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CUG 2005CUG 2005

“Evaluation of UPC on the Cray X1”

Tarek A.  El-Ghazawi, François Cantonnet, Yiyi Yao, and Jeffrey Vetter

Since then,

1.X1@ORNL => X1E

2.NPB-UPC: pragmas inserted.
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X1E at ORNL: PhoenixX1E at ORNL: Phoenix

 1024 Multi-streaming vector processors (MSP)1024 Multi-streaming vector processors (MSP)

 Each MSPEach MSP
– 4 Single Streaming Processors (SSP)
– 4 scalar processors (400 MHz)
– Memory bw is roughly half cache bw.
– 2 MB cache
– 18 GFLOP peak (~18.5 TFLOPS)

 4 4 MSPs MSPs form a nodeform a node
– 8 GB of shared memory.
– Inter-node load/store across network. 56 cabinets
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Memory LatencyMemory Latency

10X-32X10X-32XRemote (off node)Remote (off node)
memorymemory

7X7XLocal (node) memoryLocal (node) memory
2X2XE-cacheE-cache
1X1XD-cacheD-cache

Relative access timeRelative access timeMemory locationMemory location
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A Brief History of UPCA Brief History of UPC

 Extension of ISO CExtension of ISO C

 Partitioned global address space language. (PGAS)Partitioned global address space language. (PGAS)
– DSM programming model

– SPMD execution model

 May 1999: Initial specification.May 1999: Initial specification.
– Tech report: Carlson, Draper, Culler, Yellick, Brooks, and Warren.

 May 2000: First UPC Consortium Meeting.May 2000: First UPC Consortium Meeting.

 Feb 2001:Feb 2001:  Spec v1.0Spec v1.0

 Dec 2003: UPC Collectives spec.Dec 2003: UPC Collectives spec.

 July 2004: UPC I/O spec.July 2004: UPC I/O spec.

 May 2005: v1.2May 2005: v1.2

 Sept 2005: First PGAS meeting in Minneapolis.Sept 2005: First PGAS meeting in Minneapolis.
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UPC Memory ModelUPC Memory Model

 A pointer-to-shared can reference allA pointer-to-shared can reference all
locations in the shared space, but there islocations in the shared space, but there is
data-thread data-thread affinityaffinity
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UPC Execution ModelUPC Execution Model

 A number of threads working independently in aA number of threads working independently in a
SPMD fashionSPMD fashion
– MYTHREAD specifies thread index (0..THREADS-1)
– Number of threads specified at compile-time or run-time

 Synchronization when needed:Synchronization when needed:
– Barriers
– Locks
– Memory consistency control
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UPC PointersUPC Pointers

 How to declare them?How to declare them?
int int *p1; *p1;     /* private pointer pointing locally/* private pointer pointing locally                                                            */*/
shared shared int int *p2; *p2;       /* private /* private ptr ptr pointing into the shared spacepointing into the shared space                      */*/
shared shared int  int  *shared p3; *shared p3; /* shared /* shared ptr ptr pointing into the shared space */pointing into the shared space */

 You may find many using You may find many using ““shared pointershared pointer”” to mean a pointer pointing to to mean a pointer pointing to
a shared object, e.g. equivalent to p2 but could be p3 as well.a shared object, e.g. equivalent to p2 but could be p3 as well.
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Memory Consistency ModelsMemory Consistency Models

 Has to do with ordering of shared operations, andHas to do with ordering of shared operations, and
when a change of a shared object by a threadwhen a change of a shared object by a thread
becomes visible to othersbecomes visible to others
– Relaxed consistency: shared operations can be

reordered by the compiler / runtime system
– Strict consistency: enforces sequential ordering of

shared operations. (No operation on shared can begin
before the previous ones are done, and changes
become visible immediately)
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Memory Consistency ModelsMemory Consistency Models

 User specifies the memory model through:User specifies the memory model through:

– declarations
– pragmas for a particular statement or sequence of statements
– use of barriers, and global operations

 Programmers responsible for using correct consistencyProgrammers responsible for using correct consistency

modelmodel
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 Evolved from NASA applications (CFD)Evolved from NASA applications (CFD)

 Strong scaling.Strong scaling.

 Now MPI, Now MPI, OpenMPOpenMP, HPF, Co-array Fortran,, HPF, Co-array Fortran,
UPC, Java, Grid,UPC, Java, Grid,……

http://www.http://www.nasnas..nasanasa..gov/Software/NPB/gov/Software/NPB/

The NAS Parallel Benchmarks (NPB)The NAS Parallel Benchmarks (NPB)
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NPB problem sizesNPB problem sizes  (Classes)(Classes)

if     if             (class == 'S')(class == 'S')
          problem_size problem_size = 12;  = 12;  dt dt = "0.015";   niter = 100;= "0.015";   niter = 100;
else if (class == 'W')else if (class == 'W')
          problem_size problem_size = 36;  = 36;  dt dt = "0.0015";  niter = 400;= "0.0015";  niter = 400;
else if (class == 'A')else if (class == 'A')
          problem_size problem_size = 64;  = 64;  dt dt = "0.0015";  niter = 400;= "0.0015";  niter = 400;
else if (class == 'B')else if (class == 'B')
          problem_size problem_size = 102; = 102; dt dt = "0.001";   niter = 400;= "0.001";   niter = 400;
else if (class == 'C')else if (class == 'C')
          problem_size problem_size = 162; = 162; dt dt = "0.00067"; niter = 400;= "0.00067"; niter = 400;



13

UPC version of NPBUPC version of NPB

• Modified from NPB2.4-MPI and NPB2.4-OMP
• F. Cantonnet, Y. Yao, and T. El-Ghazawi

•upc_forall, upc_barrier, upc_notify_wait, upc_lock,
upc_memput, upc_memget, upc_reduce_sum

•Relaxed mode

•Future plans: Reduce reliance on global barrier using
fence, organization, etc.
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Conjugate Gradient (Conjugate Gradient (CGCG))

 Computes an Computes an approximation to theapproximation to the smallest smallest
eigenvalue eigenvalue of an of an spd spd matrix.matrix.

 Unstructured grid computations requiringUnstructured grid computations requiring
irregular long-range communicationsirregular long-range communications..
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Loopmarking Loopmarking listing file (listing file (MGMG))
Before Before PragmasPragmas

  1155.  1 2 r-------<         for ( i1 = d1; i1 <= mm1-1; i1++)1155.  1 2 r-------<         for ( i1 = d1; i1 <= mm1-1; i1++)
 1156.  1 2 r                   { 1156.  1 2 r                   {
 1157.  1 2 r                     u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1)) = 1157.  1 2 r                     u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1)) =
 1158.  1 2 r                       u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1)) 1158.  1 2 r                       u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1))
 1159.  1 2 r                       +z((i3-1), (i2-1), (i1-1)); 1159.  1 2 r                       +z((i3-1), (i2-1), (i1-1));
  1160.  1 2 1160.  1 2 r-------r------->           }>           }
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Loopmark Loopmark listing file (listing file (MGMG))
PragmasPragmas

1155.  m 2        1155.  m 2        ##pragma pragma _CRI concurrent_CRI concurrent
 1156.  m 2         1156.  m 2        ##pragma pragma _CRI _CRI ivdepivdep
  1157.  m 2 MV---<     1157.  m 2 MV---<      for ( i1 = d1; i1 <= mm1-1; i1++) for ( i1 = d1; i1 <= mm1-1; i1++)
 1158.  m 2 MV            { 1158.  m 2 MV            {
 1159.  m 2 MV               u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1)) = 1159.  m 2 MV               u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1)) =
 1160.  m 2 MV                 u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1)) 1160.  m 2 MV                 u((2*i3-d3-1), (2*i2-d2-1), (2*i1-d1-1))
  1161.  m 2 MV                  +z((i3-1), (i2-1), (i1-1));1161.  m 2 MV                  +z((i3-1), (i2-1), (i1-1));
 1162.  m 2 MV--->       } 1162.  m 2 MV--->       }
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CG PerformanceCG Performance
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Monte CarloMonte Carlo
““PleasantlyPleasantly”” Parallel ( Parallel (EPEP))

 Compute independent Gaussian deviates withCompute independent Gaussian deviates with
mu mu = 0 and sigma^2 = 1.= 0 and sigma^2 = 1.

 Only communication is a summation of tenOnly communication is a summation of ten
values at the end of execution.values at the end of execution.
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EP PerformanceEP Performance

EP Class B
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Fourier Transform (Fourier Transform (FTFT))

 Solves a 3D partial differential equation using anSolves a 3D partial differential equation using an
FFT-based spectral methodFFT-based spectral method, also requiring long, also requiring long
range communication.range communication.

 FT performs three 1-D FT performs three 1-D FFT'sFFT's, one for each, one for each

dimension.dimension.



21

FT PerformanceFT Performance

FT Class B
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MG: Multi-gridMG: Multi-grid

 uses a V-cycle multi-grid method to compute the
solution of the 3-D scalar Poisson equation

 requiring both short and long-range highly structured
inter-process communication.
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MG Class B
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X1E / X1 improvment
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SummarySummary

•• X1E has a positive effect on performance forX1E has a positive effect on performance for

some (FT, MG), little effect for others (CG), andsome (FT, MG), little effect for others (CG), and

a negative effecta negative effect  for one (EP).for one (EP).

•• Guided by Guided by loopmark loopmark listing, careful insertion oflisting, careful insertion of

pragmas pragmas can have a significant effect.can have a significant effect.
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PGAS 2006PGAS 2006

 October 3-4, Washington, DC (GWU)October 3-4, Washington, DC (GWU)

 CFP coming soon. (Paper submissions)CFP coming soon. (Paper submissions)

 UPC Developers workshopUPC Developers workshop

 CAF Developers workshopCAF Developers workshop


