
Co-Array Fortran Experiences withCo-Array Fortran Experiences with
Finite Differencing MethodsFinite Differencing Methods

Cray User Group 2006, Cray User Group 2006, LuganoLugano, Switzerland, Switzerland
MayMay 10, 200610, 2006

Richard F. BarrettRichard F. Barrett

Oak Ridge National LaboratoryOak Ridge National Laboratory
Oak Ridge, TN 37831Oak Ridge, TN 37831

http://www.csm.ornl.gov/fthttp://www.csm.ornl.gov/ft
http://www.http://www.nccsnccs..govgov

2

Goal of studyGoal of study

 To discover To discover ““naturalnatural”” effective ways to use CAF for Finiteeffective ways to use CAF for Finite
Differencing.Differencing.
– With eye towards unstructured, semi-structured or dynamic grids.

 What it isnWhat it isn’’t:t:
– Create optimized version of FD.
– Productivity study (though coding effort will be

mentioned).
– X1E compiler study (though performance results

presented).

3

CAF syntaxCAF syntax

REAL*8, ALLOCATABLE ::REAL*8, ALLOCATABLE :: A(:,:)[:]A(:,:)[:]

ALLOCATE(ALLOCATE(A(m,n)[*])A(m,n)[*])

– Local view; user manages decomposition.

A(i,j) = B(i,j)[A(i,j) = B(i,j)[img_locimg_loc]]

A(i,j) = B(i,j)A(i,j) = B(i,j)

4

CAF syntax CAF syntax contcont’’dd

 If co-arrays to be of If co-arrays to be of different lengthdifferent length, create derived, create derived
type containing the (locally [type containing the (locally [allocatableallocatable]) array.]) array.

grid[grid[img_locimg_loc]%A(i,j)]%A(i,j)

 A fewA few intrinsicsintrinsics::

sync_<all,sync_<all,teamteam,memory>(<,memory>(<argarg>)>)

Reductions proposed.Reductions proposed.

5

X1E at ORNL: PhoenixX1E at ORNL: Phoenix

 1024 1024 Multistreaming Multistreaming vector processors (MSP)vector processors (MSP)

 Each MSPEach MSP
– 4 Single Streaming Processors (SSP)
– 4 scalar processors (400 MHz)
– Memory bw is roughly half cache bw.
– 2 MB cache
– 18 GFLOP peak (~18.5 TFLOPS)

 4 4 MSPs MSPs form a nodeform a node
– 8 GB of shared memory.
– Inter-node load/store across network. 56 cabinets

6

Memory LatencyMemory Latency

10X-32X10X-32XRemote (off node)Remote (off node)
memorymemory

7X7XLocal (node) memoryLocal (node) memory
2X2XE-cacheE-cache
1X1XD-cacheD-cache

Relative access timeRelative access timeMemory locationMemory location

7

Continuous PDE to discrete formContinuous PDE to discrete form
for Finite Difference Stencilsfor Finite Difference Stencils

DO J = 2, LCOLS+1
 DO I = 2, LROWS+1

 GRID2(I,J) = (
 GRID(I-1,J) +
 GRID(I,J-1) + GRID(I,J) + GRID(I,J+1) +
 GRID(I+1,J)) / 5

 END DO
END DO

8

Parallel ProcessingParallel Processing

9

CAFCAF
Load it when you need itLoad it when you need it

DO J = 2, LCOLS+1
 DO I = 2, LROWS+1

 LEFT = GRID1(II(I,J-1),JJ(I,J-1))[IMG_LOC(I,J-1)]

 TOP = GRID1(II(I-1,J),JJ(I-1,J))[IMG_LOC(I-1,J)]

 CENTER = GRID1(II(I,J),JJ(I,J))[IMG_LOC(I,J)]

 BOTTOM = GRID1(II(I+1,J),JJ(I+1,J))[IMG_LOC(I+1,J)]

 RIGHT = GRID1(II(I,J+1),JJ(I,J+1))[IMG_LOC(I,J+1)]

 GRID2(I,J) = (LEFT + TOP + CENTER + BOTTOM + RIGHT) / 5

 END DO
END DO

10

CAF SegmentedCAF Segmented
One loop per boundaryOne loop per boundary

DO J = 2, LCOLS-1

 GRID2(1,J) = (&
 GRID1(LROWS,J) [NEIGH(NORTH)] + &
 GRID1(1,J-1) + GRID1(1,J) + GRID1(1,J+1) + &
 GRID1(2,J)) &
 * FIFTH

END DO

• Sweep over each boundary (4 loops)

•Hint to compiler?

• Loop over “interior” region.

•Eliminates the indirection from CAF.

11

CAF MPI-styleCAF MPI-style
((Actually one-sided model)Actually one-sided model)

CALL SYNC_TEAM (NEIGHBORS)CALL SYNC_TEAM (NEIGHBORS)

IF (NEIGHBORS(SOUTH) /= MY_IMAGE) &IF (NEIGHBORS(SOUTH) /= MY_IMAGE) &
 GRID1(LROWS+2, 2:LCOLS+1) = GRID1(2,2:LCOLS+1)[NEIGHBORS(SOUTH)]GRID1(LROWS+2, 2:LCOLS+1) = GRID1(2,2:LCOLS+1)[NEIGHBORS(SOUTH)]

IF (NEIGHBORS(NORTH) /= MY_IMAGE) &IF (NEIGHBORS(NORTH) /= MY_IMAGE) &
 GRID1(1, 2:LCOLS+1) = GRID1(LROWS+1,2:LCOLS+1)[NEIGHBORS(NORTH)]GRID1(1, 2:LCOLS+1) = GRID1(LROWS+1,2:LCOLS+1)[NEIGHBORS(NORTH)]

IF (NEIGHBORS(WEST) /= MY_IMAGE) &IF (NEIGHBORS(WEST) /= MY_IMAGE) &
 GRID1(2:LROWS+1, 1) = GRID1(2:LROWS+1, LCOLS+1)[NEIGHBORS(WEST)]GRID1(2:LROWS+1, 1) = GRID1(2:LROWS+1, LCOLS+1)[NEIGHBORS(WEST)]

IF (NEIGHBORS(EAST) /= MY_IMAGE) &IF (NEIGHBORS(EAST) /= MY_IMAGE) &
 GRID1(2:LROWS+1, LCOLS+2) = GRID1(2:LROWS+1, 2)[NEIGHBORS(EAST)]GRID1(2:LROWS+1, LCOLS+2) = GRID1(2:LROWS+1, 2)[NEIGHBORS(EAST)]

12

Performance on X1EPerformance on X1E

5-point difference stencil5-point difference stencil

13

Weak scaling performanceWeak scaling performance
100x100 grid/pe

CAF
CAF Segm
CAF MPI
MPI

100x100 grid/pe

5-pt stencil; weak scaling

14

Weak scaling performanceWeak scaling performance
500x500 grid/peCAF

CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling

15

Weak scaling performanceWeak scaling performance
1kx1k grid/peCAF

CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling

16

Weak scaling performanceWeak scaling performance
2kx2k grid/peCAF

CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling

17

Weak scaling performanceWeak scaling performance
4kx4k grid/peCAF

CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling

18

Weak scaling performanceWeak scaling performance
6kx6k grid/peCAF

CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling

19

8kx8k grid/peCAF
CAF Segm
CAF MPI
MPI

5-pt stencil; weak scaling

5-pt stencil; weak scaling

8kx8k grid/peCAF
CAF Segm
CAF MPI
MPI

20

Performance on X1EPerformance on X1E

9-point difference stencil9-point difference stencil

Adds (up to) 4 newAdds (up to) 4 new neighbors.neighbors.

21

9-pt stencil; weak scaling

CAF
CAF Segm
CAF MPI
MPI

100x100 grid/pe

22

9-pt stencil; weak scaling

CAF
CAF Segm
CAF MPI
MPI

500x500 grid/pe

23

9-pt stencil; weak scaling

CAF
CAF Segm
CAF MPI
MPI

1kx1k grid/pe

24

9-pt stencil; weak scaling

CAF
CAF Segm
CAF MPI
MPI

2kx2k grid/pe

25

9-pt stencil; weak scaling

CAF
CAF Segm
CAF MPI
MPI

4kx4k grid/pe

26

CAF
CAF Segm
CAF MPI
MPI

4kx4k grid/pe

9-pt stencil; weak scaling

27

9-pt stencil; weak scaling

6kx6k grid/pe
CAF
CAF Segm
CAF MPI
MPI

CAF
CAF Segm
CAF MPI
MPI

6kx6k grid/pe

9-pt stencil; weak scaling

28

9-pt stencil; weak scaling

8kx8k grid/peCAF
CAF Segm
CAF MPI
MPI

29

Unstruct- Unstruct- and and semi-struct semi-struct meshmesh
Inter-process sharing Inter-process sharing requirmentsrequirments

30

Closer look at CAFCloser look at CAF

 LEFT = GRID(II(I,J-1),JJ(I,J-1))[IMG_LOC(I,J-1)]LEFT = GRID(II(I,J-1),JJ(I,J-1))[IMG_LOC(I,J-1)]

 Set Set IMG_LOC() = MY_IMAGEIMG_LOC() = MY_IMAGE (No (No commcomm))

LEFT = GRID(LEFT = GRID(II(I,J-1),JJ(I,J-1)II(I,J-1),JJ(I,J-1))[)[<<my_imagemy_image>]>]

 Remove indirection indexing Remove indirection indexing (No Indexing)(No Indexing)

LEFT = GRID(I,J-1)[IMG_LOC(I,J-1)]LEFT = GRID(I,J-1)[IMG_LOC(I,J-1)]

 Remove co-array notation. Remove co-array notation. (No image)(No image)

 LEFT = GRID(II(I,J-1),JJ(I,J-1)) LEFT = GRID(II(I,J-1),JJ(I,J-1))

31

CAF Testing
8Kx8K grid, 5pt stencil

32

CAF Testing
8Kx8K grid, 5pt stencil

33

SummarySummary

 Amazing number of views for CAF for simpleAmazing number of views for CAF for simple
algorithm.algorithm.
– Trey’s response

 Coding effort no less that MPI.Coding effort no less that MPI.

 Strong potential for unstructured grids.Strong potential for unstructured grids.
– But concern over variable length arrays

 CAF CAF espesp. good with short messages.. good with short messages.
– Implication for strong scaling

34

Summary continuedSummary continued

•• Performance improvements?Performance improvements?
• Persistent communication
• Size-based protocol

•• My view: CAF will succeed (in HPC) if(f):My view: CAF will succeed (in HPC) if(f):

• (Significantly) outperforms MPI.

• Wide availability
• Multi-core availability soon.

– Hybrid programming?

35

Future workFuture work

 Unstructured grids: in progress.Unstructured grids: in progress.

 Multi-core: in progress.Multi-core: in progress.

 Other algorithms.Other algorithms.

 Comparisons with UPC, and otherComparisons with UPC, and other new models.new models.

36

AcknowledgementsAcknowledgements

 This research was sponsored by the Office of Mathematical, Information,This research was sponsored by the Office of Mathematical, Information,
and Computational Sciences, Office of Science, U.S. Department of Energyand Computational Sciences, Office of Science, U.S. Department of Energy
under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
Accordingly, the U.S. Government retains a non-exclusive, royalty-freeAccordingly, the U.S. Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of this contribution, orlicense to publish or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.allow others to do so, for U.S. Government purposes.

 Cray, including Supercomputing Center of ExcellenceCray, including Supercomputing Center of Excellence

– Bill Long, Nathan Wichmann, Cathy Willis

 ORNLORNL

– Nikhil Bhatia, Mark Fahey, Trey White

37

PGAS 2006PGAS 2006

 October 3-4, Washington, DC (GWU)October 3-4, Washington, DC (GWU)

 CFP coming soon. (Paper submissions)CFP coming soon. (Paper submissions)

 UPC Developers workshopUPC Developers workshop

 CAF Developers workshopCAF Developers workshop

