Evaluation of UPC on the Cray X1E

Cray User Group 2006, Lugano, Switzerland May 10, 2006

Richard F. Barrett

Oak Ridge National Laboratory Oak Ridge, TN 37831

http://www.csm.ornl.gov/ft http://www.nccs.gov Yiyi Yao and Tarek El-Ghazawi

The George Washington University And

> http://www.csm.ornl.gov/ft http://www.nccs.gov

"Evaluation of UPC on the Cray X1"

Tarek A. El-Ghazawi, François Cantonnet, Yiyi Yao, and Jeffrey Vetter

Since then,

1.X1@ORNL => X1E

2.NPB-UPC: pragmas inserted.

X1E at ORNL: Phoenix

- 1024 Multi-streaming vector processors (MSP)
- Each MSP
 - 4 Single Streaming Processors (SSP)
 - 4 scalar processors (400 MHz)
 - Memory bw is roughly half cache bw.
 - 2 MB cache
 - 18 GFLOP peak (~18.5 TFLOPS)
- 4 MSPs form a node
 - 8 GB of shared memory.
 - Inter-node load/store across network. 56 cabinets

Memory Latency

Memory location	Relative access time
D-cache	1X
E-cache	2X
Local (node) memory	7X
Remote (off node)	10X-32X
memory	

- Extension of ISO C
- Partitioned global address space language. (PGAS)
 - DSM programming model
 - SPMD execution model
- May 1999: Initial specification.
 - Tech report: Carlson, Draper, Culler, Yellick, Brooks, and Warren.
- May 2000: First UPC Consortium Meeting.
- Feb 2001: Spec v1.0
- Dec 2003: UPC Collectives spec.
- July 2004: UPC I/O spec.
- May 2005: v1.2
- Sept 2005: First PGAS meeting in Minneapolis.

UPC Memory Model

ss space	Thread 0	Thread 1		Thread THREADS-1
l addres			Shared	
Global	Private 0	Private 1	•••	Private THREADS-1

A pointer-to-shared can reference all locations in the shared space, but there is data-thread affinity

- A number of threads working independently in a SPMD fashion
 - MYTHREAD specifies thread index (0..THREADS-1)
 - Number of threads specified at compile-time or run-time
- Synchronization when needed:
 - Barriers
 - Locks
 - Memory consistency control

UPC Pointers

How to declare them? int *p1; /* private pointer pointing locally */ shared int *p2; /* private ptr pointing into the shared space */ shared int *shared p3; /* shared ptr pointing into the shared space */

You may find many using "shared pointer" to mean a pointer pointing to a shared object, e.g. equivalent to p2 but could be p3 as well.

- Has to do with ordering of shared operations, and when a change of a shared object by a thread becomes visible to others
 - Relaxed consistency: shared operations can be reordered by the compiler / runtime system
 - Strict consistency: enforces sequential ordering of shared operations. (No operation on shared can begin before the previous ones are done, and changes become visible immediately)

- User specifies the memory model through:
 - declarations
 - pragmas for a particular statement or sequence of statements
 - use of barriers, and global operations

 Programmers responsible for using correct consistency model

- Evolved from NASA applications (CFD)
- Strong scaling.
- Now MPI, OpenMP, HPF, Co-array Fortran, UPC, Java, Grid,...

http://www.nas.nasa.gov/Software/NPB/

if (class == 'S')problem size = 12; dt = "0.015"; niter = 100: else if (class == 'W') problem size = 36; dt = "0.0015"; niter = 400; else if (class == 'A') problem size = 64; dt = "0.0015"; niter = 400; else if (class == 'B') problem size = 102; dt = "0.001"; niter = 400; else if (class == 'C') problem size = 162; dt = "0.00067"; niter = 400;

- Modified from NPB2.4-MPI and NPB2.4-OMP
 - F. Cantonnet, Y. Yao, and T. El-Ghazawi
- •upc_forall, upc_barrier, upc_notify_wait, upc_lock, upc_memput, upc_memget, upc_reduce_sum
- •Relaxed mode
- •Future plans: Reduce reliance on global barrier using fence, organization, etc.

Computes an approximation to the smallest eigenvalue of an spd matrix.

Unstructured grid computations requiring irregular long-range communications.

Loopmarking listing file (MG) Before Pragmas

1155. 1 2 r<	for (i1 = d1; i1 <= mm1-1; i1++)
1156. 12 r	{
1157. 12 r	u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1)) =
1158. 12 r	u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1))
1159. 12 r	+z((i3-1), (i2-1), (i1-1));
1160. 1 2 r>	}

Loopmark listing file (MG) Pragmas

1155. m 2 #prag	ma _CRI concurrent
1156. m 2 #pra	gma _CRI ivdep
1157. m 2 MV<	for (i1 = d1; i1 <= mm1-1; i1++)
1158. m 2 MV	{
1159. m 2 MV	u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1)) =
1160. m 2 MV	u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1))
1161. m 2 MV	+z((i3-1), (i2-1), (i1-1));
1162. m 2 MV>	}

CG Performance

CG Class B

Monte Carlo "Pleasantly" Parallel (EP)

Compute independent Gaussian deviates with mu = 0 and sigma² = 1.

Only communication is a summation of ten values at the end of execution.

EP Performance

EP Class B

- Solves a 3D partial differential equation using an FFT-based spectral method, also requiring long range communication.
- FT performs three 1-D FFT's, one for each dimension.

FT Performance

- uses a V-cycle multi-grid method to compute the solution of the 3-D scalar Poisson equation
- requiring both short and long-range highly structured inter-process communication.

MG Performance

MG Class B

X1E / X1 improvment

Threads

 X1E has a positive effect on performance for some (FT, MG), little effect for others (CG), and a negative effect for one (EP).

 Guided by loopmark listing, careful insertion of pragmas can have a significant effect.

- This research was sponsored by the Office of Mathematical, Information, and Computational Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.
- Cray, esp. Cathy Willis.

PGAS 2006

- October 3-4, Washington, DC (GWU)
- CFP coming soon. (Paper submissions)
- UPC Developers workshop
- CAF Developers workshop