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ABSTRACT Scientists at the Naval Research Laboratory (NRL) are engaged in a broad 
spectrum of research. In order to provide the high performance computing resources to 
support that work NRL has recently obtained a two cabinet XD1 with 288 Opteron 275 
dual core CPUs and 144 Vertex II FPGAs.  This paper will examine the applicability of 
the XD1 to these scientific problems. 
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1. Introduction 

The Center for Computational Sciences of 
the Naval Research Laboratory (NRL) is a 
leading edge distributed center of the High 
Performance Computing Modernization 
Program Office (HPCMPO) of the United States 
Department of Defense.  As such, the center 
obtains and evaluates high performance 
computer systems that are not available at the 
HPCMPOs major resource centers (MSRCs).  
For the past several years NRL has been 
evaluating the Cray Multi-Threaded 
Architecture MTA-2.  Last year the system was 
replaced with a Cray XD1.  The choice of the 
Cray XD1 was based on a desire to continue the 
evaluation of multithreading opportunities 
provided by multiple core architectures and 
Field Programmable Gate Arrays (FPGAs) 
while providing additional computational 
resources to NRL and DoD scientists. The Cray 
XD1 with 288 Opteron 275 dual core CPUs and 
144 Xilinx Vertex II FPGAs was delivered in 
September 2005 and accepted in February 2006.  

 

2.  XD1 System  

The Cray XD1 is a modular high 
performance computing system with the base 
unit consisting of a chassis with up to six nodes.  
Each node of the NRL system consists of two 
Opteron 275 2.2 GHz dual core processors with 
8GBs of shared memory, a 73GB 10K rpm 3.5 
in. SATA drive and a Xilinx Vertex-II Field 
Programmable Gate Array.  The nodes are 
interconnected by a 96 GB per second 
nonblocking switch fabric capable of supporting 
MPI communications of up to 8GBs per second 
with a 1.7 microsecond latency. 
 
    Each node contains an active manager system 
interconnected via 100Mb Ethernet. The active 
manager uses a real time operating system to 
oversee the operation of each node in the 
system. 
 
     Each node runs a Cray modified version of 
SuSE Linux (kernel 2.65.5).  The XD1 has both 
the gnu and Portland Group Fortran and C/C++ 
Compilers available.  MPI support is provided 
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through mpich 1.2.6.  In addition, users may 
improve the performance of their applications 
by using the tuned AMD Core Math Library 
(ACML) or the Cray Scientific Library. 
 
     In addition to the local disks on each node, 
the XD1 also has available 15 TBs of fibre 
channel external disk storage.  This space is 
available from any of the processors via the 
Lustre disk system. 
 
     User access to the XD1 is available through 
an XD1 node dedicated to logins.  One 
additional node is devoted to the control of the 
active manager and two more nodes are 
dedicated to supporting the Lustre disk system.  
The remaining 140 nodes are compute nodes 
that are available to users only via the PBSPro 
batch queuing system. 
 
    In May 2006, the system will be expanded by 
adding another cabinet with 144 dual core 
processors and 6 Xilinx 4 FPGAs.  Also another 
disk controller will be added doubling the 
available disk space on the Lustre disk system to 
30TBs. The system then will be configured with 
one node dedicated to the active manager, one 
to user logins, four to the Lustre disk system, 
and 210 to the batch system.  NRL is also 
looking at purchasing several software packages 
that will allow the user to program the FPGAs 
using a high level language. 
 

3.  XD1 Acceptance 

    The XD1 had to meet seven criteria before it 
would be accepted by NRL. First, a set of 
hardware diagnostics that tested all the 
processors, data paths, memory, and FPGAs had 
to run for 48 consecutive hours with no failures.  
Second, a single process (in this case an FFT) 
had to be run through the batch queue across all 
560 processors on the compute nodes. Third, a 
code (again an FFT) using the FPGAs had to 
run successfully on the XD1. Fourth, the XD1 
had to demonstrate the ability to read and write 

data to the Lustre disk system at a rate of at least 
500 MB per second.  Fifth, the three codes that 
ran most often on the NRL MTA had to run on 
the XD1 with equal or better wall clock times 
using 10 nodes (40 processors).  Sixth, the XD1 
had to run for 24 hours without crashing while 
executing a mix of applications on the compute 
nodes.  Finally there was a 30-day acceptance 
where the system was made available to NRL 
users.  During this time, the machine had to be 
available 85% of the time during normal 
business hours and could have no more than 5 
failures within 24 hours of being returned to 
NRL for general use.  
 
    In February 2006 the XD1 was certified as 
satisfying all of these requirements. Further 
information on the MTA applications, 24-hour 
tests, and I/O rates are given later in this report. 
 

4.  MTA-2 Applications 

Part of the acceptance criteria for the XD-1 
was that three of the NRL applications 
(STATIC, CAUSAL, and LANCZOS) that were 
running on NRL’s 40 processor MTA would run 
faster on forty processors of the XD1. As seen 
from Table 1 in fact all of the applications did 
achieve this requirement when run on all four 
processors of ten nodes. 
 
Application MTA 

(seconds) 
XD1 

(seconds) 
Speedup 

STATIC 9529 378 25.2 
CAUSAL 936 293 3.2 
LANCZOS 336 284 1.2 

Table 1 MTA vs. XD1 Performance 
STATIC [1] is a tight-binding code used to 

calculate the lowest energy configuration of the 
spins of a set of atoms. The calculation is done 
for a lattice of a face-centered cubic structure 
solid with n3 atoms.  For each point in the lattice 
the eigenvalues of a complex Hermitian matrix 
of size 9n3x9n3 must be calculated, once for an 
up spin and once for a down spin. Most of the 
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time running STATIC is spent in zhpgv, the 
LAPACK routine that calculates all of the 
eigenvalues of a Hermitian matrix stored in a 
packed format.  In the case benchmarked, n was 
six and the lattice contained 108 points. On the 
XD1, the code is embarrassingly parallel and is 
run by having each processor calculate the 
eigenvalues of a subset of the matrices.  
However on the MTA, the 216 matrices did not 
provide enough parallelization to effectively use 
all of the threads available on the MTA, so the 
eigenvalue calculation for a single matrix was 
spread over multiple processors. This method of 
parallelization was much less efficient than the 
XD1 effort as some portions of the zhpgv 
routine required serial processing. Thus the 
speedup of the static code is nearly 2.5 times the 
10-fold increase of the XD1 clock over the 
MTA.  

 
CAUSAL [2] solves the modified linear 

wave equation by using a fourth order in time 
and space 2-D Finite Difference Time Domain 
(FDTD) scheme with the addition of a 
convolutional propagation operator to 
incorporate attenuation and dispersion.  Most of 
the running time of CAUSAL is spent in one of 
two kernels – the FDTD kernel that is calculated 
at every point of the grid and the causal 
correction that is applied to only those grid 
points located in an area where the medium is 
dispersive.    Both of these kernels have nearly a 
one to one ratio between the number of floating-
point operations and the number of   memory 
accesses required. There is little reuse of data 
(especially for the causal calculation) and thus 
many references to memory result in cache 
misses. On the MTA, the code was run in 
parallel by assigning the calculations for each 
point to a separate thread.  This provided the 
MTA with millions of threads to schedule.  On 
the XD1, parallelization was achieved by 
dividing the grid into bands with each band 
containing a set of contiguous depths.  Load 
balancing was attempted by setting the size of 
each band so that each band had roughly the 
same amount of work to do (bands containing a 
significant number of dispersion points had 

fewer depths than bands containing no 
dispersion points). The benchmark was run for 
5000 time steps on a 2000 by 2000 grid with 
118,300 dispersion points. Due to the poor reuse 
of cache and the difficulty and coarseness of the 
load balancing among processors, the XD1 code 
ran only three times faster than the MTA code. 
 
   LANCZOS is a code for estimating the largest 
and smallest eigenvalues of a Hermitian Sparse 
matrix such as those generated in the analysis of 
quantum systems [3]. The code generates the 
elements of a real tridiagonal symmetric matrix 
whose eigenvalues approximate the eigenvalues 
of the original matrix.  The algorithm spends 
over 99% of its time in the multiplication of a 
sparse matrix and a dense vector.  The MTA 
executes the code in parallel by dynamically 
assigning to a single thread the multiplication of 
a single row of the matrix and the vector.  The 
XD1 MPI implementation divides the problem 
into parts that can be executed in parallel by 
statically breaking the original matrix into 
submatrices containing complete rows and 
performing the various submatrix-vector 
multiplies on separate processors.  This method 
requires that the entire dense vector be available 
on each processor.  The case used for the 
performance evaluation generated the 
coefficients of a 100 by 100 tridiagonal matrix 
for a 12 million by 12 million complex matrix 
containing about 35 non-zero elements per row. 
Of the three MTA applications LANCZOS 
provides the greatest performance challenge to 
the XD1 as the large size and sparseness of the 
matrix provides for little cache reuse, accesses 
to an element of the dense vector often results in 
the loading of adjacent elements that are not 
used, and a dense vector must be propagated to 
each processor at each step.  Thus even though 
the clock rate of the XD1 is 10 times that of the 
MTA the running time of the program only 
decreased by 20%. 
 
 
5. Dual Cores 
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     After years of chip manufacturers speeding 
up the basic clock rate of their processors 
according to Moore’s law (a factor of two every 
18 months), the last few years have seen a much 
slower rate of growth in clock rates. In order to 
provide more processing power in the same 
space, both Intel and AMD have produced dual 
core memory chips and are planning on going to 
quad cores in the near future.  The XD1 has the 
earliest of the AMD dual cores – the Opteron 
275.  While the 275 has the same L1 and L2 
cache for each core as the single core version of 
the chip, the dual cores share the same DDR 
memory controller as the single chip processor.  
This sharing of memory bandwidth can lead to a 
degradation of the performance of codes 
running on the dual core chips. 
 
   In order to further investigate and quantify the 
effect of sharing the memory bandwidth 
between cores, several applications were run 
with three different scenarios: n nodes using all 
4 cores on the node, 2*n nodes using only one 
core of each dual core processor, and 4*n nodes 
using only one processor per node.  In all cases, 
the applications were run using the PBSPro 
#excl option to ensure that no other jobs were 
run on these nodes at the same time.  The first 
three applications analysed were the three MTA 
applications mentioned in Section 4.  In 
addition, the NRL applications NRLMOL and 
ARMS, an Air Force application NOZZLE, and 
the AVUS, HYCOM, OOCORE, and RFCTH2 
programs from the TI05 benchmarks were 
evaluated. 
 
   NRLMOL [4] implements the Density-
Functional formalism for clusters and molecules 
by using MPI to parallelize the problem by 
using a master process to distribute work to 
slaves.  All parallelism in NRLMOL is carried 
out through this master/slave relationship. The 
problem chosen for the benchmark was the 
light-emitting molecule described in [5], the 
largest problem ever solved using NRLMOL. 
  
  The Adaptive Refined Magneto-hydrodynamic 
Solver (ARMS) performs three-dimensional, 

time-dependent simulations of solar magnetic 
storms.  The ARMS is a massively parallel, 
flux-corrected transport based code built upon 
Message Passing Interface communications and 
NASA Goddard's PARAMESH parallel 
adaptive meshing toolkit. 
 
   The NOZZLE program performs a numerical 
simulation of a Coanda wall jet experiment with 
or without turbulence modeling. This MPI code 
solves the compressible Navier-Stokes equation 
on structured multi-block domains using a 
domain decomposition model for parallel 
processing. 
 
    The AVUS program performs anisotropic 3D 
CFD calculations over unstructured grids to 
model turbulent viscous flow over geometries. 
The standard test case is a wind tunnel model 
geometry for a constant cross-section wing with 
a partial span flap and end plates on either end 
of the wing. 
 
  The Hybrid Coordinate Ocean Model 
(HYCOM) encodes a primitive equation for the 
numerical simulation of a general ocean 
circulation model. This code can be used as a 
global ocean data assimilation system or as the 
ocean component of a coupled ocean-
atmosphere model. 
 
   The Out-of-Core OOCORE program uses the 
ScaLAPACK, BLACS, and BLAS routines 
from the Cray Scientific Library to factor and 
invert large matrices and solve large linear 
systems. For large matrices OOCORE uses 
efficient I/O routines to write and read parts of 
the matrix to scratch files on disk. 
 
  The Reduced Functionality CTH2 (RFCTH2) 
code is, as its name suggests, an incomplete 
distribution of the cth2 code that is used to study 
the effects of strong shock waves on a variety of 
materials using many different models. 
RFCTH2 retains the basic shock hydrodynamics 
equations of CTH2, but removes the most 
advanced equations describing the behavior of 
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the material, replacing them with simpler 
models.   
 
    In all cases running times for a particular 
application were the same for both the 1-
processor per node and 2-processor per node 
runs.  The timing results comparing the two 
processors per node and the four processors per 
node are given in Table 2 
 
 
 
Application  One 

 Core 
Both 
Cores 

Efficiency 
% 

STATIC 313 450 56 
CAUSAL 275 293 93 
LANCZOS 771 1371 22 
NRLMOL 14283 16260 90 
ARMS 2090 2524 79 
NOZZLE 27498 27286 101 
AVUS 1197 963 120 
HYCOM 823 849 97 
OOCORE 5274 7716 54 
RFCTH2 279 448 39 

Table 2 Dual Core Efficiency 
     Since the one core and two core cases were 
run over the same number of processors, the 
running times assuming no memory contention 
should have been the same. In order to 
determine how close we came to obtaining this 
ideal, the efficiency is given by 
  

100*(1-(T4-T2)/T2) 
 
where T2 is the wall clock time for running the 
code on N nodes using one core per processor 
and T4 is the wall time running it on N/2 nodes 
using all the cores on the nodes. Since the same 
number of processors are used in both cases, if 
the times T2 and T4 are the same, we have 
perfect efficient (100%). If T4 is twice T2 then 
there is no advantage as running two copies of 
the application, each on N/2 nodes would finish 
at the same time as running the application 
consecutively on N nodes using only one-half of 
the cores and the efficiency is 0%. 

 
6. I/O 
 

The running time of applications on high 
performance computers can be significantly 
influenced by the time it takes to move data 
between memory and disk.  Users may need to 
read input data, write out calculated results, 
store and retrieve data on temporary scratch 
space, and save restart files.  A program running 
on the XD1 has two disk systems available – a 
high-speed parallel file system Lustre available 
to all the nodes on the XD1 and the local low 
speed SATA disk drives that are available only 
to the local node.  Generally input, output, and 
restart files will be stored only on the Lustre 
disk system, as they need to be available to the 
user from any node including the login node.  
Temporary scratch files however may be written 
to the local disk and deleted when the run is 
completed.  Although the data rate to the local 
disk is slower, the application does avoid 
competing with other nodes in the system that 
may also be writing to the Lustre system. 

 
Part of the acceptance criteria for the XD1 

was that users had to be able to read and write to 
the XD1 of rates of at least 500 MBs per 
second. To measure the I/O rate, an MPI 
program was developed by Cray and modified 
by NRL to allow multiple nodes to read and 
write data to/from any disk system available to 
the compute nodes.  Because Linux caches disk 
data in local memory and the Lustre file system 
also provides a caching mechanism, the tests 
were run with parameters to ensure that the data 
was actually read/written to the disk and did not 
only reside in a cache.  

 
    For the acceptance test, an MPI program was 
run that read and wrote 8192 records of length 
one Megabyte from 12 different processors to 
the Lustre disk system The I/O between the 
XD1 and the Lustre disk system was measured 
at just under 900 megabytes per second in each 
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direction.  In order to measure the scaling of 
writing data to the local disks and to Lustre, the 
program was rerun on 1, 2, 4, 8, 16, and 32 
nodes.  The I/O to the Lustre disk system 
saturated at a little less than 900 Megabytes by 
the time 16 nodes were used.  Since the read and 
writes to the local disks for any node are 
independent of the read and writes for any other 
node, the I/O rates to the local disks continued 
to grow linearly with the number of nodes. 

 
NODES Read 

(MB/sec) 
Write 

(MB/sec) 
1 206 165 
2 325 324 
4 629 646 
8 794 709 

16 892 862 
32 859 893 

Table 3 Lustre I/O rates 
 

NODES Read 
(MB/sec) 

Write 
(MB/sec) 

1 46 58 
2 98 105 
4 114 209 
8 273 406 

16 374 804 
32 720 1565 

Table 4 Local Disk I/O rates 

7.  24 Hour Software Test  
The 24-hour software test was designed to 

keep nearly all of the compute nodes busy by 
insuring that jobs were always available on the 
PBSPro queue for execution. The mix of jobs 
included STATIC (on 16, 30, and 108 
processors), CAUSAL (40 and 100 processors) 
a single processor application FLUX, an 
adaptive mesh code ALLA (40 and 100 
processors), and the I/O test program (12 
processors) writing data to the Lustre disks. 
Table 5 provides a synopsis of the application 
runs.  Note that for any given application and 

number of nodes, times for most of the runs fall 
within fairly narrow range of times, although for  
all the applications the maximum time is much 
larger than the median. Table 6 provides the 
same measures for the writing and reading of 
data by the I/O test program to the Lustre disk 
file system.  

 
Application Nodes Median Min Max 
ALLA 25 878 851 1441 
CAUSAL 25 88 83 191 
FLUX 1 1872 1700 2127 
STATIC 26 133 122 251 

Table 5 Application Running Times 
 
Operation Median Minimum Maximum 
Read 953 652 988 
Write 821 511 982 
 

Table 6 I/O rate (MB/sec)  

8.  Scaling      
The usefulness of high performance 

computers is highly dependent on the ability of 
the system to scale as the number of processors 
used to run the application increases. To 
evaluate the scaling of the XD1, five of the 
applications evaluated in Section 4 were run on 
the XD1 using all 4 cores on each node for 
different number of nodes to determine how the 
applications scaled. The results are given in the 
five tables below.  In each case, the wall clock 
time decreased considerable as the number of 
processors applied to the problem increased.  In 
fact, in three cases, AVUS, NOZZLE and 
OOCORE super-linear scaling was obtained.  
 

Nodes Time Speedup 
(actual) 

Speedup 
(% of ideal) 

8 4670   
16 1992 2.34 117 
24 1276 3.66 122 
32 963 4.85 121 

Table 7 AVUS scaling 
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Table 8 HYCOM scaling 
 
 

Nodes Time Speedup 
(actual) 

Speedup 
(% of ideal) 

4 60495   
8 27286 2.22 110 

16 13930 4.34 109 
32 6701 9.03 113 
64 3032 19.95 125 

 
Table 9 NOZZLE scaling 

 
 

Nodes Time Speedup 
(actual) 

Speedup 
(% of ideal) 

4 5953   
8 3102 1.92 96 

12 2005 2.97 99 
16 1427 4.17 104 

 
Table 10 OOCORE scaling 

 
Nodes Time Speedup 

(actual) 
Speedup 

(% of ideal) 
8 4670   

16 1992 1.40 70 
24 1276 1.87 62 
32 963 2.30 57 

Table 11 RFCTH scaling 
 
 
 

8.  Field Programmable Gate Arrays  
Field Programmable Gate Arrays offer the 

potential for speeding up by an order of 
magnitude or more the execution of specific 
kernels. Recent applications of FPGAs in the 
HPC world include modelling of electro-
magnetic phenomena using FDTD methods 
[6,7], DNA matching [8], molecular dynamics 
[9], astrophysical n-body problems [10], 
encryption [11], and lattice gas problems [12].   

 
Until recently FPGAs could only be 

programmed at very low levels using VHDL or 
Verilog. Recently several software products 
including those of Celoxica, Impulse, and 
Mitrionics have developed C-like Higher Level 
languages for programming FPGAs. Another 
company DPSLogic has developed software 
based on Matlab and Simulink to ease the 
burden of programming these devices. Cray has 
provided I/O core libraries and XD1 API’s to 
allow users to more easily move data between 
the Opteron memories and the memories on the 
FPGA boards. 

 

 9.  FPGA Example 

 
In order to evaluate the application of 

FPGAs to applications of interest to NRL 
scientists, we have started a preliminary 
examination of the Landmarks ISOMAP 
algorithm [13-14] used to generate images from 
hyperspectral data of dimensionality between 64 
and 224.  This algorithm is used to model the 
non-linear effects in hyperspectral imagery.  A 
typical image is of the order of N= 106 pixels 
with the color at each point determined by the 
values of the multi-dimensional hyperctral data.  
The ISOMOP algorithm is based on selecting a 

Nodes Time Speedup 
(actual) 

Speedup 
(% of ideal) 

6 4154   
12 2459 1.69 84 
15 2358 1.76 70 
20 1569 2.65 79 
24 1152 3.61 90 
28 1105 3.76 81 
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subset of Landmark points of size L << N, 
determining the proper image value for these 
points and then processing all N points as the 
interpolated values from the three or four L 
points closest to the point. The algorithm used 
by NRL to find the nearest landmark neighbors 
to a point requires answering the following 
question millions of times: Does the point 
p=(p1, p2, … , pn) lie within a hyperspherical 
shell centered at x=(x0, x1, … , xn) and radius r?   

 
When the algorithm is run on a standard 

CPU, the points and radii are floating point 
numbers and the measure of the distance is the 
Euclidean norm. For each point and hypershere, 
the following loop was originally used to 
determine whether or not a point pk lies within 
the hypershere with center xi and radius ri. 

 
flag=FALSE; 
sum=0.0;  
For (j=0;  j< NUMDIM; j++) { 
  diff=p[k][j]-x[i][j]; 
  sum=sum+diff*diff; 
 } 
  if (sqrt(sum) < r[i]) flag=TRUE ; 
 

where r[i], x[i][j] and p[k][j] are floating point 
numbers. The code can be speeded up 
significantly by using the square of the 
Euclidean distance and testing after each partial 
sum 

flag=TRUE; 
sum=0.0;  
j=0; 
while (j< NUMDIM && flag ){ 
  diff=p[k][j]-x[i][j]; 
  sum=sum+diff*diff; 
   if (sum >= r[i]*r[i]  ) flag=FALSE ; 
 } 
 

    Since the data was originally collected as 16-
bit fixed-point numbers, the FPGA code can be 
written to use 16 bit unsigned numbers for the 
input data.  Also instead of a hypersphere, the 
choice of a hypercube would avoid the use of 
the multiple that produces a 32-bit result: 
 
 

flag=TRUE; 
j=0; 
while (flag==0 && j< NUMDIM) { 
  testlo=x[i][j]-r[i]; 
  testhi=x[i][j]+r[i];  
  if (!((testlo < p[k][j]) && (p[k][j] < testhi)))                 
   flag=FALSE; 
  j++; 
} 
 
The if statement within the while still presents a 
challenge to coding the FPGA.  One possible 
solution is to test only a few dimensions at a 
time and then continue the testing on those 
hypercubes that may contain the point until all 
dimensions have been exhausted.  Over the next 
few months, we will test various forms of these 
algorithms on the XD1 to determine those that 
do indeed provide the best performance gains.  
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