
Graph Software Development and Performance on the MTA-2 and

Eldorado

Jonathan W. Berry∗ Bruce Hendrickson† Simon Kahan‡ Petr Konecny§

May 10, 2006

Abstract

We will discuss our experiences in designing and us-
ing a software infrastructure for processing seman-
tic graphs on massively multithreaded computers.
We have developed implementations of several algo-
rithms for connected components, subgraph isomor-
phism, and s-t connectivity. We will discuss their
performance on the existing Cray MTA-2, and their
predicted performance on the upcoming Cray Eldo-
rado. We will also describe ways in which the under-
lying architecture and programming model have in-
formed algorithm design and coding paradigms. We
conclude with a revealing comparison of s-t connec-
tivity performance on the MTA-2 and BlueGene/L.

1 Introduction

In this paper we describe a new graph software in-
frastructure for the Cray MTA/Eldorado series of
supercomputers. The MTA-2 is currently the fastest
machine for processing graph algorithms because it
has been designed to tolerate latency rather than to
mitigate it. Typical microprocessors combine sev-
eral layers of cache into a memory hierarchy, then
rely on the spacial and temporal locality inherent in
many applications. Graph algorithms, however, can
have neither. This is especially true when they are
applied to unstructured graphs such as social net-
works.

A semantic graph (or attributed relational graph)
is a graph with types on the vertices and/or edges.
Vertices are typically “nouns” and edges are typi-
cally “verbs.” As the intelligence community shifts
its focus from cold war challenges to terrorism chal-

∗Sandia National Laboratories
†Sandia National Laboratories
‡Cray, Inc.
§Cray, Inc.

lenges, the processing of graph algorithms on large,
unstructured semantic graphs has rapidly become
very important.

The shared-memory programming model of the
MTA/Eldorado machines offers the mixed blessing
of a higher level of abstraction than message pass-
ing/MPI models, but relatively more subtle concur-
rency and performance issues. Our graph infrastruc-
ture is designed to encapsulate many of these sub-
tleties for standard graph kernel algorithms.

We present our infrastructure, which we call the
MultiThreaded Graph Library (MTGL), in stages.
First, in Section 2, we describe the design goals and
primary design pattern of the MTGL. Then, in Sec-
tion 4, we give high-level pseudocode descriptions
of the MTGL implementations of three kernel al-
gorithms: connected components, subgraph isomor-
phism, and s-t connectivity. These descriptions will
highlight the generic nature of the graph search prim-
itives within the MTGL, as they are reused several
times.

2 Basic Design Methodology

The MTGL is a small prototype C++ library that is
inspired by the Boost Graph Library (BoostGL) of
Siek, Lee, and Lumsdaine [5]. However, our library
is not an extension of BoostGL. The MTA/Eldorado
compilers are not fully compliant with the C++ stan-
dard, and BoostGL makes very aggressive use of the
language in order to maximize its flexibility. The
MTGL is not designed to be as generic as BoostGL;
rather, our primary design goals are to maximally
expose the performance of the MTA/Eldorado ma-
chines and to maximally encapsulate the threats to
successful development of applications: race condi-
tions and hotspotting. Whereas the BoostGL has
numerous graph representations, data structures, and
algorithms, our prototype MTGL has but a few. Our

1

software currently runs on the MTA-2 and on stan-
dard workstations as well.

The primary design pattern of the MTGL is the
visitor pattern. Algorithms are defined by library
programmers as objects, and are customized by user-
defined “visitor” classes. We will show several exam-
ples of the use of visitors below. performance results
in Section 6. We omit actual code samples in this
paper.

3 Notation

In order to describe multithreaded graph algorithms
and their implementations in the MTGL, it is conve-
nient to define some notation. Beginning with the fa-
miliar definition of a graph: G = (V, E), were V (G)
is the vertex set of G E(G) is the edge set of G,
E(v) is the set of edges incident on vertex v. we
define a type function t such that t(v) is the type
of v ∈ V , and t(v, w) is the type of edge (v, w). In
this paper and in the prototype MTGL, all graphs
are assumed to be undirected. That is, whenever
(v, w) exists, (w, v) will exist as well. The rationale
for this seemingly limiting decision is that in social
networks, reciprocal relationships almost always ex-
ist. For example, if v is the father of w, then w is
the son of v. In the rare cases in which there is a
relationship between v and w, but no relationship
between w and v, we define the edge type t(w, v) to
be null. Furthermore, we allow multiple edges be-
tween two vertices v and v′, and so the notation for
an edge varible (v, v′) allows for multiple instances
of edges between v and v′. If will not be important
to name these instances in this paper.

We often refer to the quadruple of types associ-
ated with an undirected edge between two vertices
v and w. We use the shorthand notation t[v, w]
to denote the quadruple (t(v), t(v, w), t(w, v), t(w)).
Since the semantic graphs that motivated MTGL
may be multigraphs, and hence any pair of vertices
v and v′ may have many edges of different types
between them, it is convenient for us to speak of
walks in terms of edges rather than vertices. We de-
fine a walk of length l to be a sequence of l edges:
W = ((w0, w1), (w1, w2), . . . , (wl−1, wl)). We say
that two walks W and W ′ are type-isomorphic if
t[wi, wi+1] = t[w′

i, w
′

i + 1] for all 0 ≤ i ≤ l− 1.
When multiple threads access a piece of shared

memory, the MTA’s concurrency mechanisms, listed
in Table 3, are used by the MTGL infrastructure,
and sometimes by user programs. When we need to

specify a concurrent access in our pseudocode, we
use the associated notation shown in the table.

In addition to the notation defined in Table 3,
when we wish to specify that some high level series
of operations, such as an insertion of element e into
a hash table T , is done in a thread safe manner, we

use the notation T
ts
← T ∪ e.

Visitor objects in MTGL algorithms have fields
(member data in C++ lingo), and we use the stan-
dard C/C++ notation V.f to denote field f of visitor
object V . Visitor objects will also have associated
methods, and these are defined using a generic pseu-
docode format.

As a final notational convenience, we encapsulate
MTGL logic that determines whether or not it is
worthwhile to parallelize a loop. The pseudocode

for (v,v’) in E(v):

indicates that the MTGL will instruct the MTA to
parallelize the loop if E(v) is large enough. Other-
wise, the loop will run in serial. This explanation
holds unless there is a comment in the pseudocode
indicating otherwise.

4 Algorithmic Kernels of the

MTGL

Using pseudocode and the notation defined above,
we will now give descriptions of three algorithmic
kernels of many graph queries that might be sub-
mitted to a semantic graph algorithm server. These
kernels are connected components, subgraph isomor-
phism, and s-t connectivity. A connected component
C is defined as a maximal subset of the vertex set
V such that any v and w in C are connected by a
path. This is an elementary problem in graph the-
ory, and linear-time solutions exist. Furthermore,
efficient parallel algorithms exist as well [4].

Subgraph isomorphism, however, is an NP-complete
problem, and hence computationally intractable bar-
ring an epochal theoretical development. Given a
graph G and a smaller graph H , is there a subgraph
of G isomorphic to H? A classical algorithm by
Ullman [6] solves the subgraph isomorphism prob-
lem, but its computational complexity makes this
algorithm unusable for large inputs. We will give
a heuristic for the subgraph isomorphism problem
that demonstrates the flexibility of the MTGL and
scales almost perfectly on the MTA-2.

2

MTA primitive meaning pseudocode notation MTGL function

b = int fetch add(a,i) atomic retrieval, increment of a b
ifa
← a, i mt incr

b = readfe(a) wait for a to be “full,” leave it “empty” b
fe
← a mt readfe

b = readff(a) wait for a to be “full,” leave it “full” b
ff
← a mt readfe

writeef(a,v) wait for a to be “empty,” leave it “full” a
ef
← v mt writeef

Table 1: Some MTA primitives and their pseudocode and MTGL designations

PSearch<AND,Vis>(v)

{
Vis.d(v)

for (v,v’) in E(v):

if (not Vis.vt(v,v’)): return

if (v,v’) unvisited:

Vis.te(v,v’)

PSearch<Vis>(v’)

else:

Vis.oe(v,v’)

}

Figure 1: Pseudocode for the PSearch routine, tem-
plated to treat the user’s visit test as a logical “and.”

4.1 Preliminaries

Below we will give pseudocode for a basic MTGL
primitive: parallel graph search PSearch. We do not
specify “depth-first” or “breadth-first” search since
the primitive has elements of both. A single instance
of PSearch(v) will initiate a single search from ver-
tex v, and each time the neighbors of a vertex are
explored, a decision is made whether to parallelize
the loop of recursive PSearch’es from the neighbors
of v. As no queue is used to enforce breadth-first
visitation of vertices, PSearch reduces to depth-first
search when MTGL code is run on a serial machine.

Following the visitor pattern, PSearch is an ob-
ject, and it is customized by two template param-
eters. One of these is a a visitor object that will
provide PSearch with five things:

1. User-defined fields, such a data structures to
hold results,

2. A d(v) method, to be called upon the discovery
of vertex v,

3. A vt(v, v′) (visit-test) method, to be called be-
fore traversing edge (v, v′).

PSearch<OR,Vis>(v)

{
Vis.d(v)

for (v,v’) in E(v):

if (v,v’) unvisited OR Vis.vt(v,v’):

Vis.te(v,v’)

PSearch<Vis>(v’)

else:

Vis.oe(v,v’)

}

Figure 2: Pseudocode for the PSearch routine, tem-
plated to treat the user’s visit test as a logical “or.”

4. A te(v, v′) (tree-edge) method, to be called
upon visiting edge (v, v′) to first discover v′.

5. An oe(v, v′) (other-edge) method, to be called
upon visiting edge (v, v′) to revisit v′.

The other template parameter is an operation
type that will tell the search primitive how to inter-
pret the visitor’s vt (visit-test) method. Acceptable
operation types are:

• logical OR, which indicates that the search should
proceed via edge (v, v′) if v′ is unvisited, or if
the user’s visit-test returns true;

• logical AND, which indicates that the search
should terminate if the user’s visit-test returns
false, regardless of whether v′ has been visited;

• the symbol REPLACE, which indicates that whether
or not v′ has been visited is irrelevant. The
user’s visit-test alone will determine whether
to continue the search.

For example, if the user wishes to search the sub-
graph induced by green edges only, the AND operation
would be used. Another example of an AND visitor
is given in Section 4.5 below. If, on the other hand,

3

PSearch<REPLACE,Vis>(v)

{
Vis.d(v)

for (v,v’) in E(v):

if Vis.vt(v,v’):

Vis.te(v,v’)

PSearch<Vis>(v’)

else:

Vis.oe(v,v’)

}

Figure 3: Pseudocode for the PSearch routine, tem-
plated to treat the user’s visit test as the only crite-
rion for proceeding.

SearchHighLow<OP, Vis>(G)

{
high-degree vertices

H ← {v h1, v h2, . . . , v hk}
low-degree vertices

L ← {v l1, v l2, . . . , v h(n− k)}
for v in H: # in serial

PSearch<OP,Vis>(v)

for v in L:

PSearch<OP,Vis>(v)

}

Figure 4: Pseudocode for the SearchHighLow rou-
tine

the user wishes to take a random walk through the
graph while disregarding repeat visits, the REPLACE

operation would be used. An example of a meaning-
ful use of the OR operation is given in Section 4.3.

We are now ready to define PSearch using our
pseudocode notation. The three varieties are shown
in Figures 1, 2, and 3.

The nested parallelism in this pseudocode can be
handled well by the MTA-2 if the proper compiler
directives are used. The MTGL encapsulates the
choice of these compiler directives, as well as several
concurrency issues.

A common operation in multithreaded graph al-
gorithms is to run a large number of PSearch in-
stances concurrently in the same graph. In order
to avoid repetition of this operation, we define and
reuse a function that implements a heuristic vari-
ety of this operation due to Jace Mogill. Assuming
that there are k vertices of “high degree,” where
the latter can be defined by the MTGL program-
mer, initiate PSearches from those first, in a serial

loop. Attempting to initiate these searches in par-
allel overwhelms even the MTA with threads. After
searching from the high-degree vertices, we initiate
searches from all remaining vertices in parallel. Note
that many of these searches will terminate immedi-
ately, as they encounter previously visited vertices.
Mogill’s heuristic, and Kahan’s C implementation of
it, recursively segregates high-degree neighbors from
low-degree neighbors during the search. However,
our MTGL implementation uses the simpler logic
given in Figure 4.

4.2 Kahan’s Algorithm for Connected

Components

Kahan’s algorithm labels the connected components
of G in a three-phase process:

1. SearchHighLow is called to cover the graph
with concurrent searches. The result is a par-
tial labelling of connected components and a
hash table containing pairs of components that
must be merged into one.

2. A standard concurrent-read, concurrent-write
parallel algorithm (Shiloach-Vishkin [4], is used
to find the connected components of the graph
induced by the component pairs in the hash
table.

3. A set of PSearches is initiated from each com-
ponent leader identified by phase 2. Each PSearch
labels all vertices in a single component.

The MTGL implmentation of Kahan’s algorithm
illustrates the flexibility of the visitor pattern. In or-
der to implement phase 1, we define a visitor object
that will customize the SearchHighLow operation.
The pseudocode is shown in Figure 5.

V 1 ← {
C ← array of |V(G)| ints

T ← hash table of (int, int) pairs

d(v) { C[v] ← v.id }
vt(v,v’) { }
te(v,v’) { C[v′] ← C[v] }

oe(v,v’) { T
ts
← T ∪ { (C[v], C[v′]) } }

}

Figure 5: The visitor object for Kahan’s algorithm,
phase 1

4

Phase 2 of Kahan’s algorithm is a call to the
Shiloach-Vishkin algorithm to find the connected com-
ponents of the graph induced when we treat each
pair in T as an edge. We omit the MTGL pseu-
docode for this phase, and simply describe phase 2
with the following code:

L← ShiloachVishkin(V1.T),

where L is the set of component leaders determined
by the algorithm.

To implement phase 3, we define another visitor
class to customize another call to a search primitive.
This simpler visitor is shown in Figure 6.

V 2 ← {
C ← V 1.C

d(v) { }
vt(v,v’) { }
te(v,v’) ← V 1.te(v,v’)
oe(v) { }

}

Figure 6: The visitor object for Kahan’s algorithm,
phase 3

Kahan’s algorithm in its entirety is given in Fig-
ure 7.

Kahan(G) {
define V 1
SearchHighLow<OR,V 1>(G)
L ← ShiloachVishkin(V 1.T),
define V 2
for v in L:

PSearch<OR,V 2>(v)
return V 2.C

}

Figure 7: Kahan’s algorithm for connected compo-
nents

4.3 The bully algorithm for connected

components

The running time of Kahan’s algorithm is dominated
by the construction of the hash table T in phase 1.
If we exploit multithreading and the MTGL, we can
remove the hash table entirely. Rather than remem-
bering which two concurrent searches encounter one

another, we arbitrate between them. Only one of the
searches is allowed to continue, and it overwrites the
component numbers written by the other search. In
this way, the algorithm completes in one phase with-
out building a data structure. The continuing search
is the “bully.”

The bully algorithm requires only one visitor class.
This is defined in Figure 8. The non-empty visit-

V 3 ← {
C ← array of |V(G)| ints

d(v) { C[v]
ts
← v}

vt(v,v’) {
if (C[v] < C[v′]):

return true

else:

return false

}
te(v,v’) {

c
fe
← C[v′]

if ((v’ unvisited) or (c > C[v])):

C[v′]
ef
← C[v]

else:

C[v′]
ef
← c

}
oe(v) { }

}

Bully(G) {
define V 3
SearchHighLow<OR,V 3>(G)
return V 3.C

}

Figure 8: The bully algorithm

test method enables the bully searches to continue
even though their destination vertices were previ-
ously discovered. When a “bullying” operation is
occurring, we use full-empty synchronization logic
to ensure that the marking of vertices is correct.

The bully algorithm is less generate than Ka-
han’s three-phase algorithm since we expect no speedup
in the pathological cases in which the entire graph a
a single chain or ladder. However, for the power-law
semantic graphs that we explore in Section 6, the
performance of the bully algorithm is good.

5

4.4 Compound type filtering

The MTGL is designed to process semantic graphs,
and our next example illustrates what we antici-
pate will become a common operation: filtering the
edges of G by the quadruples of types associated
with a small set of edges TE . We call this opera-
tion compound type filterning. Recall that for any
(v, v′) ∈ TE, we have defined

t[v, v′] = (t(v), t(v, v′), t(v′, v), t(v′)).

Suppose that we wish to find in G an isomorphic or
nearly-isomorphic instance of a smaller graph. Some
authors call the small graph a pattern graph and the
large graph a target graph. However, we adopt the
convention that both of these terms apply only to
the small graph (and the large graph is simply “the
graph”).

Letting TE denote the set of edges in a target
graph, we start by finding the size of the edge-induced
subgraph S of G such that for every undirected edge
(v, w) ∈ S, there exists an undirected edge (v′, w′) ∈
TE with t[v, w] = t[v′, w′]. If subgraph S is found
to have sufficiently few edges, we may extract S and
apply a subgraph isomorphism heuristic to it.

The MTGL pseudocode to identify the edges of
S is shown in Figure 9. This is our fourth example
of a visitor class customizing the search primitives.

Note that the intuitive way of accomplishing this
compound filtering operation would be simply to
loop through an array of all of the edges in the large
graph, checking the types of each one against each
edge in the target graph. This is logically correct,
but a very poor alternative in a multithreaded en-
vironment since, for example, all edges of a given
vertex would be trying to retrieve its type at the
same time. We use the search primitives to accom-
plish the logical operation of examining each edge
and to mitigate the hot spots inherent in the naive
approach.

Note also that the for loop in the te(v,v’) method
is written so that different threads will examine the
edge set TE in different orders. This is also a step
taken to mitigate hot spots.

As we will show in Section 6, the routine Correct-
lyTypedEdges has memory reference properties that
make it the best candidate of our graph kernels for
near-perfect scaling as MTA/Eldorado machines in-
crease in size.

V 4 ← {
T E ← the k edges of a target graph

s ← 0 # s used to store a vertex type

M ← an empty bitmap of size |E(G)|

#upon discovery, access t(v) only once

d(v) { s ← t(v) }

#called for each v′ ∈ E(v); avoid t(v)
te(v,v’) {

i ← (v, v′).id
for e in (i%k, (i + 1)%k, . . . , (i + k)%k):

(w, w′) ← T E[e]
if ((s, t(v, v′), t(v′, v), t(v′))=t[w,w’]):

M[eid] = 1

}
oe(v,v’) ← te(v, v′)

}

CorrectlyTypedEdges(G, T E) {
define V 4
SearchHighLow<OR,V 4>(G)
return V 4.M

}

Figure 9: Compound type filtering. The % symbol
denotes modular arithmetic.

4.5 Subgraph isomorphism

A fundamental problem in graph algorithms is topo-
logical pattern matching. The famous graph isomor-
phism problem still defies classification, though some
heuristic solutions work very well in practice [2].
Furthermore, the problem of testing isomorphisms
between a relatively small “target” graph and all
equivalently-sized subgraphs of a larger graph, i.e.,
subgraph isomorphism, is known to be NP-complete.
Early attempts at subgraph isomorphism heuristics
included branch and bound processes that exploit
matrix operations [6] and are not practical for large
instances. There is more recent literature on heuris-
tics, such as [3], [1], and others, but we haven’t
made a thorough review of this work. Therefore, the
heuristic we will present for subgraph isomorphism
on semantic graphs has not yet been compared with
the state of the art. However, its performance on the
MTA-2 is good, and we plan to explore this question
in future work.

The vertex and edge types of a semantic graph
make the otherwise intractable subgraph isomorphism

6

V 5 ← {
B ← sparse collection of triples

W ← a walk through the target graph

i ← the current stage

d(v) {}

te(v,v’) {
if (i = 0 or ∃ v̄ B[i− 1, v̄, v] = 1) and

(t[v, v′] = t[w i, w (i + 1)])
B[i,v,v’] = 1

}
oe(v,v’) ← te(v,v’)

}

AdvanceOneStage<V_5>(i) {
SearchHighLow<OR,V 5>(G)
return V 5.B

}

FindBipartiteEdges(G, T_E, W) {
B ← null

define V_5

for i = 0 to l(W):
V 5.B ← AdvanceOneStage<V_5>(i)

return V_5.B

}

Figure 10: A visitor class to help find the edges of
GB

problem much more approachable. A simple heuris-
tic would start many concurrent searches at appro-
priately typed nodes, then employ branch & bound
to explore the space of matching choices between the
neighbors of a vertex in the large graph and those
of its analogue in the small graph. We considered
such an approach, but abandoned it in favor of the
algorithm we describe next.

With our model of undirected semantic graphs,
we are assured that there will be an Euler tour through
the target graph. Such a tour traverses each edge ex-
actly once, and ends up at its starting point. Euler
tours exist in undirected semantic graphs as we have
described them because each undirected edge is re-
ally a pair of directed edges, and a basic theorem
states that Euler tours must exist if, for each vertex,
the in-degree equals the out-degree.

Let us name our small, target graph TG. Our
subgraph isomorphism heuristic begins by finding an
Euler tour through TG, and constructing a sequence

V 6 ← {
lv ← levels of V (G B)
M ← map: V (G B).id → V (G).id
S ← an empty subgraph

found ← 0, next ← null

visitor objects are copied during the

search; keep linked list of ancestors

copy(V_6 parent) {
next ← parent

}

d(v) {}

vt(v,v’) {
if lv(v′) = lv(v) + 1:

return true

else:

return false

}
te(v,v’) {

if lv(v′) == l:

f
ifa
← found, 1

if f == 0
return the first match

for (v̄, v̂) in (v, v′), ancestors:

S ← S ∪ (M(v̄), M(v̂))
}

}

Figure 11: Subgraph extraction visitor pseudocode

of edges W (for “walk”). Supposing that the walk
traverses l edges,

W = ((w0, w1), (w1, w2) . . . , (wl−1, wl)).

We also denote the edge set E(TG) by TE . Our
heuristic will perform l SearchHighLow operations
on the large graph G in order to construct a data
structure from which we may explore all possible
subgraphs of G which have a walk that is type-
isomorphic to W . If there is an exact topological
match, it will be among these possibilities. Further-
more, any metric for comparing closeness of matches
could be used to inform a branch & bound search
through all possibilities.

The data structure we construct is a bipartite
graph GB. The vertices of GB are arranged into
rows r0, r1, . . . , rl, and all vertices in ri correspond
to vertices in G that are active after traversing the

7

SubgraphIsomorphism(G, T E, W) {
B ← FindBipartiteEdges(G, T E, W

V B ← {(i, j) : ∃ j, k B[i, j, k] = 1}
E B ← {[(i, j), (i + 1, k)] : B[i, j, k] = 1}

lv((i, j) ∈ V B) = i

s ← (0, j) ∈ V B : ∃ k B[0, j, k] = 1
define V_6

PSearch<AND,V_6>(s)

return V_6.S

}

Figure 12: Subgraph isomorphism pseudocode

first i− 1 edges of W . A vertex v ∈ G is defined to
be active at stage i if the first i− 1 edges of W are
type-isomorphic to at least one walk in G that ends
with v.

The edges of GB connect active vertices at stage
i with active vertices at stage i + 1, thus document-
ing all ways that a given vertex can become active.
Figure 10 shows MTGL pseudocode that finds the
edges of GB .

4.6 S-T Connectivity

Given a graph and two of its vertices, s and t, a
simple problem is to find a path of minimum length
connecting s to t. With unit-length edges, this path
can be found via breadth-first search. This could
be done by searching from s until t is encountered,
but a more efficient approach is to search from both
ends in phases. In one phase, we determine which of
the two searches has discovered fewer vertices, then
expand one level of that search.

When one search encounters a vertex discovered
by the other search, a shortest s-t path has been
found. This approach was used in the Gordon Bell-
finalist paper [7] to explore s-t connectivity on Blue-
Gene/Light. A distributed-memory code applica-
ble only to Erdös-Renýı random graphs was run on
an instance of order 4 billion vertices and 20 billion
edges. The s-t search completed in about 1.5 sec-
onds. In Section 6, we will discuss the interesting
performance comparisons we were able to make.

V 7 ← {
C ← array of |V(G)| ints

(initially empty)

done ← reference to int

d(v) { }
vt(v,v’) { }
te(v,v’) { C[v′] ← C[v] }
oe(v,v’) {

c
ff
← C[v′]

if C[v] != c:

done = 1

}
}

Figure 13: The visitor object shared by two breadth-
first searches in the S-T connectivity algorithm

BFS<OR,Vis>(v) # examine v’s out-edges

queue v’s neighbors

{
Vis.d(v)

for (v,v’) in E(v):

if v’ unvisited OR Vis.vt(v,v’):

Vis.te(v,v’)

Q.push(v’)

else:

Vis.oe(v,v’)

}

Figure 14: Pseudocode for the BFS routine, which
is a breadth-first analogue to PSearch. However, a
call to BFS expands one level, as opposed to doing
a complete search.

5 Experiments with MTGL Ker-

nels

In order to evalute the performance of our MTGL
graph kernels, we compiled an MTGL application
with a power-law, semantic graph generator. The
latter was written and tuned by Cray for benchmark-
ing purposes.

In order to generate a graph, the programmer
specifies k levels, each of which determines the num-
ber of vertices that will have a certain degree. That
is, level i specifies that ni vertices will share the
tails of mi directed edges, where assignments are
made randomly. The heads of the mi edges are se-
lected at random from V (G). Our MTGL wrapper

8

36

17

55

15

24

47

16

52 90
20

28

32

55

52

13

90/10

76/24

26/74

51/49

61/39
33/67

17/83

45/55

79/21

90/10

74/26

52/48
22/78

85/15

85/15

86/14

54/46
21/79

55/45 80 46/54

18

95

25/75

67

70

75

51

36

17

55

15

2447

16

52

90

20
28

32

55

52

13
90/10

76/24

26/74

51/49

61/39

33/67 90/10

74/26

52/48

22/78

85/15

85/15

86/14 54/4621/79
55/45

18

95

95

25/75

25/75

80

79/21

51

Figure 18: Subgraph isomorphism results. The target graph is on the left, and the subgraph found by the
heuristic is on the right. Some vertex and edge types are shown for context. The large vertices represent
places where the type-isomorphic walks did not produce topological isomorphism.

STConnectivity(G,s,t)

{
define V 7
bfs1 ← BFS<OR,V 2>(s)
bfs2 ← BFS<OR,V 2>(t)
while not V 7.done:

if bfs1.nvisited < bfs2.nvisited:

for v’ in bfs1.topshell:

bfs1(v’)

else

for v’ in bfs2.topshell:

bfs2(v’)

}

Figure 15: Pseudocode for the S-T connectivity.
Two concurrent breadth-first searches converge, and
each seach level of each search is explored in paral-
lel. The “topshell” notation indicates all vertices
discovered by the previous call to the search.

for this graph generator has a parameter to gener-
ate the reciprocal edges in order to make the graph
undirected.

5.1 Data

For our experiments, the types of vertices and edges
are selected randomly from {0, 1, . . . , 99}, with the
constraint that if an edge (v, w) has type k, then
its reciprocal (w, v) will have type 99− k. The Cray

graph generator allows multiple edges and self-loops,
but these occur sparingly.

We experimented with graphs of sizes ranging
from 3 million edges to 500 million edges. Our set
of types, and the uniformly random distribution of
these types may not reflect the reality of current
social networks. However, it is plausible that some
type ontologies would have sufficient robustness that
no large majority of vertices or edges would have the
same type.

For this paper, we report results on one graph
only. Therefore, we do not claim this to be an ex-
perimental paper. Rather, this paper serves as an
introduction to the MTGL with a few accompanying
experiments. Our instance of concern is a power-law
graph with 32 million vertices and 234 million edges.
The degree distribution is approximately:

• 25 vertices of degree 220

• 215 vertices of degree 210

• 225 vertices of degree 5

5.2 Experimental Setup

We explored the performance of connected compo-
nents and subgraph isomorphism MTGL kernels. The
reason we limited ourselves to few graph instances
is that our analyses of the results involved time-
consuming efforts to profile and simulate each run
in order to predict its performance on Eldorado. We

9

 10

 100

 1 10

T
im

e
in

 S
ec

on
ds

Number of Processors

Connected Components: 234M Edges

3Ghz, 64Gb Opteron Workstation: 5 minutes

C-K-Kahan: edge lists are K-ary trees

Kahan estimates 3x speedup with dynamic arrays

"C-K-Kahan"
"SandiaKahan"

"Bully"

Figure 16: Connected components kernel perfor-
mance

will report in detail on this process in another pa-
per. Here, we will present only MTA-2 performance
results and abstract Eldorado predictions.

MTGL implementations of Kahan’s and the bully
algorithm for connected components were compared
to Kahan’s original C implementation of his algo-
rithm on the MTA-2. The canonical representation
for an adjacency list in the MTGL is a dynamic ar-
ray. Kahan’s C code, on the other hand, uses k-ary
trees to represent these lists. That choice of data
structure was imposed by other benchmarking pres-
sures, and Kahan conjectures that his C version can
be made to run roughly three times faster, given a
dynamic array representation.

The prototype MTGL has no Euler tour rou-
tine at the moment. In order to implement our
subgraph isomorphism heuristic in the face of this
deficiency, we generated random walks through the
target graph via another customizing visitor to the
PSearch MTGL primitive. In general, the heuristic
described in Section 4.5 can be given any walk. For
example, many different Euler tours may be con-
catenated in order to increase the likelihood of an
exact topological match. We approximated this in-
put by taking long random walks. We report results
for walks of length 120.

In order to generate our target graphs, we de-
fined another visitor to customize PSearch. This one

 100

 1000

 1 10

T
im

e
in

 S
ec

on
ds

Number of Processors

Subgraph Isomorphism Heuristic: 234M Edges (Target of 20 Edges)

3Ghz, 64Gb Opteron Workstation: ~15 minutes

"SubgraphIsomorphism"

Figure 17: Subgraph isomorphism kernel perfor-
mance

starts a single search and cuts it off when enough
edges have been gathered. The power law nature
of our large graph implies that the resulting target
graphs were usually star graphs (see Figure 17).

To ground the absolute performance in terms of
modern workstations, we also ran our experiments
on a 3Ghz, 64Gb linux workstation.

6 Graph kernel performance

All of our experiments with the connected compo-
nents and subgraph isomorphism heuristic demon-
strate near-perfect scaling on the MTA-2. The sin-
gle processor performance was in the same order of
magnitude as that obtained on the 3Ghz worksta-
tion.

6.1 MTA-2 performance

Figure 16 shows the results of our MTA-2 perfor-
mace test on the connected components algorithms.
Without considering the issue of differing edge set
representations, our MTGL implementation of Ka-
han’s connected components algorithm is competi-
tive with the original C implementation, scales al-
most perfectly, and achieves 70+% utilization of the
MTA-2. The bully algorithm, with its lack of a re-
quirement to build a type-safe hash table, is roughly

10

 0.1

 1

 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

Number of Edges (millions)

MTA (10 proc) vs. BG/L (32,000 proc.): S-T Connectivity

"S-T-MTA-MTGL-10"
"S-T-MTA-C-10"

"BGL-32k"

Figure 19: S-T connectivity comparison with Blue-
Gene/L

twice as fast as the MTGL Kahan implementation,
and achieves 95+% utilization of the MTA-2.

Perhaps most interesting are the performance re-
sults for the s-t connectivity kernel. The pseudocode
in Figure 15 is imperfect since each breadth-first
search relies on a global queue. The tail of this queue
becomes a hot spot when the number of MTA-2 pro-
cessors exceeds 10. This problem can be addressed
via a distributed queue, but we have not yet imple-
mented this fix. However, 10 MTA-2 processors is
enough to bring the average running time for s-t con-
nectivity on a 32 million vertex Erdös-Renýı graph
with average degree 8 down to 0.09s. In this com-
putation, roughly 23,000 vertices (combined) were
visited by the s and t searches.

The 4 billion vertex Erdös-Renýı graph that was
processed in 1.5 seconds using 32,000 processors of
BlueGene/L in [7] had average degree 10. The ex-
pected shortest path length for this graph is between
9 and 10, so each breadth-first search will expand
roughly 5 levels on average before the searches meet.
After expending shell k, each of the two searches will
have discovered roughly 10k vertices. Thus, about
200,000 vertices must be discovered in this large in-
stance. This is fewer than ten times as many ver-
tices as our 32 million vertex instance had to process.
Thus, 10 MTA processors should be able to proceess
200,000 vertices in well under a second. So for this

problem, a single digit number of MTA-2 processors
is faster than a 32,000 BlueGene/L machine.

Exploring further, in Figure 19, we note the per-
formance trends of 10 processor MTA runs of MTGL
and C versions of the s-t connectivity algorithm cor-
roborate our counting argument. The two lines in
the figure show the scaling trajectories of the respec-
tive codes as graph size increases, holding average
degree constant. The MTGL trajectory is slightly
worse than the C implementation, but we have not
yet explored the reason why.

An MTA-2 with enough memory to verify this
performance prediction will never exist. However,
Eldorado machines of sufficient size will. Eldorados
will not scale as well as MTA-2’s would have scaled,
but as discussed below, we expect them to perform
very well.

6.2 Eldorado performance

Another paper will describe in detail the process we
describe in abstract below. Here, we do not even
describe the Eldorado system other than to note
that it can be thought of as a larger MTA with
faster processors and a slower network. In this pa-
per, we intend only to give an idea of the expected
performance of our codes on a 512 processor Eldo-
rado. Working with Keith Underwood of Sandia Na-
tional Laboratories, Megan Vance of Notre Dame,
and Wayne Wong of Cray, Inc. we went through the
following process for each graph kernel:

1. We used MTA hardware counters to find the
memory reference rate of each kernel.

2. We used Cray’s zebra MTA simulator to gen-
erate the actual memory address trace. This
information was used to distinguish stack ref-
erences from non-stack references. The former
will be local references on Eldorado.

3. We simulated the memory system of Eldorado
and predicted the hit rate in the memory buffer
accounting for network traffic.

4. Using these numbers, we predicted the expected
slow down in the graph kernels on a 512 pro-
cessor Eldorado system.

The high-level results were that the expected slow
down when scaling the connected components ker-
nels to 512 processors is 2-3. Since Eldorado proces-
sors are more than twice as fast as MTA-2 proces-
sors, we thus expect our connected components ker-

11

nels to run on a 512 processor Eldorado as if it were
an O(500) processor MTA-2. The results for sub-
graph isomorphism were even more optimistic since
the memory reference pattern of the CompoundType-
Filter routine, which dominates the running time, is
much less demanding of the network than that of the
connected components kernels.

We also simulated the network to explore the im-
plications of hot spots. We found these to be of much
greater consequence on Eldorado than they are on
the MTA-2. However, with the exception of the end-
of-queue hotspot in our current breadth-first search
implementation, our kernels do not exhibit hot spot-
ting on the MTA-2.

7 Conclusions

Growing awareness of the applicability of massive
multithreading to unstructured graph problems has
encouraged a number of researchers to take an in-
terest in the MTA/Eldorado machines. Our main
contribution is a demonstration that this excellent
performance can be preserved when programs are
written using a generic software framework that ab-
stracts away potentially troublesome details. A com-
mon criticism of shared memory programming, as
opposed to message passing, is that correctness is
more problematic. The shared-memory programmer
has less explicit control and must better appreciate
concurrency subtleties. Further, MTA programming
is delicate since hot spots must be avoided. The
prototype MTGL that we have introduced via pseu-
docode handles many of these correctness and con-
currency issues for the application programmer.

We have also introduced two new multithreaded
algorithms that leverage the flexibility of the MTGL.
We anticipate that as multithreaded programming
matures, more algorithms will be developed that use
similar techniques.

Our prototype MTGL is under active develop-
ment, and we plan to release the software in an open-
source form in the coming year. Current repository
versions of the software are available by contacting
jberry@sandia.gov.

References

[1] R. Levinson. Pattern associativity and the
retrieval of semantic networks. Computers

and Mathematics with Applications, 23:573–600,
1992.

[2] Brendan McKay. Practical graph isomorphism.
Congressus Numerantium, 30:45–87, 1980.

[3] V. Nicholson, C.-C. Tsai, M. Johnson, and
M. Naim. A subgraph isomorphism theorem for
molecular graphs. In Graph Theory and Topology
in Chemistry, number 51 in Stud. Phys. Theoret.
Chem., pages 226–230. Elsevier, 1987.

[4] Y. Shiloach and U. Vishkin. An o(n log n)
parallel connectivity algorithm. J. Algorithms,
3(7):57–67, 1982.

[5] J. Siek, L-Q. Lee, and A. Lumsdaine. The Boost
Graph Library. Addison-Wesley, 2002.

[6] J. R. Ullmann. An algorithm for subgraph iso-
morphism. J. Assoc. Comput. Mach., 23:31–42,
1976.

[7] A. Yoo, E. Chow, K. Henderson, W. McLendon
III, B. Hendrickson, and U. Çatalyürek. A scal-
able distributed parallel breadth–first search al-
gorithm on BlueGene/L. In Proc. SC’05, Novem-
ber 2005. Finalist for the Gordon Bell Prize.

12

