
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Graph Software Development and
Performance on the MTA-2 and Eldorado

Jonathan Berry
Bruce Hendrickson

Sandia National Laboratories

Presentation at CUG 2006
May 11, 2006

Outline

• Graph-based informatics

• Massively-multithreaded architectures

• Sandia’s prototype graph infrastructure

• Algorithmic case studies on the Cray MTA-2

• Current and future directions

Graph-Based Informatics

Graph-Based Informatics: Data

• Graphs are giant

• Graphs are highly unstructured

• E.g.:
– 2^5 vertices of degree 2^20
– 2^15 vertices of degree 2^10
– 2^25 vertices of degree 5

Massive Multithreading: The Cray MTA-2

• Slow clock rate (220Mhz)

• 128 “streams” per processor

• Global address space

• Fine-grain synchronization

• Simple, serial-like programming model

• Advanced parallelizing compilers

Latency Tolerant:

important for Graph
Algorithms

Cray MTA Processor

No Processor Cache

Hashed Memory

• Each thread can have 8 memory refs in flight

• Round trip to memory ~150 cycles

Take Home Messages

• Multithreaded architectures
– Have huge performance advantages for sparse, unstructured discrete

problems
– Support a programming model on which generic software for

unstructured problems can be written more effectively (no partitioning)

• Sandia has developed a prototype graph infrastructure to support
programming on these architectures
– Influenced by Boost GL, but not Boost GL
– Nearly like serial code
– Will be open-sourced

Graph Infrastructure Status

• Design: Just enough C++ to be flexible, support general
filtering. Runs on MTA, Linux, Mac.

• Algorithmic kernels implemented using infrastructure:
– Connected components (linear scaling)
– Subgraph isomorphism (linear scaling)
– S-T connectivity (near-linear scaling)

• Coding paradigm
– Search primitives hide MT issues, visitors ease

development

Eldorado Graph Infrastructure: C++ Design Levels
Gives Parallelism,

Hides Most Concurrency
Gets parallelism
for free

Algorithm
Class

Graph
Class“Visitor”

class

Data Str.
Class

Analyst
Support

Algorithms
Programmer

Infrastructure
Programmer

Inspired by Boost GL, but not Boost GL

Infrastructure Primitives

•Wrapped MTA primitives
•int mt_incr(int& value, int incr);

•int mt_readfe(int& value);

•int mt_readff(int& value);

•int mt_write(int& target, int value);

•Pure MTA pragmas
•#pragma mta assert nodep

•#pragma mta assert parallel

•#pragma mta loop future

These wrap
int_fetch_add, readfe,
readff, and writeef

Allows efficient
nested parallelism

Case Studies: Algorithm Kernels

• Connected Components

• S-T Connectivity (i.e., use of global queue)

• Subgraph Isomorphism (time permitting)

Kahan’s Algorithm for Connected Components

Infrastructure Implementation of Kahan’s Algorithm

Shiloach-
Vishkin
CRCW

(tricky)

Kahan’s
Phase II
visitor
(Trivial)Kahan’s

Phase I
visitor

Kahan’s
Phase III
visitor
(Trivial)

DFS

(tricky)

Infrastructure Implementation of Kahan’s Algorithm

“component”
values start
“empty;”
Make them “full.”

Wait until both
“full,”

Add to hash
table

Phase I:

Traceview Output for Infrastructure Impl. of Kahan’s CC
algorithm

More General Filtering: The “Bully” Algorithm

“Bully” Algorithm Implementation

Traverse “e” if we
would anyway, or if
this test returns true

[or,and,replace]Lock
dest while
testing

Traceview Output for the Bully Algorithm

 10

 100

 1 10

T
im

e
in

 S
ec

on
ds

Number of Processors

Connected Components: 234M Edges

3Ghz, 64Gb Opteron Workstation: 5 minutes

C-K-Kahan: edge lists are K-ary trees

Kahan estimates 3x speedup with dynamic arrays

"C-K-Kahan"
"SandiaKahan"

"Bully"

MTA-2 Scaling of Connected Components

5.41s

2.91s

Power Law Graph
(highly unstructured)

Case Study: S-T Connectivity

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 20 40 60 80 100 120 140 160

T
im

e
in

 S
ec

on
ds

Number of Processors

S-T Connectivity: MTA-2 vs. Cluster

"MTA"
"CLUSTER"128 million edge

Erdos-Renyi graph

C/MPI implementation with
two-dim. data decomposition

(Instance-specific)

Infrastructure impl. (general)

S-T Connectivity, The MTA-2, and BG/L

• IBM/LLNL BlueGene/L is considered fastest computer in the world
• With researchers at LLNL, Sandia implemented s-t shortest paths in

MPI (same implementation of the previous slide)
• Finalist for 2005 Gordon Bell Prize

• Conclusion: 10 MTA processors likely as fast as 32K
BlueGene/L processors

 0.1

 1

 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

Number of Edges (millions)

MTA (10 proc) vs. BG/L (32,000 proc.): S-T Connectivity

"S-T-MTA-MTGL-10"
"S-T-MTA-C-10"

"BGL-32k"

Successor to the MTA-2: “Eldorado” (2006)

• Faster CPU clock rate
• Slower network
• Slower memory
• Locality matters

Sandia work by Keith Underwood suggests that our
codes are likely to scale on Eldorado as if it were a larger
MTA-2 (up to ~500 processors).

What is next for our infrastructure?

• OpenSource

• Add abstractions for partitioned global address space
– Run on SMPs, multi-core workstations
– Codes developed will be closer to Eldorado and beyond
– Distributed memory? Probably not -- Recall BG/L comparison

• Support Applications
– Agent-Based Modeling
– Graph Query
– Branch and Bound
– Heuristics

Conclusions

• Massive multithreading with latency tolerance very attractive for unstructured
graph applications

– Demonstrated potiential for high productivity
– Excellent MTA-2 performance, scalability
– Reason to be optimistic about Eldorado scalability

• Graph infrastructure development promising; will continue
– Run same code on range of architectures – workstation to Eldorado
– Extend for Important Applications

Acknowledgements

• Bruce Hendrickson (Project lead)

• Simon Kahan, Petr Konecny (Cray): help in all aspects of this project

• David Bader, Kamesh Madduri (Ga. Tech) (MTA s-t connectivity)

• Will McClendon (MPI s-t connectivity)

Extra Slides

Case Study: Subgraph Isomorphism Kernel

• Objective: find exact or inexact matches of a small pattern
graph within a large semantic graph

• Potentially useful for finding instances of interesting
activities in a large dataset

Preprocessing with “Black Box” Filtering

The Big
Graph

e

Edge mask
0

1

0
0

Small

Enough?

N

User-defined filter
in visitor object
plugs into search of
big graph

Y

Small,
Filtered
Graph

(SFG)

Could also leverage
pre-existing filters Become more aggressive

Instance-Specific Type Filtering for Subgraph Iso.

For each edge e in Big Graph:

Do the 4 types associated with
e match those of any of the
target graph edges?

Small,
Filtered
Graph

(SFG)

Pattern graph

The Big
Graph

e

Subgraph Isomorphism: Input

The Target Graph:

Table of Type and Auxiliary Information:

T

V 2 2 3 2 3 1 3 2 2

Ideal: Euler Tour Our Experiments: Random Walk

Subgraph Isomorphism: Creating a Bipartite Graph

Small,
Filtered
Graph

(SFG)

Logical placeholders for vertices in the SFG.

k times:
visit each
edge of SFG

T

V 2 2 3 2 3 1 3 2 2

Subgraph Isomorphism: Creating a Bipartite Graph

Visitor object tailors
Search so that it never
goes up (similar to
“Bully” algorithm).

S-T shortest paths
(top to bottom) correspond
to candidate
matches.

Branch and bound to
Find better matches.

Computational Results: Subgraph Isomorphism

 100

 1000

 1 10

T
im

e
in

 S
ec

on
ds

Number of Processors

Subgraph Isomorphism Heuristic: 234M Edges (Target of 20 Edges)

3Ghz, 64Gb Opteron Workstation: ~15 minutes

"SubgraphIsomorphism"

Computational Results: Subgraph Isomorphism

36

17

55

15

24

47

16

52 90
20

28

32

55

52

13

90/10

76/24

26/74

51/49

61/39
33/67

17/83

45/55

79/21

90/10

74/26

52/48
22/78

85/15

85/15

86/14

54/46
21/79

55/45 80 46/54

18

95

25/75

67

70

75

51
36

17

55

15

2447

16

52

90

20
28

32

55

52

13
90/10

76/24

26/74

51/49

61/39

33/67 90/10

74/26

52/48

22/78

85/15

85/15

86/14 54/4621/79
55/45

18

95

95

25/75

25/75

80

79/21

51

Target Found

Type & topological isomorphism exists between green vertices

Actual graphs from
a 234M edge
instance

Can try harder if we want a closer match

Target Found

Type & topological isomorphism exists between green vertices

Actual graphs from
a 234M edge
instance

84

17 47

16

66

82

59

16

77

90

91

68

44

38

84

41
44

65

6/94

76/24

15/85

3/97

51/49

91/9

95/5

20/80

28/72

88/12

4/96

69/31

34/66

32/68
35/65

15/85

79/21

98 31/69

23

14/86

47/53

17

84

17

47

16 66

82

59

16

77

90

91

68
44

38

84

41

44

65

6/94

76/24

15/85

3/97

51/49

91/9

95/5
47/53 20/80

28/72

88/12
4/9669/31

34/66

32/68

35/65

15/85

79/21

14/86
17

98

Traceview Output for Subgraph Isomorphism

Preprocessing: 97% utilization

Not fully utilized since filtered
graph is tiny (10k) and we don’t

branch & bound in this example.

	Graph Software Development and Performance on the MTA-2 and Eldorado
	Outline
	Graph-Based Informatics
	Graph-Based Informatics: Data
	Massive Multithreading: The Cray MTA-2
	Cray MTA Processor
	Take Home Messages
	Graph Infrastructure Status
	Eldorado Graph Infrastructure: C++ Design Levels
	Infrastructure Primitives
	Case Studies: Algorithm Kernels
	Kahan’s Algorithm for Connected Components
	Infrastructure Implementation of Kahan’s Algorithm
	Infrastructure Implementation of Kahan’s Algorithm
	Traceview Output for Infrastructure Impl. of Kahan’s CC algorithm
	More General Filtering: The “Bully” Algorithm
	“Bully” Algorithm Implementation
	Traceview Output for the Bully Algorithm
	MTA-2 Scaling of Connected Components
	Case Study: S-T Connectivity
	S-T Connectivity, The MTA-2, and BG/L
	Successor to the MTA-2: “Eldorado” (2006)
	What is next for our infrastructure?
	Conclusions
	Acknowledgements
	Extra Slides
	Case Study: Subgraph Isomorphism Kernel
	Preprocessing with “Black Box” Filtering
	Instance-Specific Type Filtering for Subgraph Iso.
	Subgraph Isomorphism: Input
	Subgraph Isomorphism: Creating a Bipartite Graph
	Subgraph Isomorphism: Creating a Bipartite Graph
	Computational Results: Subgraph Isomorphism
	Computational Results: Subgraph Isomorphism
	Can try harder if we want a closer match
	Traceview Output for Subgraph Isomorphism

