
Implementation of Open MPI on the Cray XT3

Brian W. Barrett, Indiana University,
Ron Brightwell, Sandia National Laboratories,

Jeffrey M. Squyres, Cisco Systems, and
Andrew Lumsdaine, Indiana University

Abstract

The Open MPI implementation provides a high per-
formance MPI-2 implementation for a wide variety
of platforms. Open MPI has recently been ported
to the Cray XT3 platform. This paper discusses the
challenges of porting and describes important imple-
mentation decisions. A comparison of performance
results between Open MPI and the Cray supported
implementation of MPICH2 are also presented.

KEYWORDS: Cray XT3, Open MPI

1 Introduction

Open MPI [9] is a high performance, portable imple-
mentation of the Message Passing Interface. Open
MPI’s performance on commodity Linux clusters
with high speed interconnects is well established [18],
and similar results are found on other commercial
and commodity clustering platforms, including AIX,
Mac OS X, and Solaris. The current release includes
support for communication over Myrinet (MX and
GM), InfiniBand (OpenIB and MVAPI), TCP, Por-
tals, and shared memory, with support for uDAPL
and Quadrics under development.

This paper presents our experiences porting Open
MPI to the Cray XT3 platform, specifically the Red
Storm machine at Sandia National Laboratories. As
the XT3 environment is the first “tightly-coupled”
system to be supported by Open MPI, some design
re-factoring was required, especially within the par-
allel run-time support library utilized by Open MPI,
discussed in Section 3. In Section 4 we describe
our implementation of point-to-point messaging over
Cray Portals. Performance results are presented in
Section 5. Finally, future work is discussed in Sec-
tion 6.

2 Background

2.1 Open MPI

Open MPI is the result of a collaboration between
the authors of the LAM/MPI [5, 17], LA-MPI [2, 11],
and FT-MPI [7, 8] implementations of the MPI stan-
dard. Open MPI is a full implementation of both
the MPI-1 [13, 15] and MPI-2 [10, 12] standards, de-
signed to offer high performance and scalability on a
variety of platforms. Open MPI builds on two other
projects (Figure 1), which were originally developed
as part of the Open MPI project, but are slowly be-
coming independent projects. OPAL provides sys-
tem portability code to limit platform-specific work-
arounds in the general code base, as well as building
block code for upper layers. The Open Run-Time
Environment (OpenRTE) [6] provides a uniform,
portable run-time support system for the MPI mes-
saging layer. The entire system is built around a low
overhead component architecture, allowing platform
specific code to be implemented within well-defined
abstractions [3, 16]. On platforms with shared li-
brary support, individual components can be pro-
vided as dynamically loaded shared objects, allowing
for run-time reconfiguration of Open MPI.

Open MPI

OpenRTE

OPAL OPAL OPAL OPAL

OS
services

OS
services

OS
services

OS
services

Host 1 Host 2 Host 3 Host 4

Figure 1: Open MPI high-level design, including log-
ical abstractions of portability code, parallel run-
time services, and the MPI implementation.

1

OPAL provides basic portability and building
block features useful for large scale application de-
velopment, serial or parallel. A number of useful
functions provided only on a handful of platforms
(such as asprintf, snprintf, and strncpy) are imple-
mented in a portable fashion, so that the rest of the
code can assume they are always available. High res-
olution / low perturbation timers, atomic memory
operations, and memory barriers are implemented
for a large number of platforms. The core support
code for the component architecture, which handles
loading components at run-time, is also implemented
within OPAL. OPAL also provides a rich reference
counted object system to simplify memory manage-
ment, as well as to implement a number of container
classes, such as doubly-linked lists, last-in-first-out
queues, and memory pool allocators.

OpenRTE provides a resource manager (RMGR)
to provide process control, a global data store
(known as the GPR), an out-of-band messaging layer
(the RML), and a peer discovery system for paral-
lel start-up (SDS). In addition, OpenRTE provides
basic datatype support for heterogeneous network
support, process naming, and standard I/O for-
warding. Each subsystem is implemented through a
component framework, allowing whole-sale replace-
ment of a subsystem for a particular platform. On
most platforms, the components implementing each
subsystem utilize a number of underlying compo-
nent frameworks to customize OpenRTE for the
specific system configuration. For example, the
standard RMGR component utilizes additional com-
ponent frameworks for resource discovery, process
start-up and shutdown, and failure monitoring.

2.2 Cray XT3 / Sandia Red Storm

The Red Storm machine at Sandia National Labo-
ratories in Albuquerque, New Mexico currently con-
sists of 10,368 processors. Each node contains a sin-
gle 2.0 GHz Opteron CPU with 2 GB of main mem-
ory and a Cray SeaStar NIC/router attached via
HyperTransport. The network is a 27x16x24 mesh
topology, with 2.0 GB/s bidirectional link band-
width and 1.5 GB/s bidirectional node bandwidth.
The Cray XT3 commercial offering is nearly iden-
tical to the XT3 machine installed at Sandia. The
notable difference is that while the Red Storm com-
munication topology is a 3-D mesh, the XT3 utilizes
a 3-D torus configuration. The difference is to allow
a significant portion of the Red Storm machine to
switch between classified and unclassified operation.

The Cray-designed SeaStar [1] communication pro-
cessor / router is designed to offload network com-
munication from the main processor. The compute
nodes run the Catamount lightweight microkernel,
allowing for scalable, low-perturbation operations.

The XT3 platform utilizes the Portals 3.3 commu-
nication interface [4], originally developed by San-
dia National Laboratory and the University of New
Mexico for enabling scalable communication in a
high performance computing environment. The Por-
tals interface provides true one-sided communication
semantics. Unlike traditional one-sided interfaces,
the remote memory address for an operation is deter-
mined by the target, not the origin. This allows Por-
tals to act as a building block for high performance
implementations of both one-sided semantics (Cray
SHMEM) and two-sided semantics (MPI-1 send/re-
ceive).

3 Run-Time Environment

The OpenRTE system has proved versatile in com-
mon cluster computing environments (including
moderately coupled systems, like the Los Alamos
BProc cluster environment), but was a point of con-
cern for the XT3 environment. The XT3 provides a
full-featured process start-up and monitoring system
for job control, eliminating the need for the mpirun
command utilized by OpenRTE on other platforms.
mpirun acted as a centralized point of contact for the
global data store and resource manager subsystems,
and the loss of mpirun required significant modifica-
tion to these subsystems.

The resource management subsystem is largely
concerned with discovering resources and starting,
monitoring, and controlling MPI processes. As the
XT3 operating environment provides this function-
ality, the subsystem is largely irrelevant for this port.
The existing component implementing the RMGR
component attempts to load a large number of ad-
ditional component frameworks at initialization, in-
creasing the memory footprint of Open MPI. Many
of the components within those frameworks also uti-
lized functionality not available in the compute node
environment, such as fork and exec. Therefore, we
implemented a new resource management compo-
nent for the XT3 compute node environment that
returns an error for most requests (such as pro-
cess start-up or monitoring). In order to imple-
ment MPI ABORT, the resource manager implemen-
tation does use the internal killrank function to

2

shut down the proper processes.
The global data store, known as the general pur-

pose registry (GPR), provides database-like seman-
tics for inter-process communication. The MPI layer
utilizes the GPR for storing process contact infor-
mation (the TCP address and port number for the
TCP communication device, for example), host in-
formation for heterogeneous environments, and con-
tact information necessary for implementing MPI-2
dynamic process features. The GPR is also used ex-
tensively by the RMGR subsystem to track job status
and resource availability. The MPI layer generally
uses the GPR in a callback model, asking for updates
on information as it becomes available. For example,
a MPI process might express interest in the architec-
ture information of all nodes on which a process in
that job is executing. By default, it would assume
that the remote architecture is the same as the local
architecture and adjust as new information becomes
available.

A new General Purpose Registry (GPR) compo-
nent — NULL — was added in order to handle the
lack of a central mpirun process that is found in
most Open MPI environments. The NULL GPR com-
ponent acts as an information sink for processes –
information updates succeed, but aren’t broadcast.
Similarly, requests for information updates succeed,
but no callbacks are ever triggered. Because the MPI
layer is designed to have reasonable default values if
no new information is received, this strategy works
well on the XT3. The Portals communication driver
was designed to bypass the GPR for wire-up informa-
tion, eliminating the one place the MPI layer used
the GPR in a non-callback mode.

The out-of-band messaging (RML) subsystem of
OpenRTE provides send/receive point-to-point, bar-
rier, and broadcast communication outside of MPI
channels. It is generally used for process wire-up
and relaying updates from the GPR as new infor-
mation on the state of the run-time environment
becomes available. The existing implementation uti-
lized TCP/IP for communication, making it imprac-
tical for the XT3 environment. A new out-of-band
messaging layer that provides no functionality other
than calling cnos barrier() to implement an out-
of-band barrier. The RML barrier functionality is
utilized during MPI INIT for process synchroniza-
tion, motivating the XT3-specific RML implemen-
tation.

One new framework was required in order to sup-
port the XT3. The System Discovery Service (SDS)

was implemented to provide a component infras-
tructure for providing the starting process both its
current OpenRTE name1 and the list of names for
the current job. This information is used to de-
termine the contents of MPI COMM WORLD. Pre-
viously, this information was always specified by
the OpenRTE process start-up mechanisms, so there
was no need to abstract this functionality into a
component framework. Moving to a new component
framework allowed for conditional compilation of the
components which provide process naming informa-
tion and, more importantly, the implementation of
the CNOS SDS component, which gets job informa-
tion from the Cray run-time environment.

4 Communication

Open MPI provides a layered architecture for point-
to-point communication, shown in Figure 2. The
lowest layer, the Byte Transport Layer (BTL) pro-
vides active-message-like send and true RDMA
put/get semantics. The BTL interface is extremely
small, consisting of eleven functions and has no con-
cept of MPI structures or semantics. The BTL Man-
agement Layer (BML) provides scheduling and mul-
tiplexing of BTL instances, allowing a single BTL
to be shared between multiple higher level pro-
tocols.2 The PML implements the point-to-point
functions of the MPI interface, with an interface
that very closely matches the MPI interface (syn-
chronous, buffered, and ready sends are converted
into an argument field, rather than separate inter-
face functions). There are currently two PML imple-
mentations: OB1, which provides high performance,
RDMA message transfer and DR, which provides
message reliability and NIC fail over. Both pro-
vide message stripping and fragmenting for multi-
NIC environments. As the XT3 provides end-to-end
message reliability, we focus on the OB1 PML for the
remainder of this paper.

Given the ease of mapping Portals functionality
to MPI semantics, it was not clear whether it was
better to implement Portals communication support
at the PML or BTL level. The decision was made
to implement Portals support at the BTL level for

1All OpenRTE processes are assigned a unique name dur-
ing initialization.

2Presently, the MPI-2 one-sided interface is also imple-
mented over the BML/BTL interface. It is likely that collec-
tives will (optionally) bypass the PML for some optimizations
in the near future.

3

OB1 PML
(point-to-point)

PT2PT OSC
(one-sided)

R2 BML

Self BTL Portals BTL

Figure 2: Component design for point-to-point com-
munication.

two reasons: it was believed that performance would
be competitive with a PML implementation and the
MPI-2 one-sided support utilizes the BTL interface,
bypassing the PML interface. We did not wish to
implement a Portals-specific one-sided implementa-
tion on the first porting effort, so the decision was
made to implement a Portals BTL.

ptl_portals_send()
called

Send frag created
with floating MD

Send queue
space?

queue for later
delivery

NO
PtlPut() fragYES

Progress Events

mlength == 0

ACK

Frag not recved -
try again

YES

message
received -

Release md

NO

send complete

Figure 3: Flow chart of the btl send() logic for
Portals.

The BTL interface consists of a number of setup /
cleanup functions, and 6 functions required for mes-
sage transfer. All send/receive communication is in
an active-message style – an upper layer expresses
interest in a particular message index (in the BTL,

this is an integer between 0 and 255) and the send
call includes an argument specifying the destination
index, in addition to the target process contact infor-
mation. The communication functions are described
below:

alloc Return a region of “btl memory” of a speci-
fied size that can be used for send communica-
tion. On network devices that require per-page
pinning, this is generally allocated from a pool
of pre-pinned buffers that can be reused to off-
set pinning costs. The caller is responsible for
all data packing, calling send, and calling free
when the send completes.

prepare src Prepare a specified region of user
memory for being the source of a communica-
tion call. The region may or may not be con-
tiguous and may require a small area of mem-
ory be available in “btl memory” for headers.
A datatype convertor is available for determin-
ing the memory region to be sent, which may
be non-contiguous. The BTL is free to either
copy the entire user buffer into “btl memory” or
send directly from user memory. prepare src
is called for the origin of send and put calls and
the target of get calls.

prepare dst Similar to prepare src, only for the
target of put calls and the origin of get calls.
Generally, prepare dst returns an error if the
user’s memory region can not be sent in a single
scatter/gather RDMA operation. A BTL is not
required to implement this function if it does
not implement put or get.

free Return resources allocated by alloc,
prepare src, or prepare dst.

send Send data from a call to alloc or
prepare src to a specified host. A target index
is also provided for dispatch on the receiving
side. send is a non-blocking call, and a user-
specified callback is triggered when the send
completes. The BTL can specify the maximum
amount of data that can be transferred in any
single call to send.

put RDMA put operation, called when the origin
has been prepared with prepare src and the
target with prepare dst. A user-specified call-
back is triggered on the origin when the trans-
fer completes. No notification is given on the

4

target. A BTL is not currently required to im-
plement this function.

get RDMA get operation, called when the origin
has been prepared with prepare dst and the
target with prepare src. A user-specified call-
back is triggered on the origin when the trans-
fer completes. No notification is given on the
target. A BTL is not currently required to im-
plement this function.

The Portals BTL provides both send/receive and
RDMA communication. Send communication is lim-
ited to 32KB fragments and is implemented utiliz-
ing a design similar the method used for unexpected
short messages described in [14]. A state diagram
of the send logic utilized by the Portals BTL is pro-
vided in Figure 3. Unlike most BTL implementa-
tions, which require an internal header be transmit-
ted with the user data to send the tag index, the
Portals implementation sends the tag index in the
user data option of the PtlPut() function. The
number of outstanding send fragments is limited to
ensure there is space in the send message event queue
to receive any pending ACK events. As will be dis-
cussed later, it is possible that there is no space avail-
able on the receiving process for the message. In this
case, the sending process will receive an ACK event
with an mlength of 0, indicating the message was
not successfully transmitted (the BTL never sends
0 byte fragments, so mlength can never be 0 on a
valid transmission). Send completion notification is
not given until a valid ACK event is received. The
OB1 PML hides the latency of waiting for an ACK
in the MPI SEND case by returning as soon as the
send call returns, as the data is buffered in the BTL
and the user buffer is no longer needed by MPI.

We experimented with the use of iovecs for send
buffers, allowing the caller to use one buffer for head-
ers and sending the user data directly from user
memory. This had an overall negative effect on per-
formance. While the exact cause of the reduced per-
formance is not well understood, we are considering
two likely possibilities: performance issues with us-
ing iovecs combined with PtlPut for short messages
or the required delay in completing MPI SEND calls
until the ACK event arrived (as the user buffer is in
use by the BTL until the ACK arrives). We intend
to investigate this issue further at a later time.

Receiving send messages is done via a set of 1MB
memory segments attached to a receive portal table
entry. Figure 4 provides an outline of the Portals

RDMA frags

Unexpected
frags First frag me

First frag me

First frag me

truncate me

First frag md

First frag md

First frag mdPortals Table

frag recv eq

Figure 4: Match list and memory descriptor config-
uration for receiving message fragments.

structures for receiving btl send() fragments. The
max data option is used to ensure the memory de-
scriptor becomes inactive when an entire fragment
can not be received. A “reject” match entry / mem-
ory descriptor sits as the last entry in the match list,
which has no associated event queue and truncates
all messages to 0 byte length. This allows the send-
ing process to be notified (via the standard Portals
acknowledgment mechanism) that a message was not
received and should be retransmitted. When events
are pulled from the receive queue, the hdr data field
of the event is used for dispatching to the correct re-
ceive callback.

The initial implementation limited descriptor ac-
tivity only with the max data option of the memory
descriptor. Because all send fragments are received
into one shared receive event queue, it was possible
to receive enough fragments to overflow the event
queue before the memory descriptors were filled and
marked inactive. With the message received but no
event to signal the reception, it was nearly impos-
sible to find and deliver the message. The message
was delivered successfully into the receive memory
descriptor, so the sending process received a ACK
event that indicated successful delivery. The receiv-
ing BTL was able to detect that the overflow oc-
curred, but at that point lacked a reasonable re-
covery option. To solve the overflow problem, we
now set the threshold of each memory descriptor
such that the total number of events that may be
generated by the receive message descriptors is less
than the event queue size. A flood of fragments to
one host will cause all receive memory descriptors to
go inactive, resulting messages being received to the
“reject” descriptor, which truncates the message to
0 bytes. The sender is then notified the message was
received but truncated and attempts to retransmit.

RDMA operations are largely a one-to-one map-

5

ping between the BTL put / get functions and
the PtlPut() / PtlGet() functions. Memory de-
scriptors are created during btl prepare src() and
btl prepare dest(), and match entries are created
and attached to a portals table entry for RDMA op-
erations. The semantics of the BTL descriptor cre-
ation means that the target of the RDMA operation
can pass a unique 64 bit match key to the origin, al-
lowing the use of Portals matching for RDMA mes-
sages. Because there is currently not enough infor-
mation passed to btl prepare src() to determine
whether the descriptor will be the origin of a put or
the target of a get operation, the match entry is al-
ways created (the btl prepare dest() function has
the symmetric problem). This causes a slight over-
head in creating descriptors for RDMA operations,
but that latency is generally masked by the much
higher communication latencies required to set up
the RDMA protocol used by the OB1 PML.

5 Results

All results presented were run on a Red Storm devel-
opment test cage at Sandia National Laboratories.
Open MPI was built from a Subversion checkout
of the development trunk, at revision number 9807.
The Cray MPICH2 provided with the currently run-
ning software stack was used for comparison.

Figure 5 shows the best case message latency for
Open MPI and Cray MPICH2, as well as the best
case latency for direct Portals communication. The
added overhead of Open MPI’s matching header and
data copies on both the sender and receiver can be
seen. Message latency is still higher than we would
expect when compared to other supported networks,
so short message latency is still under investiga-
tion for possible performance improvements. Some
latency-harming debugging code is always on in the
current implementation, although we don’t believe
it explains the large performance difference we are
seeing relative to MPICH2.

Implementation 1 Byte Latency
Portals 5.30 µsec
MPICH-2 7.14 µsec
Open MPI 8.50 µsec

Figure 5: Latency for one byte messages using Net-
PIPE.

Figure 6 shows unidirectional bandwidth from
NetPIPE, again comparing Open MPI, Cray

MPICH2, and raw Portals communication. Small
message performance is slightly lower than MPICH2
and native Portals, for reasons discussed in the pre-
vious section. Messages up to approximately 64KB
are always copied at both the sender and receiver
with Open MPI, which appears to account for the
progressively lower relative bandwidth when com-
pared to MPICH2 or raw Portals. At 64 KB, Open
MPI begins to use an RDMA get protocol for mes-
sage transfer. The first portion of the message, along
with the source BTL descriptor for the RDMA get
is sent. Once the message is matched, the receiving
side performs a PtlGet() to receive the remainder
of the message. A completion acknowledgment is
then sent from the receiver to the sender. While
peak bandwidth is comparable to MPICH2 and na-
tive hardware, the bandwidth for medium sized mes-
sages (64 KB - 238 KB) is lower, due to the latencies
added by the extra protocol messages.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

Portals
MPICH 2

Open MPI

Figure 6: NetPIPE bandwidth on XT3 hardware.

6 Future Work

Open MPI currently provides a complete implemen-
tation of the MPI standard for the Cray XT3 envi-
ronment. However, there are still a number of areas
for improvement still under investigation.

6.1 Point-to-point Performance

Currently, all message matching logic is performed
in the OB1 PML, at the MPI software layer. The
Cray MPICH-2 implementation utilizes the match-
ing capabilities of the Portals interface for message
matching. The combination of a lack of data header
(instead using the Portals match and ignore bits for

6

matching information), always sending contiguous
data from user memory, and a shorter protocol stack
result in lower short message latencies for MPICH-
2. Open MPI’s OB1 is designed for RDMA net-
works like InfiniBand or Myrinet/GM, which require
a handshake protocol for message transfer setup.
The cost of the extra handshake logic is evident in
the mid-size message transfer, where Open MPI has
lower bandwidth than Cray MPICH-2.

One method of increasing our performance would
be to revisit our PML/BTL decision and implement
a Portals-specific PML. Initial work has begun on
such a configuration, although results are not cur-
rently available. However, this approach would still
require either maintaining the Portals BTL imple-
mentation or developing a one-sided implementation
for Portals.

Another option currently under investigation is
to extend the BTL interface to allow components
that provide match semantics similar to Portals to
match receive messages in a fashion similar to that
employed by Cray MPICH-2. This approach is
currently favored, as it would also be applicable
to Myrinet/MX, which has nearly identical perfor-
mance issues with Open MPI when compared to the
vendor-supported MPICH-2 implementation.

6.2 MPI topology component

The Cray XT3 is the first platform Open MPI sup-
ports that has an interesting point-to-point network
topology. It appears to be possible (at least, on
the Red Storm machine) to find the X,Y,Z coor-
dinates on the mesh to each process. Using this
information, we should be able to provide intel-
ligent implementations of the MPI topology func-
tions. A TOPO framework exists for allowing such
machine-specific implementations, and requires im-
plementing the equivalent of MPI CART MAP and
MPI GRAPH MAP. The TOPO framework will au-
tomatically include implementations of the other
topology functions based on the two base mapping
functions.

6.3 Collective Performance

While not strictly an optimization specific to the
XT3 architectures, Open MPI’s collective perfor-
mance is under active research and development.
The current implementation provides highly opti-
mized algorithms for a number of collectives, in

many cases multiple algorithms for a single collec-
tive. Algorithm selection is based on either generic
defaults or can be customized to a particular hard-
ware configuration by running a profiling applica-
tion. Although general algorithm improvements will
increase collectives performance on the XT3, it is
likely that our collectives routines also need to be
optimized for the network topology, which is an area
of future research.

7 Conclusions

Open MPI has shown the ability to operate in tightly
integrated supercomputing environments, such as
the Cray XT3. Performance is indicative of a first
attempt at integrating into a new communication
paradigm, and can be improved greatly by the ad-
dition of hardware matching and the reduction of
protocol overhead in the OB1.

Thanks

This work was supported by a grant from the Lilly
Endowment, National Science Foundation grants
ANI-0330620 and EIA-0202048, and University of
California (Los Alamos National Lab) subcontract
number 15043-001-05.

References

[1] Robert Alverson. Red storm. In Invited Talk,
Hot Chips 15, 2003.

[2] Rob T. Aulwes, David J. Daniel, Nehal N.
Desai, Richard L. Graham, L. Dean Risinger,
Mitchel W. Sukalski, Mark A. Taylor, and Tim-
othy S. Woodall. Architecture of LA-MPI, a
network-fault-tolerant mpi. In Los Alamos re-
port LA-UR-03-0939, Proceedings of IPDPS,
2004.

[3] B. Barrett, J. M. Squyres, A. Lumsdaine,
R. L. Graham, and G. Bosilca. Analysis of
the component architecture overhead in open
mpi. In Proceedings, 12th European PVM/MPI
Users’ Group Meeting, Sorrento, Italy, Septem-
ber 2005.

[4] Ron Brightwell, Tramm Hudson, Arthur B.
Maccabe, and Rolf Riesen. The portals 3.0
message passing interface. Technical Report

7

SAND99-2959, Sandia National Laboratories,
1999.

[5] G. Burns, R. Daoud, and J. Vaigl. LAM: An
Open Cluster Environment for MPI. In Pro-
ceedings of Supercomputing Symposium, pages
379–386, 1994.

[6] R. H. Castain, T. S. Woodall, D. J. Daniel,
J. M. Squyres, B. Barrett, and G .E. Fagg.
The open run-time environment (openrte): A
transparent multi-cluster environment for high-
performance computing. In Proceedings, 12th
European PVM/MPI Users’ Group Meeting,
Sorrento, Italy, September 2005.

[7] G. E. Fagg, A. Bukovsky, and J. J. Dongarra.
HARNESS and fault tolerant MPI. Parallel
Computing, 27:1479–1496, 2001.

[8] Graham E. Fagg, Edgar Gabriel, Zizhong
Chen, Thara Angskun, George Bosilca, Antonin
Bukovski, and Jack J. Dongarra. Fault toler-
ant communication library and applications for
high perofrmance. In Los Alamos Computer
Science Institute Symposium, Santa Fe, NM,
October 27-29 2003.

[9] E. Garbriel et al. Open MPI: Goals, con-
cept, and design of a next generation MPI im-
plementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, 2004.

[10] A. Geist, W. Gropp, S. Huss-Lederman,
A. Lumsdaine, E. Lusk, W. Saphir, T. Skjellum,
and M. Snir. MPI-2: Extending the Message-
Passing Interface. In Euro-Par ’96 Parallel Pro-
cessing, pages 128–135. Springer Verlag, 1996.

[11] R. L. Graham, S.-E. Choi, D. J. Daniel,
N. N. Desai, R. G. Minnich, C. E. Ras-
mussen, L. D. Risinger, and M. W. Sukalksi.
A network-failure-tolerant message-passing sys-
tem for terascale clusters. International Journal
of Parallel Programming, 31(4), August 2003.

[12] William Gropp, Steven Huss-Lederman, An-
drew Lumsdaine, Ewing Lusk, Bill Nitzberg,
William Saphir, and Marc Snir. MPI — The
Complete Reference: Volume 2, the MPI-2 Ex-
tensions. MIT Press, 1998.

[13] Message Passing Interface Forum. MPI: A Mes-
sage Passing Interface. In Proc. of Supercomput-
ing ’93, pages 878–883. IEEE Computer Society
Press, November 1993.

[14] Rolf Riesen Ron Brightwell, Arthur B. Mac-
cabe. Design, implementation, and performance
of mpi on portals 3.0. International Journal
of High Performance Computing Applications,
17(1), Spring 2003.

[15] Marc Snir, Steve W. Otto, Steve Huss-
Lederman, David W. Walker, and Jack Don-
garra. MPI: The Complete Reference. MIT
Press, Cambridge, MA, 1996.

[16] Jeffrey M. Squyres and Andrew Lumsdaine.
The component architecture of open MPI: En-
abling third-party collective algorithms. In
Vladimir Getov and Thilo Kielmann, editors,
Proceedings, 18th ACM International Confer-
ence on Supercomputing, Workshop on Com-
ponent Models and Systems for Grid Applica-
tions, pages 167–185, St. Malo, France, July
2004. Springer.

[17] J.M. Squyres and A. Lumsdaine. A Compo-
nent Architecture for LAM/MPI. In Proceed-
ings, 10th European PVM/MPI Users’ Group
Meeting, Lecture Notes in Computer Science,
Venice, Italy, September 2003. Springer-Verlag.

[18] T.S. Woodall et al. Open MPI’s TEG point-to-
point communications methodology : Compar-
ison to existing implementations. In Proceed-
ings, 11th European PVM/MPI Users’ Group
Meeting, 2004.

A Building Open MPI

Open MPI uses the GNU Autotools for the build
process. A number of special arguments are required
to properly build Open MPI for the Cray XT3 envi-
ronment. The required options to successfully build
Open MPI are given below.

. / c on f i gu r e CC=qk−gcc CXX=qk−pgCC \
F77=qk−pgf77 FC=qk−pgf90 \
−−bu i ld=x86 64−unknown−l inux−gnu \
−−host=x86 64−cray−l inux−gnu \
−−with−plat form=redstorm

If a Subversion checkout is used to build
the source (rather than a tarball), the option
−−disable−debug should also be specified to turn
off internal debugging code that is useful to devel-
opers but can have a large impact on performance.
Debugging is automatically disabled if built from a
tarball.

8

Open MPI 1.1, when released, will have prelimi-
nary support for the XT3 platform. However, nu-
merous enhancements to both the run-time support
and the Portals device driver have occurred on the
development trunk and will not be part of the Open
MPI 1.1 series of releases. Open MPI 1.2 (currently,
the development trunk) will provide much better
support for the XT3 environment.

About the Authors

Brian Barrett is a PhD Candidate, Department of
Computer Science, Indiana University. He is the
lead developer of the LAM/MPI project and a de-
veloper on the Open MPI project and his research
interests include programming paradigms for large
scale parallel programming. He can be reached at
215 Lindley Hall, Bloomington, IN, 47405, USA, E-
mail: brbarret@osl.iu.edu. Ron Brightwell is Prin-
cipal Member of Technical Staff, Sandia National
Laboratories. His research interests include high-
performance, scalable communication interfaces and
protocols for system-area networks, operating sys-
tems for massively parallel processing machines,
and parallel program performance analysis libraries
and tools. He can be reached at PO Box 5800,
Albuquerque, NM 87185-1110, USA, E-mail: rb-
brigh@sandia.gov. Jeff Squyres is Technical Lead
for MPI at Cisco Systems. He can be reached
at 12910 Shelbyville Rd, Suite 210, Louisville, KY
40243, E-mail: jsquyres@cisco.com. Andrew Lums-
daine is Professor, Computer Science Department
and Director of the Open Systems Laboratory at In-
diana University. He can be reached at 215 Lind-
ley Hall, Bloomington, IN, 47405, USA, E-mail:
lums@osl.iu.edu.

9

	Introduction
	Background
	Open MPI
	Cray XT3 / Sandia Red Storm

	Run-Time Environment
	Communication
	Results
	Future Work
	Point-to-point Performance
	MPI topology component
	Collective Performance

	Conclusions
	Building Open MPI

