
CUG 2005 Proceedings 1 of 9

Early Experiences with the Naval Research Laboratory XD1

Wendell Anderson, Naval Research Laboratory (Code
5593), Dr. Marco Lanzagorta ITT Industries, Dr. Robert
Rosenberg NRL (Code 5593) and Dr. Jeanie Osburn NRL
(Code 5592)

ABSTRACT Scientists at the Naval Research Laboratory (NRL) are engaged in a broad
spectrum of research. In order to provide the high performance computing resources to
support that work NRL has recently obtained a two cabinet XD1 with 288 Opteron 275
dual core CPUs and 144 Vertex II FPGAs. This paper will examine the applicability of
the XD1 to these scientific problems.

KEYWORDS: XD1, FPGA, MTA-2, Dual Cores

1. Introduction

The Center for Computational Sciences of
the Naval Research Laboratory (NRL) is a
leading edge distributed center of the High
Performance Computing Modernization
Program Office (HPCMPO) of the United States
Department of Defense. As such, the center
obtains and evaluates high performance
computer systems that are not available at the
HPCMPOs major resource centers (MSRCs).
For the past several years NRL has been
evaluating the Cray Multi-Threaded
Architecture MTA-2. Last year the system was
replaced with a Cray XD1. The choice of the
Cray XD1 was based on a desire to continue the
evaluation of multithreading opportunities
provided by multiple core architectures and
Field Programmable Gate Arrays (FPGAs)
while providing additional computational
resources to NRL and DoD scientists. The Cray
XD1 with 288 Opteron 275 dual core CPUs and
144 Xilinx Vertex II FPGAs was delivered in
September 2005 and accepted in February 2006.

2. XD1 System

The Cray XD1 is a modular high
performance computing system with the base
unit consisting of a chassis with up to six nodes.
Each node of the NRL system consists of two
Opteron 275 2.2 GHz dual core processors with
8GBs of shared memory, a 73GB 10K rpm 3.5
in. SATA drive and a Xilinx Vertex-II Field
Programmable Gate Array. The nodes are
interconnected by a 96 GB per second
nonblocking switch fabric capable of supporting
MPI communications of up to 8GBs per second
with a 1.7 microsecond latency.

 Each node contains an active manager system
interconnected via 100Mb Ethernet. The active
manager uses a real time operating system to
oversee the operation of each node in the
system.

 Each node runs a Cray modified version of
SuSE Linux (kernel 2.65.5). The XD1 has both
the gnu and Portland Group Fortran and C/C++
Compilers available. MPI support is provided

CUG 2006 Proceedings 2 of 9

through mpich 1.2.6. In addition, users may
improve the performance of their applications
by using the tuned AMD Core Math Library
(ACML) or the Cray Scientific Library.

 In addition to the local disks on each node,
the XD1 also has available 15 TBs of fibre
channel external disk storage. This space is
available from any of the processors via the
Lustre disk system.

 User access to the XD1 is available through
an XD1 node dedicated to logins. One
additional node is devoted to the control of the
active manager and two more nodes are
dedicated to supporting the Lustre disk system.
The remaining 140 nodes are compute nodes
that are available to users only via the PBSPro
batch queuing system.

 In May 2006, the system will be expanded by
adding another cabinet with 144 dual core
processors and 6 Xilinx 4 FPGAs. Also another
disk controller will be added doubling the
available disk space on the Lustre disk system to
30TBs. The system then will be configured with
one node dedicated to the active manager, one
to user logins, four to the Lustre disk system,
and 210 to the batch system. NRL is also
looking at purchasing several software packages
that will allow the user to program the FPGAs
using a high level language.

3. XD1 Acceptance

 The XD1 had to meet seven criteria before it
would be accepted by NRL. First, a set of
hardware diagnostics that tested all the
processors, data paths, memory, and FPGAs had
to run for 48 consecutive hours with no failures.
Second, a single process (in this case an FFT)
had to be run through the batch queue across all
560 processors on the compute nodes. Third, a
code (again an FFT) using the FPGAs had to
run successfully on the XD1. Fourth, the XD1
had to demonstrate the ability to read and write

data to the Lustre disk system at a rate of at least
500 MB per second. Fifth, the three codes that
ran most often on the NRL MTA had to run on
the XD1 with equal or better wall clock times
using 10 nodes (40 processors). Sixth, the XD1
had to run for 24 hours without crashing while
executing a mix of applications on the compute
nodes. Finally there was a 30-day acceptance
where the system was made available to NRL
users. During this time, the machine had to be
available 85% of the time during normal
business hours and could have no more than 5
failures within 24 hours of being returned to
NRL for general use.

 In February 2006 the XD1 was certified as
satisfying all of these requirements. Further
information on the MTA applications, 24-hour
tests, and I/O rates are given later in this report.

4. MTA-2 Applications

Part of the acceptance criteria for the XD-1
was that three of the NRL applications
(STATIC, CAUSAL, and LANCZOS) that were
running on NRL’s 40 processor MTA would run
faster on forty processors of the XD1. As seen
from Table 1 in fact all of the applications did
achieve this requirement when run on all four
processors of ten nodes.

Application MTA

(seconds)
XD1

(seconds)
Speedup

STATIC 9529 378 25.2
CAUSAL 936 293 3.2
LANCZOS 336 284 1.2

Table 1 MTA vs. XD1 Performance
STATIC [1] is a tight-binding code used to

calculate the lowest energy configuration of the
spins of a set of atoms. The calculation is done
for a lattice of a face-centered cubic structure
solid with n3 atoms. For each point in the lattice
the eigenvalues of a complex Hermitian matrix
of size 9n3x9n3 must be calculated, once for an
up spin and once for a down spin. Most of the

CUG 2006 Proceedings 3 of 9

time running STATIC is spent in zhpgv, the
LAPACK routine that calculates all of the
eigenvalues of a Hermitian matrix stored in a
packed format. In the case benchmarked, n was
six and the lattice contained 108 points. On the
XD1, the code is embarrassingly parallel and is
run by having each processor calculate the
eigenvalues of a subset of the matrices.
However on the MTA, the 216 matrices did not
provide enough parallelization to effectively use
all of the threads available on the MTA, so the
eigenvalue calculation for a single matrix was
spread over multiple processors. This method of
parallelization was much less efficient than the
XD1 effort as some portions of the zhpgv
routine required serial processing. Thus the
speedup of the static code is nearly 2.5 times the
10-fold increase of the XD1 clock over the
MTA.

CAUSAL [2] solves the modified linear

wave equation by using a fourth order in time
and space 2-D Finite Difference Time Domain
(FDTD) scheme with the addition of a
convolutional propagation operator to
incorporate attenuation and dispersion. Most of
the running time of CAUSAL is spent in one of
two kernels – the FDTD kernel that is calculated
at every point of the grid and the causal
correction that is applied to only those grid
points located in an area where the medium is
dispersive. Both of these kernels have nearly a
one to one ratio between the number of floating-
point operations and the number of memory
accesses required. There is little reuse of data
(especially for the causal calculation) and thus
many references to memory result in cache
misses. On the MTA, the code was run in
parallel by assigning the calculations for each
point to a separate thread. This provided the
MTA with millions of threads to schedule. On
the XD1, parallelization was achieved by
dividing the grid into bands with each band
containing a set of contiguous depths. Load
balancing was attempted by setting the size of
each band so that each band had roughly the
same amount of work to do (bands containing a
significant number of dispersion points had

fewer depths than bands containing no
dispersion points). The benchmark was run for
5000 time steps on a 2000 by 2000 grid with
118,300 dispersion points. Due to the poor reuse
of cache and the difficulty and coarseness of the
load balancing among processors, the XD1 code
ran only three times faster than the MTA code.

 LANCZOS is a code for estimating the largest
and smallest eigenvalues of a Hermitian Sparse
matrix such as those generated in the analysis of
quantum systems [3]. The code generates the
elements of a real tridiagonal symmetric matrix
whose eigenvalues approximate the eigenvalues
of the original matrix. The algorithm spends
over 99% of its time in the multiplication of a
sparse matrix and a dense vector. The MTA
executes the code in parallel by dynamically
assigning to a single thread the multiplication of
a single row of the matrix and the vector. The
XD1 MPI implementation divides the problem
into parts that can be executed in parallel by
statically breaking the original matrix into
submatrices containing complete rows and
performing the various submatrix-vector
multiplies on separate processors. This method
requires that the entire dense vector be available
on each processor. The case used for the
performance evaluation generated the
coefficients of a 100 by 100 tridiagonal matrix
for a 12 million by 12 million complex matrix
containing about 35 non-zero elements per row.
Of the three MTA applications LANCZOS
provides the greatest performance challenge to
the XD1 as the large size and sparseness of the
matrix provides for little cache reuse, accesses
to an element of the dense vector often results in
the loading of adjacent elements that are not
used, and a dense vector must be propagated to
each processor at each step. Thus even though
the clock rate of the XD1 is 10 times that of the
MTA the running time of the program only
decreased by 20%.

5. Dual Cores

CUG 2006 Proceedings 4 of 9

 After years of chip manufacturers speeding
up the basic clock rate of their processors
according to Moore’s law (a factor of two every
18 months), the last few years have seen a much
slower rate of growth in clock rates. In order to
provide more processing power in the same
space, both Intel and AMD have produced dual
core memory chips and are planning on going to
quad cores in the near future. The XD1 has the
earliest of the AMD dual cores – the Opteron
275. While the 275 has the same L1 and L2
cache for each core as the single core version of
the chip, the dual cores share the same DDR
memory controller as the single chip processor.
This sharing of memory bandwidth can lead to a
degradation of the performance of codes
running on the dual core chips.

 In order to further investigate and quantify the
effect of sharing the memory bandwidth
between cores, several applications were run
with three different scenarios: n nodes using all
4 cores on the node, 2*n nodes using only one
core of each dual core processor, and 4*n nodes
using only one processor per node. In all cases,
the applications were run using the PBSPro
#excl option to ensure that no other jobs were
run on these nodes at the same time. The first
three applications analysed were the three MTA
applications mentioned in Section 4. In
addition, the NRL applications NRLMOL and
ARMS, an Air Force application NOZZLE, and
the AVUS, HYCOM, OOCORE, and RFCTH2
programs from the TI05 benchmarks were
evaluated.

 NRLMOL [4] implements the Density-
Functional formalism for clusters and molecules
by using MPI to parallelize the problem by
using a master process to distribute work to
slaves. All parallelism in NRLMOL is carried
out through this master/slave relationship. The
problem chosen for the benchmark was the
light-emitting molecule described in [5], the
largest problem ever solved using NRLMOL.

 The Adaptive Refined Magneto-hydrodynamic
Solver (ARMS) performs three-dimensional,

time-dependent simulations of solar magnetic
storms. The ARMS is a massively parallel,
flux-corrected transport based code built upon
Message Passing Interface communications and
NASA Goddard's PARAMESH parallel
adaptive meshing toolkit.

 The NOZZLE program performs a numerical
simulation of a Coanda wall jet experiment with
or without turbulence modeling. This MPI code
solves the compressible Navier-Stokes equation
on structured multi-block domains using a
domain decomposition model for parallel
processing.

 The AVUS program performs anisotropic 3D
CFD calculations over unstructured grids to
model turbulent viscous flow over geometries.
The standard test case is a wind tunnel model
geometry for a constant cross-section wing with
a partial span flap and end plates on either end
of the wing.

 The Hybrid Coordinate Ocean Model
(HYCOM) encodes a primitive equation for the
numerical simulation of a general ocean
circulation model. This code can be used as a
global ocean data assimilation system or as the
ocean component of a coupled ocean-
atmosphere model.

 The Out-of-Core OOCORE program uses the
ScaLAPACK, BLACS, and BLAS routines
from the Cray Scientific Library to factor and
invert large matrices and solve large linear
systems. For large matrices OOCORE uses
efficient I/O routines to write and read parts of
the matrix to scratch files on disk.

 The Reduced Functionality CTH2 (RFCTH2)
code is, as its name suggests, an incomplete
distribution of the cth2 code that is used to study
the effects of strong shock waves on a variety of
materials using many different models.
RFCTH2 retains the basic shock hydrodynamics
equations of CTH2, but removes the most
advanced equations describing the behavior of

CUG 2006 Proceedings 5 of 9

the material, replacing them with simpler
models.

 In all cases running times for a particular
application were the same for both the 1-
processor per node and 2-processor per node
runs. The timing results comparing the two
processors per node and the four processors per
node are given in Table 2

Application One

 Core
Both
Cores

Efficiency
%

STATIC 313 450 56
CAUSAL 275 293 93
LANCZOS 771 1371 22
NRLMOL 14283 16260 90
ARMS 2090 2524 79
NOZZLE 27498 27286 101
AVUS 1197 963 120
HYCOM 823 849 97
OOCORE 5274 7716 54
RFCTH2 279 448 39

Table 2 Dual Core Efficiency
 Since the one core and two core cases were
run over the same number of processors, the
running times assuming no memory contention
should have been the same. In order to
determine how close we came to obtaining this
ideal, the efficiency is given by

100*(1-(T4-T2)/T2)

where T2 is the wall clock time for running the
code on N nodes using one core per processor
and T4 is the wall time running it on N/2 nodes
using all the cores on the nodes. Since the same
number of processors are used in both cases, if
the times T2 and T4 are the same, we have
perfect efficient (100%). If T4 is twice T2 then
there is no advantage as running two copies of
the application, each on N/2 nodes would finish
at the same time as running the application
consecutively on N nodes using only one-half of
the cores and the efficiency is 0%.

6. I/O

The running time of applications on high
performance computers can be significantly
influenced by the time it takes to move data
between memory and disk. Users may need to
read input data, write out calculated results,
store and retrieve data on temporary scratch
space, and save restart files. A program running
on the XD1 has two disk systems available – a
high-speed parallel file system Lustre available
to all the nodes on the XD1 and the local low
speed SATA disk drives that are available only
to the local node. Generally input, output, and
restart files will be stored only on the Lustre
disk system, as they need to be available to the
user from any node including the login node.
Temporary scratch files however may be written
to the local disk and deleted when the run is
completed. Although the data rate to the local
disk is slower, the application does avoid
competing with other nodes in the system that
may also be writing to the Lustre system.

Part of the acceptance criteria for the XD1

was that users had to be able to read and write to
the XD1 of rates of at least 500 MBs per
second. To measure the I/O rate, an MPI
program was developed by Cray and modified
by NRL to allow multiple nodes to read and
write data to/from any disk system available to
the compute nodes. Because Linux caches disk
data in local memory and the Lustre file system
also provides a caching mechanism, the tests
were run with parameters to ensure that the data
was actually read/written to the disk and did not
only reside in a cache.

 For the acceptance test, an MPI program was
run that read and wrote 8192 records of length
one Megabyte from 12 different processors to
the Lustre disk system The I/O between the
XD1 and the Lustre disk system was measured
at just under 900 megabytes per second in each

CUG 2006 Proceedings 6 of 9

direction. In order to measure the scaling of
writing data to the local disks and to Lustre, the
program was rerun on 1, 2, 4, 8, 16, and 32
nodes. The I/O to the Lustre disk system
saturated at a little less than 900 Megabytes by
the time 16 nodes were used. Since the read and
writes to the local disks for any node are
independent of the read and writes for any other
node, the I/O rates to the local disks continued
to grow linearly with the number of nodes.

NODES Read

(MB/sec)
Write

(MB/sec)
1 206 165
2 325 324
4 629 646
8 794 709

16 892 862
32 859 893

Table 3 Lustre I/O rates

NODES Read
(MB/sec)

Write
(MB/sec)

1 46 58
2 98 105
4 114 209
8 273 406

16 374 804
32 720 1565

Table 4 Local Disk I/O rates

7. 24 Hour Software Test
The 24-hour software test was designed to

keep nearly all of the compute nodes busy by
insuring that jobs were always available on the
PBSPro queue for execution. The mix of jobs
included STATIC (on 16, 30, and 108
processors), CAUSAL (40 and 100 processors)
a single processor application FLUX, an
adaptive mesh code ALLA (40 and 100
processors), and the I/O test program (12
processors) writing data to the Lustre disks.
Table 5 provides a synopsis of the application
runs. Note that for any given application and

number of nodes, times for most of the runs fall
within fairly narrow range of times, although for
all the applications the maximum time is much
larger than the median. Table 6 provides the
same measures for the writing and reading of
data by the I/O test program to the Lustre disk
file system.

Application Nodes Median Min Max
ALLA 25 878 851 1441
CAUSAL 25 88 83 191
FLUX 1 1872 1700 2127
STATIC 26 133 122 251

Table 5 Application Running Times

Operation Median Minimum Maximum
Read 953 652 988
Write 821 511 982

Table 6 I/O rate (MB/sec)

8. Scaling
The usefulness of high performance

computers is highly dependent on the ability of
the system to scale as the number of processors
used to run the application increases. To
evaluate the scaling of the XD1, five of the
applications evaluated in Section 4 were run on
the XD1 using all 4 cores on each node for
different number of nodes to determine how the
applications scaled. The results are given in the
five tables below. In each case, the wall clock
time decreased considerable as the number of
processors applied to the problem increased. In
fact, in three cases, AVUS, NOZZLE and
OOCORE super-linear scaling was obtained.

Nodes Time Speedup
(actual)

Speedup
(% of ideal)

8 4670
16 1992 2.34 117
24 1276 3.66 122
32 963 4.85 121

Table 7 AVUS scaling

CUG 2006 Proceedings 7 of 9

Table 8 HYCOM scaling

Nodes Time Speedup
(actual)

Speedup
(% of ideal)

4 60495
8 27286 2.22 110

16 13930 4.34 109
32 6701 9.03 113
64 3032 19.95 125

Table 9 NOZZLE scaling

Nodes Time Speedup
(actual)

Speedup
(% of ideal)

4 5953
8 3102 1.92 96

12 2005 2.97 99
16 1427 4.17 104

Table 10 OOCORE scaling

Nodes Time Speedup

(actual)
Speedup

(% of ideal)
8 4670

16 1992 1.40 70
24 1276 1.87 62
32 963 2.30 57

Table 11 RFCTH scaling

8. Field Programmable Gate Arrays
Field Programmable Gate Arrays offer the

potential for speeding up by an order of
magnitude or more the execution of specific
kernels. Recent applications of FPGAs in the
HPC world include modelling of electro-
magnetic phenomena using FDTD methods
[6,7], DNA matching [8], molecular dynamics
[9], astrophysical n-body problems [10],
encryption [11], and lattice gas problems [12].

Until recently FPGAs could only be

programmed at very low levels using VHDL or
Verilog. Recently several software products
including those of Celoxica, Impulse, and
Mitrionics have developed C-like Higher Level
languages for programming FPGAs. Another
company DPSLogic has developed software
based on Matlab and Simulink to ease the
burden of programming these devices. Cray has
provided I/O core libraries and XD1 API’s to
allow users to more easily move data between
the Opteron memories and the memories on the
FPGA boards.

 9. FPGA Example

In order to evaluate the application of

FPGAs to applications of interest to NRL
scientists, we have started a preliminary
examination of the Landmarks ISOMAP
algorithm [13-14] used to generate images from
hyperspectral data of dimensionality between 64
and 224. This algorithm is used to model the
non-linear effects in hyperspectral imagery. A
typical image is of the order of N= 106 pixels
with the color at each point determined by the
values of the multi-dimensional hyperctral data.
The ISOMOP algorithm is based on selecting a

Nodes Time Speedup
(actual)

Speedup
(% of ideal)

6 4154
12 2459 1.69 84
15 2358 1.76 70
20 1569 2.65 79
24 1152 3.61 90
28 1105 3.76 81

CUG 2006 Proceedings 8 of 9

subset of Landmark points of size L << N,
determining the proper image value for these
points and then processing all N points as the
interpolated values from the three or four L
points closest to the point. The algorithm used
by NRL to find the nearest landmark neighbors
to a point requires answering the following
question millions of times: Does the point
p=(p1, p2, … , pn) lie within a hyperspherical
shell centered at x=(x0, x1, … , xn) and radius r?

When the algorithm is run on a standard

CPU, the points and radii are floating point
numbers and the measure of the distance is the
Euclidean norm. For each point and hypershere,
the following loop was originally used to
determine whether or not a point pk lies within
the hypershere with center xi and radius ri.

flag=FALSE;
sum=0.0;
For (j=0; j< NUMDIM; j++) {
 diff=p[k][j]-x[i][j];
 sum=sum+diff*diff;
 }
 if (sqrt(sum) < r[i]) flag=TRUE ;

where r[i], x[i][j] and p[k][j] are floating point
numbers. The code can be speeded up
significantly by using the square of the
Euclidean distance and testing after each partial
sum

flag=TRUE;
sum=0.0;
j=0;
while (j< NUMDIM && flag){
 diff=p[k][j]-x[i][j];
 sum=sum+diff*diff;
 if (sum >= r[i]*r[i]) flag=FALSE ;
 }

 Since the data was originally collected as 16-
bit fixed-point numbers, the FPGA code can be
written to use 16 bit unsigned numbers for the
input data. Also instead of a hypersphere, the
choice of a hypercube would avoid the use of
the multiple that produces a 32-bit result:

flag=TRUE;
j=0;
while (flag==0 && j< NUMDIM) {
 testlo=x[i][j]-r[i];
 testhi=x[i][j]+r[i];
 if (!((testlo < p[k][j]) && (p[k][j] < testhi)))
 flag=FALSE;
 j++;
}

The if statement within the while still presents a
challenge to coding the FPGA. One possible
solution is to test only a few dimensions at a
time and then continue the testing on those
hypercubes that may contain the point until all
dimensions have been exhausted. Over the next
few months, we will test various forms of these
algorithms on the XD1 to determine those that
do indeed provide the best performance gains.

9. Acknowledgments

 The NRL XD1 was purchased with funds
provided through the DOD High Performance
Computing Modernization Program Office. All
benchmarks in this report were run on that
machine. The authors also wish to acknowledge
the many scientists including Dr. Spiro
Antiochos, Dr. Chris Bachman, Dr. Tunna
Baruah, Dr. Richard Devore, Dr. Andreas
Gross, Dr. Stephen Hellberg, Dr. Michael Mehl,
Dr. Guy Norton, Dr. Mark Pederson, and Dr.
Alan Walcraft who willing shared their codes
and expertise.

References

[1] W. Anderson R. Rosenberg, and M.
Lanzagorta, “Experiences Using the Cray
Multi-Threaded Architecture MTA-2”, DoD
HPCMP Users Group Meeting, Belleview,
WA. May, 2005

[2] G. Norton, W. Anderson R. Rosenberg,
and M. Lanzagorta, “Modeling Pulse
Propagation and Scattering in a dispersive

CUG 2006 Proceedings 9 of 9

Medium Using the Cray MTA-2”, DoD
HPCMP Users Group Meeting,
Albuquerque, NM. June, 2005

[3] W. Anderson, M. Lanzagorta, and C.
Stephen Hellberg, “Analyzing Quantum
Systems Using the Cray MTA-2”, DoD
HPCMP Users Group Meeting, Knoxville,
TN. May, 2004

[4] M. Pederson, D. Porezag. J. Kortus and
D. Patten, “Strategies for massively parallel
local-orbital-based electronic calculations”,
Physica status Solidi, KnB217 197 (2000)

[5] T. Baruah, M. Pederson. and W.
Anderson, “Massively Parallel Simulation
of Light Harvesting in an ”, DOD HPCMP
Users Group Meeting, Nashville, TN. June,
2005

[6] R.N.Schneider, L. E. Turner and M.M.
Okoniewski, “Application of FPGA
Technology to Accelerate the Finite-
Difference-Time-Domain (FDTD) Method
”, Tenth ACM International symposium on
Field Programmable Gate Arrays”,
Monterey, CA. February, 2002

[7] R. Bodner, “FPGA Accelerated Finite-
Difference-Time-Domain Simulation on the
Cray XD1 Using Impulse C”, Cray Users
Group Meeting, Lugano, Switzerland. May,
2006

[8] B. Smith and E. Staler, “Implementation of
SMART for Fuzzy Mapping in
Bioinformatics Applications”, Cray Users
Group Meeting, Lugano, Switzerland. May,
2006

[9] B. Tsakam-Sotch, “Molecular Dynamics
Acceleration with Reconfigurable Hardware
on Cray XD1: A System Level Approach”,
Cray Users Group Meeting, Lugano,
Switzerland. May, 2006

[10] R. Spurzem, A. Ernst, T.Hamada, and
R. Nakasota, “Astrophysical Particle
Simulations and Reconfigurable Computing
on the Cray XD1””, Cray Users Group
Meeting, Lugano, Switzerland. May, 2006

[11] J. Maltby, J. Chow, and S. Margerm,
“Accelerated FPGA Based Encryption”,

Cray Users Group Meeting, Albuquerque,
NM. May, 2005

[12] R. Minnich and M. Scottie, “Early
results from a lattice-Gas Simulation on the
Cray XD1 FPGA”, Cray Users Group
Meeting, Albuquerque, NM. May, 2005

[13] C. Bachmann, T. Ainsworth. And R.
Fusina, “Exploiting Manifold Geometry in
Hyperspectral Imagery”, IEEE Transactions
on Geoscience and Remote Sensing, Vol 43,
No 5, March, 2006

[14] C. Bachmann, T. Ainsworth. and R.
Fusina, “Improved Manifold Coordinate
Representations of Large Scale Hyper-
spectral Scenes”, to be published Fall, 2006

