:;,'

Graph Software Development and
Performance on the MTA-2 and Eldorado

Jonathan Berry
Bruce Hendrickson
Sandia National Laboratories

Presentation at CUG 2006
May 11, 2006

TN AL SR Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, San_dia
TN A" &= for the United States Department of Energy’s National Nuclear Security Administration National

under contract DE-AC04-94AL85000. Laboratories

}' Outline

* Graph-based informatics

e Massively-multithreaded architectures

e Sandia’s prototype graph infrastructure

o Algorithmic case studies on the Cray MTA-2

e Current and future directions

(&)

Sandia
National
Laboratories

}'

Graph-Based Informatics

Attributed Relational Graph

. 13
15 1 A,
A 14 o
17 5
" 19
20
o

12 4
6
\ 11 £ 7
2.1 \ 23 \- 9

\ 10
\ Legend
28 ® Workplace Friends with
25 24 ® Town /" Works at

® Person / Located in
27 Lives in

(&)

Sandia
National
Laboratories

j; Graph-Based Informatics: Data

* Graphs are giant
» Graphs are highly unstructured
e E.0.:

— 275 vertices of degree 220

— 2715 vertices of degree 210
— 2725 vertices of degree 5

Sandia
National
Laboratories

_ '
‘i Massive Multithreading: The Cray MTA-2

Slow clock rate (220Mhz)

o 128 “streams” per processor

* Global address space

Latency Tolerant:

* Fine-grain synchronization _
Important for Graph

o Simple, serial-like programming model Algorithms

» Advanced parallelizing compilers

Sandia
National
Laboratories

4 ; Cray MTA Processor

[] T B o oo [|

No Processor Cache

Hashed Memory

 Each thread can have 8 memory refs in flight

e Round trip to memory ~150 cycles

Sandia
National
Laboratories

~ R 4
Take Home Messages

 Multithreaded architectures

— Have huge performance advantages for sparse, unstructured discrete
problems

— Support a programming model on which generic software for
unstructured problems can be written more effectively (no partitioning)

« Sandia has developed a prototype graph infrastructure to support
programming on these architectures
— Influenced by Boost GL, but not Boost GL
— Nearly like serial code
— Will be open-sourced

Sandia
National
Laboratories

j; Graph Infrastructure Status

 Design: Just enough C++ to be flexible, support general
filtering. Runs on MTA, Linux, Mac.

 Algorithmic kernels implemented using infrastructure:
— Connected components (linear scaling)
— Subgraph isomorphism (linear scaling)
— S-T connectivity (near-linear scaling)

e Coding paradigm

— Search primitives hide MT issues, visitors ease
development

Sandia
National
Laboratories

VP \
Eldorado Graph Infrastructure: C++ Design Levels

Gives Parallelism,

Gets parallelism

for free Hides Most Concurrency
Analyst Algorithms
Support Programmer
Infrastructure
T Programmer

Inspired by Boost GL, but not Boost GL

Sandia
National
Laboratories

j; Infrastructure Primi

tives

*\Wrapped MTA primitives
sint mt_incr(int& value, int incr); L

These wrap

Int_fetch_add, readfe,

readff, and writeef

int mt_readfe(int& value);
eint mt_readff(int& value);

int mt_write(int& target, int value);

Pure MTA pragmas

o#fpragma mta assert nodep

#fpragma mta assert parall(i/

Allows efficient

nested parallelism

«#pragma mta loop future

(&)

Sandia
National
Laboratories

j; Case Studies: Algorithm Kernels

e Connected Components

« S-T Connectivity (i.e., use of global queue)

e Subgraph Isomorphism (time permitting)

Sandia
National
Laboratories

i Kahan’s Algorithm for Connected Components

@ Sandia
National
Laboratories

'P‘ \
Infrastructure Implementation of Kahan’s Algorithm

Kahan’s
Phase ||

\.

/ .

visitor
l N

Kahan’s
Phase 111
visitor

(Trivial)

Sandia
National
Laboratories

A4
| Infrastructure Implementation of Kahan’s Algorithm

“component”
values start
“empty;”

fpraoma mta trac n:_dfs:tree_edge" Make them “fu” 1)
= e-rother (sre) ; i

mt write (component[dest->1id], component[sro->id]):
(vold) mt incr(count,1);

: Wait until both

vold back edge (Edge *e, Vertex ¥src) const

(14 77
{ full,
Vertex *dest = e->other (src):

int wl=src->1id, wva=dest->1d:;
int ol = wt readff (component[v1]):

Phase I:

vold tree edge (Edge *e, WVertex %srcoc) co
i

int ca = wt readff (component[va]) ! Add to haSh
(=1l = g2) | I
int mn = min(cl,c2); tab €

int mwmx = max(cl, o2
small graph.insert (mn¥g order-+in:,
QuadsVie—->id, mn, mwx, NUOLL) , true) ;

h —
Sandia
m National

Laboratories

Traceview Output for Infrastructure Impl. of Kahan’s CC
algorithm

traceview (trace.out)

'P' \
More General Filtering: The “Bully” Algorithm

@ Sandia
National
Laboratories

“Bully” Algorithm Implementation

bool wisit test (Edge *e, Vertex ¥sre) const

Vertex %va
(post dfs vi
post dfs wisitor

Lrue;
false;

ge—rother (src) ;
tLor<ComponentMap>: icomponent [src—->1d] <
mponentMap>: icomponent [v2->1d])

Traverse “e” If we
would anyway, or

'

vold tree edge (Edge *e, Vertex %sro) const

{
Vertex %dest = e->other (sro):;

int © = wt rgadfe (post dfs wvisitor<
LOCk /j component [dest—>1 [(r),r’and’replace]

dest Whlle ([c==-1 || o » post dfs visitor<ComponentMap>::

component [src—->1id]) |

teSt”1g post dfs wisitor<ComponentMaps::icowponent[dest->1id] =

post dfs wvisitor<ComponentMaps::component[sro->1d]:;

h i
mt write[post dfs visitor<ComponentMaps::

component [dest->1id] , <) :

Sandia
National
Laboratories

(;"*: traceview (trace.out) E]@

Ei le &:: tion Wi

Yiew
= [=E
trace,out | Summary

\

MTA-2 Scaling of Connected Components

Connected Components: 234M Edges

, \ :
. --Saﬁa‘fa{%ﬂ%ﬂ-- ~X |7 Power Law Graph
100 bx N {1 | (highly unstructured)

\Gh\z, 64Gb Opteron Workstation: 5 minutes

Time in Seconds

[EEY
o
T

C-K-Kahan: edge lists are K-ary trees - / 5418

X

Kahan estimates 3x speedup with dynamic arrajé‘\

~J_ 1991

1 10 Sandia
Number of Processors [\I:l}:ﬂg?éﬂes

;,'

Case Study: S-T Connectivity

Time in Seconds

1.8

1.6

1.4

1.2

0.8

S-T Connectivity: MTA-2 vs. Cluster

128 million edge
Erdos-Renyi graph

IHMTAH !
"CLUSTER" ---%---

C/MPI implementation with
two-dim. data decomposition

(Instance-specific)

Infrastructure impl. (general)

20 40 60 80

100 120 140 160 Sandia
Number of Processors @ National

Laboratories

j; S-T Connectivity, The MTA-2, and BG/L

* IBM/LLNL BlueGene/L is considered fastest computer in the world

* With researchers at LLNL, Sandia implemented s-t shortest paths in
MPI (same implementation of the previous slide)

 Finalist for 2005 Gordon Bell Prize

MTA (10 proc) vs. BG/L (32,000 proc.): S-T Connectivity

CSTNTARTGLID]
"S-T-MTA-C-10" ---x-—-
"BGL-32K" ¥

*

éConcIusion: 10 MTA processor@s likely as fast as 32K
- BlueGene/L processors

Time in Seconds

01t

| L M R | L M R | L PR A
100 1000 10000 100000

Number of Edges (millions) Sandia
@ National _
Laboratories

Y
Successor to the MTA-2: “Eldorado” (2006)

» Faster CPU clock rate
» Slower network
» Slower memory
 Locality matters

Sandia work by Keith Underwood suggests that our
codes are likely to scale on Eldorado as if it were a larger
MTA-2 (up to ~500 processors).

Sandia
National
Laboratories

- v
What Is next for our infrastructure?

e OpenSource

« Add abstractions for partitioned global address space
— Run on SMPs, multi-core workstations
— Codes developed will be closer to Eldorado and beyond
— Distributed memory? Probably not -- Recall BG/L comparison

o Support Applications
— Agent-Based Modeling
— Graph Query
— Branch and Bound
— Heuristics

Sandia
National
Laboratories

#
| Conclusions

« Massive multithreading with latency tolerance very attractive for unstructured
graph applications
— Demonstrated potiential for high productivity
— Excellent MTA-2 performance, scalability
— Reason to be optimistic about Eldorado scalability

o Graph infrastructure development promising; will continue
— Run same code on range of architectures — workstation to Eldorado
— Extend for Important Applications

Sandia
National
Laboratories

4 Acknowledgements

* Bruce Hendrickson (Project lead)

« Simon Kahan, Petr Konecny (Cray): help in all aspects of this project
« David Bader, Kamesh Madduri (Ga. Tech) (MTA s-t connectivity)

 Will McClendon (MPI s-t connectivity)

Sandia
National
Laboratories

Extra Slides

Sandia
National
Laboratories

'~‘ R 4
Case Study: Subgraph Isomorphism Kernel

» Objective: find exact or inexact matches of a small pattern
graph within a large semantic graph

 Potentially useful for finding instances of interesting
activities in a large dataset

Sandia
National
Laboratories

Preprocessing with “Black Box” Filtering

Could also leverage
pre-existing filters

User-defined filter Edge mask
In visitor object

plugs into search of

big graph

>
<«

Become more aggressive

(&)

Sandia
National
Laboratories

5 Instance-Specific Type Filtering for Subgraph Iso.

Pattern graph —

k.
»
»
»
»

For each edge e in Big Graph:

Ilk Ilk Ilk A

Do the 4 types associated with
e match those of any of the
target graph edges?

@ Sandia
National
Laboratories

i"

Subgraph Isomorphism: Input

The Target Graph:

Table of Type and Auxiliary Information:

T

V

2

_[N
2

L
3

2

L[
3

EDE
1 3

Ideal: Euler Tour

Our Experiments: Random Walk

(&)

Sandia
National
Laboratories

i Subgraph Isomorphism: Creating a Bipartite Graph

k times:
ViSit each
edge of SFG

Logical placeholders for vertices in the SFG.

Sandia
National
Laboratories

_ i '
i; Subgraph Isomorphism: Creating a Bipartite Graph

S-T shortest paths \ Visitor object tailors
(top to bottom) correspond Search so that it never
to candidate goes up (similar to
matches. - “Bully” algorithm).

Branch and bound to
Find better matches.

I I I
]]]
I I I
! ! !
]]]
I I I
r >\\ r >\\
{ 1 [A

Sandia
National
Laboratories

Computational Results: Subgraph Isomorphism

Subgraph Isomorphism Heuristic: 234M Edges (Target of 20 Edges)

| I I I I | I - H I n : '
1000 Subgraphlsomorphism" —+— |

3Ghz, 64Gb Opteron Workstation: ~15 minutes

Time in Seconds

100 -

1 10 Sandia
National
Number of Processors Laboratories

_ i '
i; Computational Results: Subgraph Isomorphism

Type & topological isomorphism exists between green vertices

18 95
25/75 180%7? . 80
05 © 67
95 Q
@) go /46/54 @ 79/21 @)
@) @)
@
o ° @51 o O © e ©
51 0 o @)
o o O
¢ O © o o O
@) O pl
© @)
Target Found
Actual graphs from
a 234M edge
instance @ ool
Laboratories

';,7
Can try harder if we want a closer match

Type & topological isomorphism exists between green vertices

@) @) ° @)
23 @) @)
@) @)
O P 98 31/69 © ¢ °
© ° ©
14/86
° 98
. ° 170 14/86.
@) o ° @) e °
® o ®
o @)
@) o
@)
@)
Target Found
Actual graphs from
a 234M edge
) Sandia
instance E‘] eraories

P ‘

Traceview Output for Subgraph Isomorphism

ot -
A traceview [trace.out)

Ei le &::t. ion WYiew

Not fully utilized since filtered
graph is tiny (10k) and we don’t

branch & bound in this example.

	Graph Software Development and Performance on the MTA-2 and Eldorado
	Outline
	Graph-Based Informatics
	Graph-Based Informatics: Data
	Massive Multithreading: The Cray MTA-2
	Cray MTA Processor
	Take Home Messages
	Graph Infrastructure Status
	Eldorado Graph Infrastructure: C++ Design Levels
	Infrastructure Primitives
	Case Studies: Algorithm Kernels
	Kahan’s Algorithm for Connected Components
	Infrastructure Implementation of Kahan’s Algorithm
	Infrastructure Implementation of Kahan’s Algorithm
	Traceview Output for Infrastructure Impl. of Kahan’s CC algorithm
	More General Filtering: The “Bully” Algorithm
	“Bully” Algorithm Implementation
	Traceview Output for the Bully Algorithm
	MTA-2 Scaling of Connected Components
	Case Study: S-T Connectivity
	S-T Connectivity, The MTA-2, and BG/L
	Successor to the MTA-2: “Eldorado” (2006)
	What is next for our infrastructure?
	Conclusions
	Acknowledgements
	Extra Slides
	Case Study: Subgraph Isomorphism Kernel
	Preprocessing with “Black Box” Filtering
	Instance-Specific Type Filtering for Subgraph Iso.
	Subgraph Isomorphism: Input
	Subgraph Isomorphism: Creating a Bipartite Graph
	Subgraph Isomorphism: Creating a Bipartite Graph
	Computational Results: Subgraph Isomorphism
	Computational Results: Subgraph Isomorphism
	Can try harder if we want a closer match
	Traceview Output for Subgraph Isomorphism

