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Goal of studyGoal of study

 To discover To discover ““naturalnatural””  effective ways to use CAF for Finiteeffective ways to use CAF for Finite
Differencing.Differencing.
– With eye towards unstructured, semi-structured or dynamic grids.

 What it isnWhat it isn’’t:t:
– Create optimized version of FD.
– Productivity study (though coding effort will be

mentioned).
– X1E compiler study (though performance results

presented).
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CAF syntaxCAF syntax

REAL*8, ALLOCATABLE ::REAL*8, ALLOCATABLE ::  A(:,:)[:]A(:,:)[:]

ALLOCATE(ALLOCATE(  A(m,n)[*] )A(m,n)[*] )

– Local view; user manages decomposition.

A(i,j) = B(i,j)[A(i,j) = B(i,j)[img_locimg_loc]]

A(i,j) = B(i,j)A(i,j) = B(i,j)
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CAF syntax CAF syntax contcont’’dd

 If co-arrays to be of If co-arrays to be of different lengthdifferent length, create derived, create derived
type containing the (locally [type containing the (locally [allocatableallocatable]) array.]) array.

grid[grid[img_locimg_loc]%A(i,j)]%A(i,j)

 A fewA few  intrinsicsintrinsics::

sync_<all,sync_<all,teamteam,memory>(<,memory>(<argarg>)>)

Reductions proposed.Reductions proposed.
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X1E at ORNL: PhoenixX1E at ORNL: Phoenix

 1024 1024 Multistreaming Multistreaming vector processors (MSP)vector processors (MSP)

 Each MSPEach MSP
– 4 Single Streaming Processors (SSP)
– 4 scalar processors (400 MHz)
– Memory bw is roughly half cache bw.
– 2 MB cache
– 18 GFLOP peak (~18.5 TFLOPS)

 4 4 MSPs MSPs form a nodeform a node
– 8 GB of shared memory.
– Inter-node load/store across network. 56 cabinets
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Memory LatencyMemory Latency

10X-32X10X-32XRemote (off node)Remote (off node)
memorymemory

7X7XLocal (node) memoryLocal (node) memory
2X2XE-cacheE-cache
1X1XD-cacheD-cache

Relative access timeRelative access timeMemory locationMemory location
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Continuous PDE to discrete formContinuous PDE to discrete form
for Finite Difference Stencilsfor Finite Difference Stencils

DO J = 2, LCOLS+1
    DO I = 2, LROWS+1

         GRID2(I,J) = (
                                                  GRID(I-1,J) +
                           GRID(I,J-1) + GRID(I,J) + GRID(I,J+1 ) +
                                                  GRID(I+1,J)  ) / 5

    END DO
END DO
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Parallel ProcessingParallel Processing
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CAFCAF
Load it when you need itLoad it when you need it

DO J = 2, LCOLS+1
    DO I = 2, LROWS+1

         LEFT         = GRID1(II(I,J-1),JJ(I,J-1))[IMG_LOC(I,J-1)]

         TOP          = GRID1(II(I-1,J),JJ(I-1,J))[IMG_LOC(I-1,J  )]

         CENTER   = GRID1(II(I,J  ),JJ(I,J))[IMG_LOC(I,J  )]

         BOTTOM  = GRID1(II(I+1,J),JJ(I+1,J))[IMG_LOC(I+1,J  )]

         RIGHT       = GRID1(II(I,J+1),JJ(I,J+1))[IMG_LOC(I,J+1)]

         GRID2(I,J) = ( LEFT + TOP + CENTER + BOTTOM + RIGHT ) / 5

    END DO
END DO
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CAF SegmentedCAF Segmented
One loop per boundaryOne loop per boundary

DO J = 2, LCOLS-1

          GRID2(1,J) =  (                                                                       &
                                         GRID1(LROWS,J)  [NEIGH(NORTH)] + &
                GRID1(1,J-1) + GRID1(1,J) + GRID1(1,J+1) +                 &
                                          GRID1(2,J) )                                            &
                             * FIFTH

END DO

• Sweep over each boundary (4 loops)

•Hint to compiler?

• Loop over “interior” region.

•Eliminates the indirection from CAF.



11

CAF MPI-styleCAF MPI-style
((Actually one-sided model)Actually one-sided model)

CALL SYNC_TEAM ( NEIGHBORS )CALL SYNC_TEAM ( NEIGHBORS )

IF ( NEIGHBORS(SOUTH) /= MY_IMAGE ) &IF ( NEIGHBORS(SOUTH) /= MY_IMAGE ) &
      GRID1( LROWS+2, 2:LCOLS+1 ) = GRID1( 2,2:LCOLS+1 )[NEIGHBORS(SOUTH)]GRID1( LROWS+2, 2:LCOLS+1 ) = GRID1( 2,2:LCOLS+1 )[NEIGHBORS(SOUTH)]

IF ( NEIGHBORS(NORTH) /= MY_IMAGE ) &IF ( NEIGHBORS(NORTH) /= MY_IMAGE ) &
      GRID1( 1, 2:LCOLS+1 )  = GRID1( LROWS+1,2:LCOLS+1 )[NEIGHBORS(NORTH)]GRID1( 1, 2:LCOLS+1 )  = GRID1( LROWS+1,2:LCOLS+1 )[NEIGHBORS(NORTH)]

IF ( NEIGHBORS(WEST) /= MY_IMAGE ) &IF ( NEIGHBORS(WEST) /= MY_IMAGE ) &
      GRID1( 2:LROWS+1, 1 )  = GRID1( 2:LROWS+1, LCOLS+1)[NEIGHBORS(WEST)]GRID1( 2:LROWS+1, 1 )  = GRID1( 2:LROWS+1, LCOLS+1)[NEIGHBORS(WEST)]

IF ( NEIGHBORS(EAST) /= MY_IMAGE ) &IF ( NEIGHBORS(EAST) /= MY_IMAGE ) &
      GRID1( 2:LROWS+1, LCOLS+2 ) = GRID1( 2:LROWS+1, 2 )[NEIGHBORS(EAST)]GRID1( 2:LROWS+1, LCOLS+2 ) = GRID1( 2:LROWS+1, 2 )[NEIGHBORS(EAST)]
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Performance on X1EPerformance on X1E

5-point difference stencil5-point difference stencil
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Weak scaling performanceWeak scaling performance
100x100 grid/pe

CAF
CAF Segm
CAF MPI
MPI

100x100 grid/pe

5-pt stencil; weak scaling



14

Weak scaling performanceWeak scaling performance
500x500 grid/peCAF

CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling
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Weak scaling performanceWeak scaling performance
1kx1k grid/peCAF

CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling
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Weak scaling performanceWeak scaling performance
2kx2k grid/peCAF

CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling
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Weak scaling performanceWeak scaling performance
4kx4k grid/peCAF

CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling
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Weak scaling performanceWeak scaling performance
6kx6k grid/peCAF

CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling
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8kx8k grid/peCAF
CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling

5-pt stencil; weak scaling

8kx8k grid/peCAF
CAF Segm
CAF MPI
MPI
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Performance on X1EPerformance on X1E

9-point difference stencil9-point difference stencil

Adds (up to) 4 newAdds (up to) 4 new  neighbors.neighbors.
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9-pt stencil; weak scaling

CAF
CAF Segm
CAF MPI
MPI

100x100 grid/pe
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9-pt stencil; weak scaling

CAF
CAF Segm
CAF MPI
MPI

500x500 grid/pe
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9-pt stencil; weak scaling

CAF
CAF Segm
CAF MPI
MPI

1kx1k grid/pe
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9-pt stencil; weak scaling

CAF
CAF Segm
CAF MPI
MPI

2kx2k grid/pe
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9-pt stencil; weak scaling

CAF
CAF Segm
CAF MPI
MPI

4kx4k grid/pe
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CAF
CAF Segm
CAF MPI
MPI

4kx4k grid/pe

9-pt stencil; weak scaling
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9-pt stencil; weak scaling

6kx6k grid/pe
CAF
CAF Segm
CAF MPI
MPI

CAF
CAF Segm
CAF MPI
MPI

6kx6k grid/pe

9-pt stencil; weak scaling
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9-pt stencil; weak scaling

8kx8k grid/peCAF
CAF Segm
CAF MPI
MPI
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Unstruct- Unstruct- and and semi-struct semi-struct meshmesh
Inter-process sharing Inter-process sharing requirmentsrequirments
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Closer look at CAFCloser look at CAF

  LEFT   = GRID(II(I,J-1),JJ(I,J-1))[IMG_LOC(I,J-1)]LEFT   = GRID(II(I,J-1),JJ(I,J-1))[IMG_LOC(I,J-1)]

 Set Set IMG_LOC() = MY_IMAGEIMG_LOC() = MY_IMAGE      (No (No commcomm))

LEFT   = GRID(LEFT   = GRID(II(I,J-1),JJ(I,J-1)II(I,J-1),JJ(I,J-1))[)[<<my_imagemy_image>]>]

 Remove indirection indexing Remove indirection indexing     (No Indexing)(No Indexing)

LEFT   = GRID(I,J-1)[IMG_LOC(I,J-1)]LEFT   = GRID(I,J-1)[IMG_LOC(I,J-1)]

 Remove co-array notation.    Remove co-array notation.        (No image)(No image)

 LEFT   = GRID(II(I,J-1),JJ(I,J-1)) LEFT   = GRID(II(I,J-1),JJ(I,J-1))



31

CAF Testing
8Kx8K grid, 5pt stencil
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CAF Testing
8Kx8K grid, 5pt stencil
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SummarySummary

 Amazing number of views for CAF for simpleAmazing number of views for CAF for simple
algorithm.algorithm.
– Trey’s response

 Coding effort no less that MPI.Coding effort no less that MPI.

 Strong potential for unstructured grids.Strong potential for unstructured grids.
– But concern over variable length arrays

 CAF CAF espesp. good with short messages.. good with short messages.
– Implication for strong scaling
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Summary continuedSummary continued

•• Performance improvements?Performance improvements?
• Persistent communication
• Size-based protocol

•• My view: CAF will succeed (in HPC) if(f):My view: CAF will succeed (in HPC) if(f):

• (Significantly) outperforms MPI.

• Wide availability
• Multi-core availability soon.

– Hybrid programming?
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Future workFuture work

 Unstructured grids: in progress.Unstructured grids: in progress.

 Multi-core: in progress.Multi-core: in progress.

 Other algorithms.Other algorithms.

 Comparisons with UPC, and otherComparisons with UPC, and other  new models.new models.
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PGAS 2006PGAS 2006

 October 3-4, Washington, DC (GWU)October 3-4, Washington, DC (GWU)

 CFP coming soon. (Paper submissions)CFP coming soon. (Paper submissions)

 UPC Developers workshopUPC Developers workshop

 CAF Developers workshopCAF Developers workshop


