduce and there is a (slight) difference for
the optimal algorithm for the larger vector length.
(Note that we added experiments for vectors of
length 2048 and 524288.)
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Figure 4.8: XD1 Allreduce Performance: With
and Without Expansion Fabric

Cray XT3. Figure 4.9 describes the performance
of the allreduce on the XT3. The first graph com-
pares the performance of the optimal algorithm and
MPI Allreduce. As on the XD1, MPI Allreduce is
not optimized for large vector lengths currently. The
second and third graphs examine the impact of cache
invalidation on the performance of MPI Allreduce
and the optimal algorithms, respectively. The state
of the cache has no significant performance impact
on the XT3 for either allreduce implementation.

Platform Intercomparisons. Figure 4.10 com-
pares the performance of MPI Allreduce on Cray,
SGI, HP, and IBM systems. Note that despite the
relatively high MPI latency on the Cray X1, X1 per-
formance for the vector length 1 MPI Allreduce is
best when using more than 16 processors. It is clear
that MPI Allreduce on the X1 is not implemented
with point-to-point MPI commands, but, rather,
uses one of the more efficient messaging layers such
as SHMEM or Co-Array Fortran. In contrast, the
poor MPI latency on the XT3 is clearly evident in
the MPI Allreduce performance on the XT3.
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Figure 4.9: XT3 Allreduce Performance

MPI Allreduce performance on the X1 is even bet-
ter compared to the other systems for larger vector
lengths, due to both the higer bandwidth intercon-
nect and the superior implementation. Also note
that the XT3 MPI Allreduce performance is supe-
rior to all systems except the X1 for the largest vec-
tor length, demonstrating excellent network band-
width. XD1 and Altix performance is again similar,
except that XD1 performance is significantly better
for the vector length 1 MPI Allreduce, despite hav-
ing a larger MPI latency than the Altix.
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5 Application Benchmarks

To evaluate the practical import of the microbench-
mark results, we examine the performance of two ap-
plication codes. Here the processor performance will
be more important than interconnect performance
for small numbers of processors. However, for fixed
size problems and large number of processors, the
importance of interconnect performance increases.
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5.1 POP

The Parallel Ocean Program (POP) [8, 9, 14] is
an ocean modeling code developed at Los Alamos
National Laboratory (LANL) that is used for
high resolution studies and as the ocean compo-
nent in the Community System Climate Model [3]
coupled climate model. POP solves the three-
dimensional primitive equations for fluid motions
on the sphere under hydrostatic and Boussinesq ap-
proximations. Spatial derivatives are computed us-
ing finite-difference discretizations.

Time integration of the model is split into two
parts, or phases. The three-dimensional vertically-
varying (baroclinic) tendencies are integrated ex-
plicitly using a leapfrog scheme. The very fast
vertically-uniform (barotropic) modes are integrated
using an implicit free surface formulation in which a
preconditioned conjugate gradient solver is used to
solve for the two-dimensional surface pressure.

The parallel implementation is based on a two di-
mensional (horizontal) domain decompasition of the
three-dimensional computational domain. The par-
allel implementation of the baroclinc phase scales
well, requiring significant computation but only lim-
ited nearest-neighbor communication. In contrast,
the barotropic phase scales poorly. It is domi-
nated by the conjugate gradient solution of the two-
dimensional implicit system. This involves very little
computation but significant communication. Com-
munication in the barotropic is dominated by halo
updates (for residual calculations) and vector length
1 allreduces (single 8 Byte floating point value, for
inner product calculations), so is primarily latency
sensitive at scale.

In the results that follow, a number of different
versions of POP are used. The released version of
POP was optimized for nonvector systems. How-
ever, in 2003 POP was ported to the Earth Simulator
by Dr. Yoshikatsu Yoshida of the Central Research
Institute of Electric Power Industry (CRIEPI). In a
separate effort, POP was ported to the Cray X1 by
John Levesque of Cray, using Co-Array Fortran to
implement the halo update and the allreduce in the
conjugate gradient solver. The X1 and Earth Sim-
ulator ports were merged and further optimized for
the X1 by Patrick Worley and James B. White III
of ORNL [19].

The version of POP used in these experiments is
a pure MPI code (i.e., does not use SMP parallelism)
or an MPI/Co-Array Fortran code. In the Cray X1
experiments POP is run with one process per MSP.
A single fixed size benchmark is used, characterized
by a one degree horizontal grid (320 x 384) and 40

vertical levels. This is referred to as the “by one”
or “x1” benchmark problem. The domain decompo-
sition is determined by grid size and the 2D virtual
processor grid. Results for a given processor count
are the best observed over all applicable processor
grids.

Figure 5.1 compares POP performance across the
different platforms. The first graph contains data
for the Cray systems only, while the second graph
includes data for the Earth Simulator and for HP,
IBM, and SGI systems. (The Earth Simulator is a
cluster of 640 SMP nodes where each node is a vari-
ant of the NEC SX-6 made up of 8 vector processors
and 16 GB of memory. Each processor is character-
ized by a peak computational rate of 8 GFlop/s. The
nodes are connected by 640x640 single-stage cross-
bar switches.) Note that two curves are given for
the X1, one with a pure MPI implementation and
one using both MPI and Co-Array Fortran. Use of
Co-Array Fortran allows the X1 to perform signifi-
cantly better than the other systems, including the
Earth Simulator, on what is a very small problem
for a vector system, scaling up to 224 processors. In
contrast, when using MPI only, performance starts
decreasing when using more than 96 processors. The
MPI-only performance data was collected in May,
2004, before the better performing MPI Allreduce
described in section 4.2 became available. However,
the halo update and allreduce are equally important
to the performance scalability of POP, and an im-
proved MPI Allreduce is not sufficient to correct the
scaling problem by itself. Performance on the XD1
appears to be similar to that on the Altix, up to 64
processors. XT3 performance scales to large proces-
sor counts, but performance falls below that of the
IBM system when using more than 128 processors.

Figure 5.2 compares the time spent in the baro-
clinic and barotropic phases in the MPI-only and in
the MPI with Co-Array Fortran implementations on
the X1. The baroclinic times are identical, as they
should be, because Co-Array Fortran in used only
in the barotropic phase. For the MPI-only imple-
mentation the code becomes “baroptropic-bound”
(i.e., communication bound) when using 96 or more
processors. In contrast, by using Co-Array Fortran,
POP continues to be compute bound out to 224 pro-
cessors.

Figure 5.3 contains baroclinc and barotropic tim-
ings for the X1 (using Co-Array Fortran), the XD1,
and the XT3. While not as good as on the X1, the
barotropic phase on the XD1 scales well out to 64
processors. It is a little surprising that performance
is not closer to that of the X1, but the barotropic
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may not be communication bound on the XD1 yet.
In contrast, the barotropic phase on the XT3 scales
even worse than the MPI implementation on the X1,
and POP is communication bound on the XT3 when
using 128 or more processors.
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Figure 5.2: X1 POP Phase Analysis: With and
Without Co-Array Fortran
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Figure 5.3: POP Phase Analysis: X1 vs. XD1 vs.
XT3

In summary, it is clear that a small communi-
cation latency is required to achieve good scalabil-
ity for the POP “x1” benchmark. Good perfor-
mance on the X1 was achieved by using Co-Array
Fortran to implement the two collectives: allreduce
and halo update. (In future work we will exam-
ine the extent to which the new implementation of
MPI Allreduce on the X1 decreases the importance
of Co-Array Fortran in achieving good performance
for this benchmark.) Good performance on the XT3
will not be possible until MPI (or SHMEM) latency
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is decreased. While performance of the barotropic
phase on the XD1 is good, the performance of the
allreduce and halo update need to be examined more
closely to see whether it could be improved further.

5.2 GYRO

GYRO [4] is an Eulerian gyrokinetic-Maxwell solver
developed by J. Candy and R.E. Waltz at General
Atomics. It is used by researchers worldwide to
study plasma microinstabilities and turbulence rel-
evant to controlled fusion research. GYRO comes
with ports to a number of different platforms. The
port and optimization on the X1 is primarily due to
Mark Fahey of ORNL. For X1 experiments, GYRO
is run with one process per MSP.

GYRO uses a five-dimensional grid (three spatial
and two velocity coordinates) and advances the sys-
tem in time using a second-order, implicit-explicit
Runge-Kutta integrator. Parallelism is based on a
domain decomposition of the computational grid.
MPI is used for interprocess communication. A sim-
plified view of the GYRO control flow is as follows.

do step=1,nstep

1) domain redistribution
2) collision term evaluation
3) domain redistribution

4) implicit solves

5) domain redistribution
6) nonlinear term evaluation
7) domain reverse redistribution

8) evaluation of linear terms
9) implicit solve

10) domain redistribution
11) nonlinear term evaluation
12) domain redistribution

13) evaluation of linear terms
14) time-advance

15) diagnostics and I/O

enddo

We refer to the domain redistributions as trans-
poses. These are implemented in GYRO using a
series of calls to the MPI collective MPI Alltoall.

In these experiments we examined two different
benchmark problems, both time dependent:

• B1-std. B1-std is the Waltz standard case
benchmark [18]. This is a simulation of elec-
trostatic turbulence using parameters charac-
teristic of the DIII-D tokamak at mid-radius.
The grid is 16 × 140 × 8 × 8 × 20. Since 16
toroidal modes are used, a multiple of 16 pro-
cessors must be used to run the simulation.

• B3-gtc. B3-gtc is a high-toroidal-resolution
electrostatic simulation with simplified elec-
tron dynamics. The grid is 64×400×8×8×20.
This case uses 64 toroidal modes, and so must
be run on multiples of 64 processors.

Figure 5.4 compares the performance of GYRO
for the B1-std problem on the Cray systems, the SGI
Altix, and the IBM p690 cluster. The first graph
compares performance of the Cray systems only on
up to 64 processors. The second graph includes the
other systems as well and results up to 512 proces-
sors. I/O overhead for these benchmarks is insignif-
icant on all of the platforms except the XT3, where
I/O performance is very poor currently. An exper-
imental implementation of the Lustre file system is
available on a 96 processor test system. We used re-
sults from this system to estimate the performance
we would see on the large XT3 system if it had a
Lustre file system. (The code is instrumented, and
the time spent in I/O is measured, making it simple
to reduce to the predicted value.) Figure 5.5 con-
tains the data for the B3-gtc benchmark.

From these data scalability is good on all plat-
forms except the SGI Altix. The X1 continues to
show the best performance, especially for the large
benchmark where the vector processors provides a
clear advantage over the nonvector systems. How-
ever, the XT3, after elimination of the I/O perfor-
mance bottleneck, is the next best performer for
both benchmark problems.

Figure 5.6 contains graphs of the fraction of the
runtime spent in the transposes used to restructure
the domain decomposition during each timestep.
From these data it is clear that the SGI performance
problem is related to the time spent in these calls to
MPI Alltoall. It is also clear that the performance
advantage of the X1 is not just from vectorization.
The interconnect performance is also very good on
the XT3, especially for the B3-gtc benchmark, which
is primarily bandwidth-sensitive. The scalability of
the XD1 appears to be good for the B1-std problem,
but we need to run the benchmarks on the full 144
processor system in order to understand the XD1
performance scaling behavior.
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Figure 5.4: GYRO B1-std Performance Platform
Intercomparisons
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Figure 5.6: GYRO Communication Fraction

6 Conclusions

This paper is a snapshot of the performance of three
systems in transition. Performance on the XD1 and
XT3 should only improve over the next year. In con-
trast, communication performance as seen by appli-
cations is expected to decrease when moving from
the X1 to the X1E. However, the X1 communica-
tion bandwidth is significantly better than that of
the other systems examined in this study, and that
advantage will continue on the X1E, though it may
not be as large. MPI latency continues to be unim-
pressive on the X1, but SHMEM and Co-Array For-
tran continue to provide excellent workarounds for
latency-senstive applications. The performance of at
least one of the MPI collectives (MPI Allreduce) has
improved significantly on the X1 over the past year.

Performance results for the XD1 and the XT3
were promising, though performance could be bet-
ter. MPI on the XD1 achieves very low latency.
However, aggregate bandwidth with the direct con-
nect topology is not as good as that on the XT3, and
the expansion fabric did not improve performance
in our experiments. Initial studies (not described
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here) indicate that performance scales poorly when
using more than 72 processors with the direct con-
nect topology. A fat tree topology may provide a
workaround for this issue.

The latency on the XT3 is extremely high, and
point-to-point bandwidth is not better than that on
the XD1. However, aggregate bandwidth and scal-
ability (as measured in the contention tests and the
collective operator benchmarks with large message
sizes and in the large application benchmarks) are
very good on the XT3. At least some of the MPI
collectives could use additional of optimization on
the XD1 and the XT3.

Interestingly, the results from the microbench-
marks, collective operator benchmarks, and applica-
tion benchmarks were reasonably consistent, and the
microbenchmarks results provide some performance
prediction capability. This reflects careful engineer-
ing on the part of the vendor in the system design.
Note, however, the importance in customizing the
microbenchmark experiments to examine the unique
features of the systems.
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