Interconnect Performance Evaluation of SGI Altix 3700 BX2, Cray X1, Cray Opteron Cluster, and Dell PowerEdge

Panos Adamidis University of Stuttgart, HLRS, Germany S. Saini, R. Fatoohi & R. Ciotti

NASA Ames Research Center, Moffett Field, California, USA

Cray User Group Meeting May 8-11, 2006

Objectives

- Identify limiting factors & bottleneck w/ high-speed interconnects
- Compare performance of interconnects

Platforms

Platform	# of procs	Procs/ node	Clock (GHz)	Peak (Gflop/s)	Network	Link BW (GB/s)
SGI Altix 3700 BX2	512	2	1.6	3280	NUMAlink4	6.4
Cray X1	64	4	0.8	205	Custom	51.2
Cray Opteron Cluster	128	2	2.0	512	Myrinet	1.067
Dell PowerEdge	2560	2	3.6	9200	InfiniBand	1

Approach

- Using 3 benchmarks:
 - Effective Bandwidth Benchmark (b_eff)
 - Intel MPI Benchmarks (IMB)
 - Dense Communication Benchmarks
- Measuring: unidirectional BW, bidirectional BW, latency, collective communication & dense communication
- Employing: different # of processors, different topologies & different message sizes

Results: b_eff

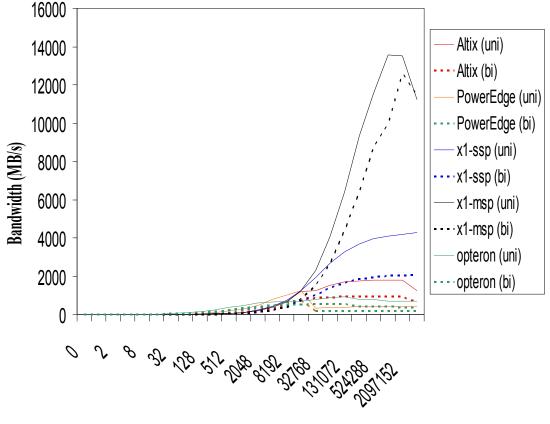
- Measure accumulated BW of network
- B_eff:
 - a) Log avg over 6 ring patterns & random patterns
 - b) Avg of 21 message sizes (1 1M bytes)
 - c) Max over 3 communication methods: MPI_Sendrecv, MPI_Alltoallv & non-blocking w/ MPI_Irecv, MPI_Isend & MPI_Waitall

Results: b_eff														
System	# of proc	b_eff (MB/s)	b_eff per proc <i>(MB/s)</i>	b_eff at L _{max} rings & random (<i>MB/s</i>)	b_eff at L _{max} per proc rings & random (MB/s)	b_eff at L _{max} rings (MB/s)	b_eff at L _{max} per proc rings (MB/s)	BW ping- pong (MB/s)	Latency ping- pong (µsec)					
SGI Altix 3700	256	47166	184	123579	483	167071	653	1069	1.267					
SGI Altix 3700	512	75726	148	202946	396	315591	616	1012	1.249					
Cray X1 (SSP)	8	1858	232	5742	718	5838	730	4231	9.044					
Cray X1 (SSP)	32	5907	185	20838	651	20288	634	4070	10.330					
Cray X1 (SSP)	48	8479	177	30752	641	30137	628	4021	10.365					
Cray X1 (MSP)	8	7686	961	35089	4386	45049	5631	9400	10.559					
Dell PowerEdge	128	7202	56	21444	168	24713	193	399	2.000					
Cray Opteron	8	530	66	1203	150	1745	218	711	0.718					
Cray Opteron	64	2922	46	5935	93	12271	192	704	0.709					

Results: b_eff

- Latency: lowest w/ Opteron (0.7 µsec), highest w/ X1 (10 µsec)
- Link BW (ping-pong): highest w/ X1 (9.4 GB/s in MSP), lowest w/ PowerEdge (0.4 GB/s)
- b_eff: highest w/ 512-proc Altix (75.7 GB/s), lowest w/ 64-proc Opteron (2.9 GB/s)

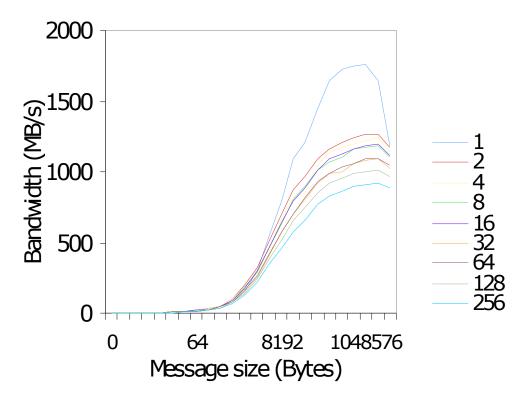
Results: b_eff

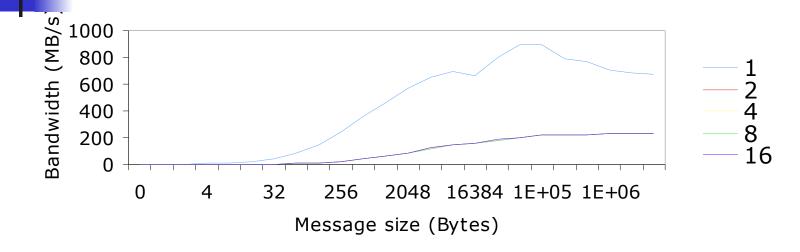

- Impact of communication in parallel (comparing pingpong w/ b_eff at L_{max} per proc using rings only): significant on X1 (SSP), less significant on Altix
- Impact of random neighbor locations (comparing b_eff at L_{max} per proc using rings w/ the one using rings & random patterns): 50% drop on 64-proc Opteron, no drop on X1 (SSP)
- Impact of message size (comparing b_eff at L_{max} per proc using rings & random patterns w/ b_eff per proc): significant drops on all systems

Results: IMB

- Measure point-point communication:
 - Unidirectional (PingPong)
 - Bidirectional (PingPing): message obstructed by oncoming message
 - Unidirectional w/ varying distance between communicating processors
- Measure collective communication: Barrier, Reduce & AlltoAll

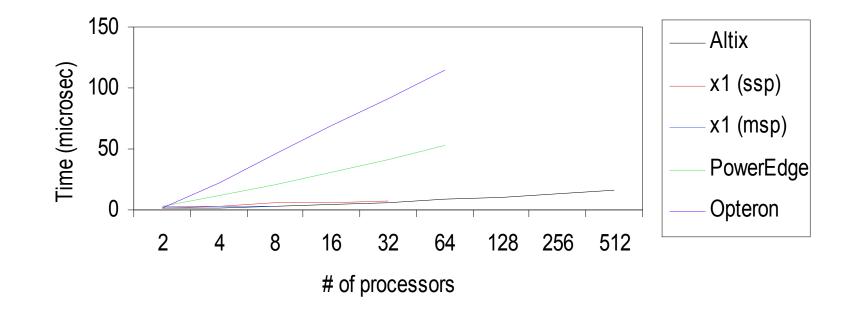
Results: IMB - Unidirectional vs bidirectional


- X1 (MSP) has highest rate (13 GB/s)
- Drop of 50% for bidirectional on most systems except on X1 (MSP)
- Factor of over 3 between X1 SSP & MSP modes

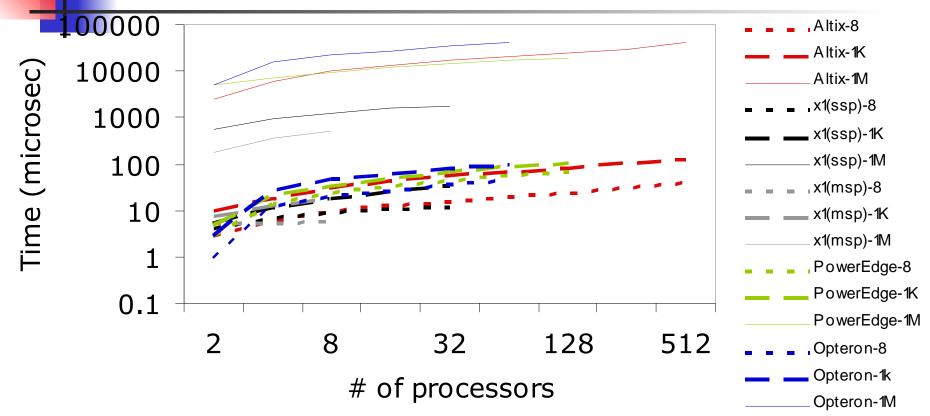

Message size (bytes)

Results: IMB - Unidirectional BW on Altix (varying distance)

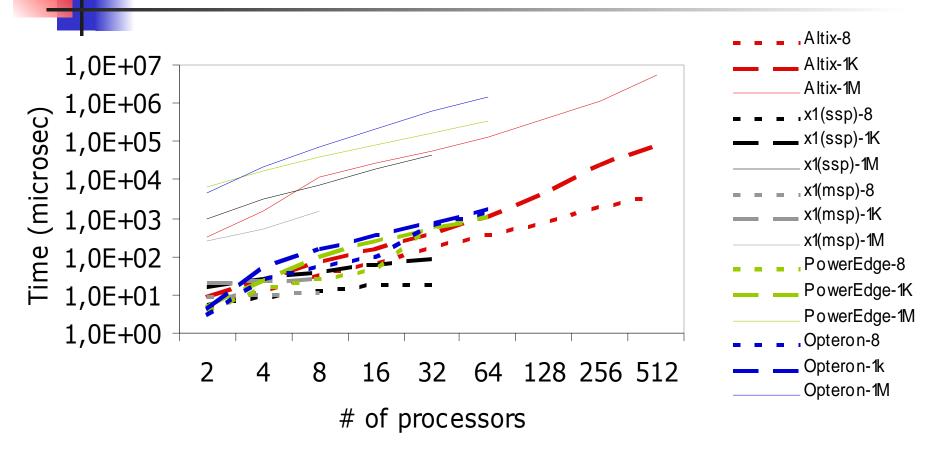
- Rates (GB/s):
 - 1 hop (on node): 1.76
 - 2 or 4 hops (on C-brick):
 1.26
 - 8 128 hops: 1.19 1.02
 - 256 hops: 0.92
- Over 4 hops: # of R-bricks



Results: IMB - Unidirectional BW on Cray Opteron (varying distance)


- Rates (MB/s):
 - 1 hop (on node): 900
 - 2 16 hops (between nodes): 234
- Distance insensitivity between nodes for Myrinet

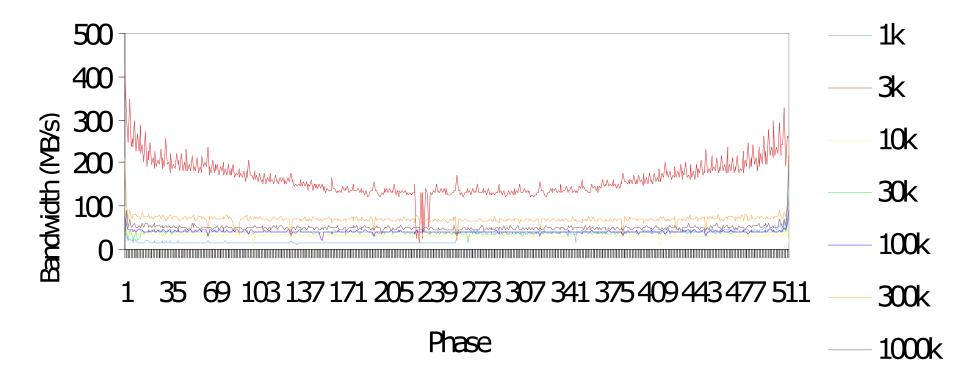
Results: IMB – MPI_Barrier


 Shared-memory systems (Altix, X1) outperformed distributed-memory systems (PowerEdge, Opteron)

Results: IMB – MPI_Reduce

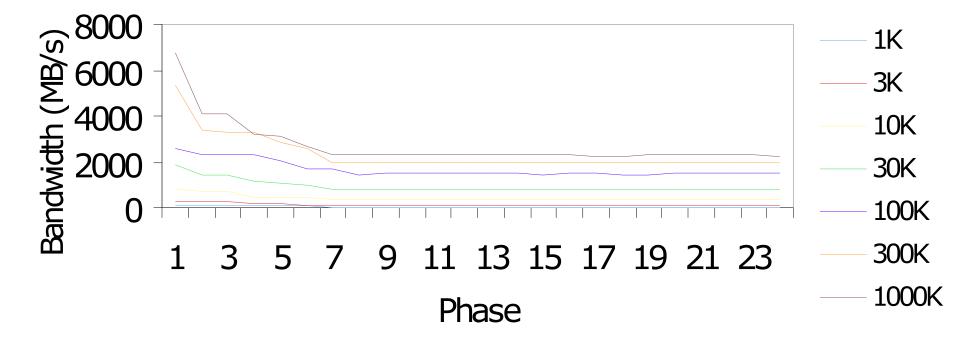
X1 in both modes outperformed other systems

Results: IMB – MPI_Alltoall

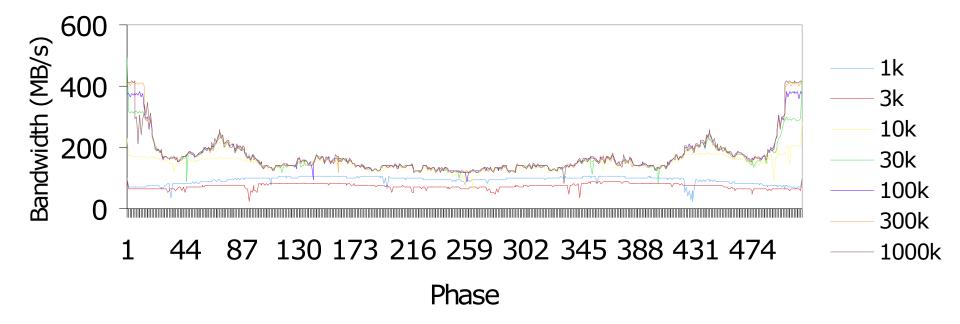


X1 especially in MSP mode outperformed other systems

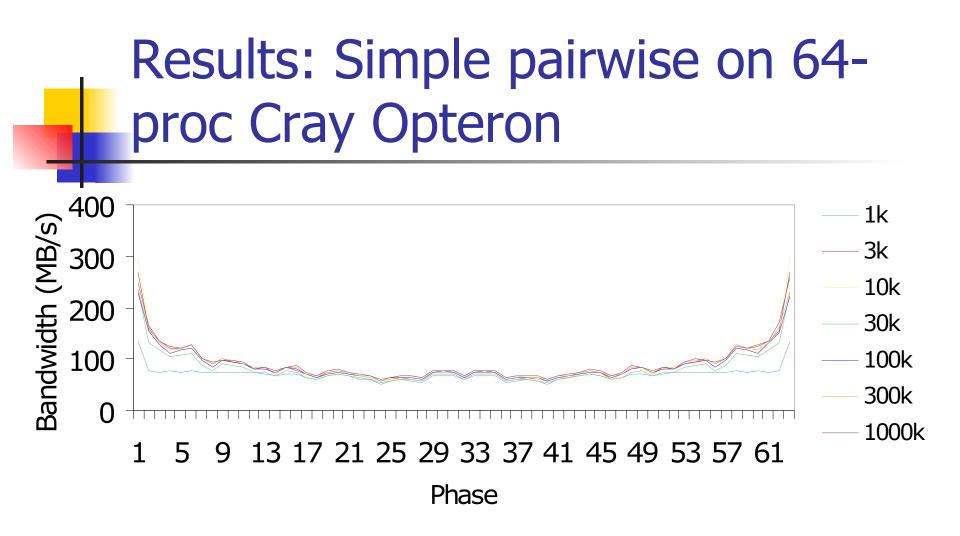
Results: Dense Communication Benchmarks


- Congestion-controlled AAPC (All-to-All Personalized Communication)
- Simple pair-wise communication
- Cumulative pair-wise communication
- Random pair-wise communication

Results: Congestion-controlled AAPC on 512-proc Altix


Drop in middle phases (by factor of 5) compared to 1st & last phases

Results: Cumulative pairwise on 48-proc Cray X1 in SSP mode



 Drop of factor of 3 as # of communicating procs increased to 8 or more pairs

Results: Simple pairwise on 512proc Dell PowerEdge

 Drop in middle phases (by factor of 3) compared to 1st & last phases

 Drop in middle phases (by factor of 4) compared to 1st & last phases

Conclusions

- Cray Opteron has lowest latency while Cray X1 has highest link BW
- Communication in parallel has significant impact on X1 (SSP)
- Drop of 50% in link BW due to oncoming message on all systems except on X1 (MSP)
- Significant drop in link BW as communicating processors are separated apart (from 1 to 16) on Cray Opteron
- Shared-memory systems outperformed distributedmemory systems using collective communication
- Significant drop in performance as communicating processors are far apart w/ dense communication patterns