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CrayViz, a Tool for Visualizing Job Status and Routing in 3D on 
the Cray XT3 

John Biddiscombe, and Neil Stringfellow, Swiss National 
Supercomputing Centre 

ABSTRACT: When initially installed, the Cray XT3 at CSCS showed node failures 
which appeared to occur in a pattern. The tools available for the analysis of the failures 
were limited to 2D printouts of node status and were difficult to interpret given the 3 
dimensional connectivity between the processors. A visualization tool capable of 
displaying the status of compute nodes and the routes between them was developed to 
assist in the diagnosis of the failures. It has the potential to assist in the analysis of the 
working system and the development of improved allocation and job scheduling 
algorithms..  
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1. Introduction 
A pattern of node failures which occurred on the 

Cray XT3 systems shortly after their introduction in the 
early summer of 2005, led CSCS to request the help of 
the visualization group in developing a tool to analyse 
routes taken by network traffic when traversing the 3-D 
Torus topology of the machine, since translating 2-D 
textual representations of the physical layouts of the 
cabinets into probable routing information was proving 
difficult with the tools which were then available. 

Although the node failure mechanism was identified, 
and a solution provided before the tool was ready to be 
used, the overall ability to visualize the status of the 
machine had shown great potential and therefore this 
utility was developed further to analyse job placement 
and node failure information in a historical context. 

With the continuing maturation of the Cray XT3, and 
as more performance monitoring libraries are ported to 
this architecture, there is a place for. further development 
of the tool to carry out enhanced performance monitoring   
and network contention analyses. 

Historical Context 
The early Cray XT3 systems, which were delivered 

in late 2004 and the first half of 2005, had to be rebooted 
several times per day due to large numbers of 
unexplained node failures, and the frequency of these 
node failures meant that it was difficult to carry out useful 
scientific research in the intervals between reboots. This 

limitation was enhanced by the fact that the nature of the 
node failures appeared to spread rapidly around the 
machine as though there were a contagion on the 
interconnect, and furthermore the in-built RAS system 
which attempted to identify failed nodes was sometimes 
unable to detect nodes which were unusable. 

In order to get a better picture of what was happening 
on the system at CSCS, an approach was made Pittsburgh 
Supercomputer Centre (PSC) who had a utility to query 
the operational status of several nodes. The base 
ping_node tool to ping a single node had been written 
by Cray and Sandia National Laboratories and this was 
then further developed by PSC [1] to a ping_list 
utility in order to allow it to ping several nodes at once. 
The original single node utility was deemed unsuitable for 
studying the overall state of the machine as each call 
could take several seconds per node, and on a system 
consisting of over a thousand processors there would be a 
strong possibility that a system reboot would be required 
while collecting the information. 

Using this tool to enhance the standard machine 
viewing tools allowed the failures to be "seen" on the 
machine, and it was soon clear that the node failures 
occurred in regular patterns with either the same 
positioned node on several cabinets failing, or else the 
same nodes in a vertical or horizontal line on a cabinet 
appearing as failures - it should be noted that other sites 
with different classes of topology may have seen different 
failure patterns. 

By using different nodes to carry out the ping, 
different failure patterns could be seen, implying that not 
all of the nodes had really failed, and furthermore the 
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output from the ping_list utility could be combined 
with the information held in the central database to show 
nodes which were not able to be pinged from a login 
node, but which the system still thought were alive and 
would therefore be considered as eligible for a job to be 
launched on them. 

A basic knowledge of the interconnect topology and 
the simple routing algorithms permitted an insight into 
what was happening - only one or two nodes were failing, 
but it was the SeaStar which was having the problem and 
this disruption to the high speed network stopped all 
traffic through the SeaStar. This effectively meant that 
any nodes which could only be pinged from a certain 
position by traffic passing through the node on either the 
outward or inward direction would become invisible from 
the pinging node. Although the ping_list utility was 
invaluable in this analysis, the text-based tools for 
collecting this information were insufficient for gaining 
true insight into the state of the system. 

 

 
Figure 1: Network connections for an 8 cabinet system 

Physical and Logical Layouts 
The arrangement of nodes, blades, chassis and 

cabinets in physical terms follows simple rules to build up 
multiple rows of a system from basic building blocks, but 
the connection between the nodes is dependent upon the 
number of cabinets in a configuration which determines 
the topology of the 3-D Torus. There are 4 classes of 
topology, ranging from a class 0 Topology which can 
have up to 3 cabinets, then there is a class 1 topology 
which consists of a single row of cabinets and through to 
class 2 and 3 topologies which consist of 2 or more rows 
of cabinets. The class of topology is important in 
determining which chassis and cabinets are connected to 
each other and the physical distance between two cabinets 
does not determine how many SeaStar routing chips a 
message has to pass through when communicating 
between them. To determine the route which a message 
has to take between two nodes, it is necessary to consider 
the logical layout of the processors in the 3-D Torus.  

Apart from at the ends of each row, adjacent physical 
cabinets are not normally directly connected to each other 
by cables for any topology which is greater than class 0. 
For example, in an 8 cabinet class 1 topology the cabinets 
are connected as in Figure 1 where adjacent cabinets in 
the logical layout are as shown in routing (1) 

 
013576420 ↔↔↔↔↔↔↔↔   (1) 

 
This type of connection scheme minimises the cable 

length as joining together adjacent cabinets would require 
a very long cable to connect the end cabinets. 

From this method of connecting chassis and cabinets 
together in continuous loops, logically all topologies are 
actually 3-D Torus configurations so that two routes can 
always be taken between two points in a given dimension. 
These toroidal configurations can be thought of as 
wraparound cubes – analogies include computer games 
such as Asteroids and Pac-Man where the screen is a 
square, but when an object disappears from one side of 
the screen it reappears on the other side. 

For the purpose of analysing the routes between any 
two points, it can be seen that the physical location of 
cabinets is unimportant but that the logical connections in 
the 3-D Torus are the significant element, and from this 
information it is then also necessary to know what route 
would be taken by a message between 2 points. On the 
Cray XT3 static routes are pre-calculated at machine boot 
time for how to get from one node to another, and this 
information is then dispatched to the SeaStar processors 
to use for all routing of messages.  

In most cases the forward and return routes between 
two points are different, and only for nodes which have 2 
of the X, Y and Z coordinates the same do the forward 
and return routes coincide. As an example, assuming that 
there was no wraparound and that the topology was a 
simple mesh then traversing between logical points 
(0,3,3) and (3,2,4) would involve passing through all of 
the intermediate nodes along the routes shown in routes 
(2) and (3) 

 

)4,2,3()4,2,2(
)4,2,1()4,2,0()4,3,0()3,3,0(

⇒⇒
⇒⇒⇒

 (2) 

 

)3,3,0()3,3,1(
)3,3,2()3,3,3()3,2,3()4,2,3(

⇒⇒
⇒⇒⇒

 (3) 

 
In its simplest form, the traversal of different routes 

on the 3-D Torus involves a preference for moving along 
the network in the priority order Z+,Z-,Y+,Y-,X+,X- and 
this means that in our 8 cabinet example shown in figure 
[1] that a ping between a node on cabinet 0 and cabinet 7 
would move through the cabinets in the order 
0⇒2⇒4⇒6⇒7 on the outward direction and then 
7⇒5⇒3⇒1⇒0 in the return direction. This means that a 
ping-pong message between any two nodes which were 
separated by half of the machine in one of the dimensions 
would cross all of the planes in that dimension on either 
the outward or return journeys. 
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Despite the fact that the logical depiction of the 3-D 
Torus topology is the correct method to determine a 
metric of how close two nodes are on the machine and 
therefore the shortest path between two nodes, for 
historical reasons the processors are given out to jobs in a 
very simple manner from the first processor number in 
the database onwards, and this means that the nodes are 
given out in terms of physical cabinets instead of the best 
approach for minimising communication along the high 
speed network. The short hop time between SeaStars 
means that this is not so significant for latency, but 
bandwidth contention between many messages trying to 
traverse the machine could potentially have a high impact 
on the performance of communication intensive 
applications. For example, in the 8 cabinet example nodes 
for a job might be allocated on the physically adjacent 
cabinets numbered 3 and 4 even though they are on 
opposite sides of the machine as far as the high speed 
interconnect is concerned. 

Text Based Tools 
The original text-based tools for viewing the 

operation of the machine were very soon shown to be 
inadequate for carrying out any sort of analysis of the 
failure patterns, and enhancements to the standard utilities 
were therefore required. As well as the invaluable 
ping_list utility, the main additional tool available 
was xtshowmesh which gave an overview of node 
utilisation with information on which nodes currently had 
jobs running on them which nodes were free for batch 
and interactive use, and most importantly for the analysis, 
which nodes were marked as down in the system 
database. 

The original version of xtshowmesh provided its 
information in a format which was more suited to the Red 
Storm architecture than the XT3 in that the cabinets were 
displayed as 24 columns each with the 4 processors on a 
blade, and the traversal of the columns was from blade 0 
to blade 7 along the bottom row, then from blade 7 to 
blade 0 in reverse on the second row and finally from 
blade 0 to blade 7 on the top row. This format made it 
very difficult to read when considering the layout of the 
3-D Torus topology on the Cray XT3 and therefore this 
output was rearranged and tied together with the results of 
carrying out ping_list on a cabinet by cabinet basis to 
give a newer utility for studying the status of the machine. 

A sample output of the new utility is shown in Figure 
2 where the cabinets are now arranged in two rows such 
that a message passes between cabinets in a circular 
direction either clockwise or anti-clockwise depending 
upon the shortest distance between them. Failed nodes 
from the database are shown as an ``X'' and failed nodes 
from ping_list are shown in reverse video, with 
failed  nodes in both the database and ping_list being 
shown as a reverse video ‘X’. 

This example shows that the cabinets along the 
bottom row (in this case the even numbered cabinets) all 
show a failure from ping_list, but the final cabinet on 
the bottom row has no failures according to the database, 
while the first cabinet on the top row does have a failure 
according to the database. 

The layout of machine information in cabinets was 
later implemented in Cray's xtshowcabs utility, as this 
is a much more useful way of seeing the system on a Cray 
XT3 as opposed to viewing the status of Red Storm. 
Although the combined tool allowed a better viewing of 
the system it was still inadequate for a true analysis of the 
problem as routes between nodes still required a 
translation from a 2-D representation into a 3-D 
perception in the mind of the analyst. 

 

 
Figure 2: Sample output showing xtshowmesh and 

ping_list combined 

A Graphical Visualization Tool 
In order to further analyse the problem on the Cray 

XT3, CSCS was able to make use of the fact that it 
already has a well established scientific visualization 
group providing services to the Swiss scientific research 
community. It was clear that the skills of this group could 
be utilised to transform the physical representation of 
cabinets in 2-D into a logical representation of the 
network topology in 3-D. 

With a vague specification of what was required, a 
visualization tool was rapidly developed which allowed 
either a representation of the machine in terms of the 
layout of physical cabinets, or allowed a 3-D visualization 
of the logical layout according to the network topology so 
that it was easily possible to see which nodes were really 
next to each other on the 3-D Torus.  
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By analysing the routing information which was 
output at boot time on the system management 
workstation (SMW), the routing algorithm could be 
deduced and this allowed the tool to be enhanced so that 
it was possible to visualize the real paths through the 
machine which would be taken by messages between two 
nodes.  

The visualization tool incorporated some of the text 
based tools for information, and was able to use 
ping_list from different nodes to have alternative 
views of which nodes had failed, although due to the 
agglomeration of service nodes at the bottom of only 2 
cabinets, the routes taken when issuing ping_list 
where not drastically altered by using a different login 
node. An early version of the tool can be seen in figure 
Figure 3 which shows each node in the machine as a point 
on a grid. Nodes which have failed are drawn as large 
coloured cubes and the route from the login (ping) node 
to the failed node is shown. Forward and return paths are 
shown using different colours – they are mirror images of 
each other when viewed singly. 

 

 
Figure 3: Routes to and from failed nodes to the login node 

 
Just as the visualization tool was becoming useful for 

this analysis and it was becoming possible to identify the 
nodes which were the probable culprits for multiple node 
failures, Cray engineers carried out system maintenance 
on the SeaStar processors where a small voltage increase 
from 1.5 to 1.6 volts made the problem disappear 
completely. Fortunately, the effort to develop the tool was 
not wasted as new possibilities were evident in the areas 
of gaining a system overview of running jobs, historical 
information about node usage and the potential to analyse 
how job performance could be affected by network 
bandwidth contention. 

Later Tool Development 
It was clear that this tool was still very useful for 

gaining information about the usage of the system at the 
time at which the tool was running, and this was very 
clear when seeing how jobs were distributed around the 
3-D Torus. Some jobs appeared to be allocated in a 
manner which meant that there were short distances 
between nodes when looking at the output from the text 
based tools showing allocations by cabinet, but using the 
visualization tool it could now be seen that they were in 
fact poorly distributed across the 3-D Torus and that jobs 
running on other nodes which were themselves poorly 
distributed would cause the potential for bandwidth 
contention.  

 

 
Figure 4: Jobs running at one instant in time are shown as 

coloured cubes (the JobCube), allowing their distribution on 
the machine to be visualized immediately 

 
An investigation of the information held in the 

MySQL accounting database revealed that it contained all 
of the necessary information about jobs, the nodes which 
were allocated to jobs and node failure information, such 
that the tool could be used for historical data as well as 
taking a snapshot of the running machine (see Figure 4). 
The only aspect which would then be missing from the 
design of the original tool would be the ability to ping 
nodes, but with the voltage increase on the SeaStar 
processors there were no known occasions where node 
failures in the database were different from information 
gained from ping_list.  

For this reason the tool was then changed to directly 
query the database for information about jobs, and it was 
now possible to take snapshots of the state of the machine 
at various times, to look for possible node failure patterns 
in a given period, and to have dynamically changing 
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information in the form of time-line animations, either 
between fixed points in time or analyses such as the 
changing state of the machine during the lifetime of a 
particular job.  

A further enhancement came when Cray put the 
correct 3-D topology grid coordinates for an XT3 system 
in the MySQL administration database instead of the 
coordinates for a Red Storm system, and this had the side-
effect that xtshowmesh no longer worked on the XT3 
and the xtshowcabs utility was good enough for 
general usage whereas the visualization tool itself was the 
only real way to write an xtshowtorus utility. The 
ability to take this information from the database meant 
that the tool was now fully portable and could be taken to 
any other Cray XT3 and used without any extra effort. 
Unfortunately the routing information was still not held 
on the database, and therefore the routing algorithm still 
needed to be hard coded into the tool. However a problem 
with hard-coding this information was that a failure to 
initiate nodes at boot time would lead to a different 
routing algorithm from the default being employed in the 
network but there was no way for the tool to know this. 

 

 
Figure 5: One job distributed between several cabinets. Jobs 

running on the in-between nodes will cause traffic 
congestion. 

 
Then a further development came with the inclusion 

of an option to carry out analysis of theoretical link 
contention based on expected communication patterns, 
with three main options being available to an analyst:-  

All-to-all 
It is assumed that random access between processes 

would occur and therefore all routes are calculated in 
order to determine likely network contention. 

Nearest neighbour 
A simple communication pattern of sending 

messages to the nearest neighbour with a 1-D wraparound 
is used to determine routes. Since some distributions of 
processors are sufficiently separated even this type of 
communication could cause bandwidth contention. 

 

 
Figure 6: The same job as that shown Figure 5 but with 

routing of each node to each other, the region where traffic 
is densest appears red 

Square and Cubic Mesh neighbours 
    The dimensions of a 2-D or 3-D grid could be 

entered so that communication in this manner would be 
calculated as this type of messaging is typical in many 
high performance computing applications. 

 
An example of an analysis of network contention 

caused by a job is shown in Figure 6 

Additional output from the tool 
Once the routing analysis has been computed it is 

possible to produce some statistics, such as the mean and 
standard deviation of route lengths from one node to 
another for a particular job. Should the same job be run 
on different occasions with significantly better or worse 
performance during one run, such information could give 
clues as to the reason for the difference. 

A test for this routing analysis capability was 
provided when a job which had been submitted more 
recently was found to have computed only 30% as much 
data as the same job submitted some months before. 
Looking at the distribution of compute nodes and the 
traffic patterns which would arise from the two jobs made 
it clear that the earlier job should run more efficiently. 
However, no direct link between the route lengths or 
traffic patterns could ever be made without detailed data 
collection and examination for both runs – and it seems 
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unlikely that such a large performance reduction could 
have been caused by traffic contention alone. 

 
CrayViz is now useful for examining historical 

information from a theoretical standpoint, but the real 
value of this tool could come with an upgrade from 
theoretical routing within an application to the actual 
communication patterns which occurred during a run. 
Although the collection of all message information such 
as start and finish times, source and destination and 
amount of data would be cumbersome, general 
information patterns could be used and in this context the 
IPM tool [2], which is currently being ported to the Cray 
XT3 would be a good candidate for general performance 
data collection. 

It may also be possible to directly gain real data 
collected from the SeaStar processors, whether this be 
actual runtime collection of data for real-time analysis, or 
a summary data collection at the end of a job run which 
would be more suitable for off-line analysis.  

Although there are now few occasions where failures 
in SeaStars occur, and therefore the simple routing 
algorithm used by CrayViz could be expected to correctly 
calculate the paths between processors, the current hard-
coding of this routing algorithm into the program does not 
fit well with the elegance of the rest of the code which 
uses the MySQL database wherever possible allowing the 
visualization to be based entirely on external information. 
Dumping the routing information onto the database at 
boot time with a time stamp to indicate the start period for 
which this routing information is valid, would be a much 
better way of allowing a full historical analysis of job, 
performance and network contention. 

 

 
Figure 7: Traffic pattern for a job assuming ‘All to All’ 

communication between nodes 
 

Correct calculation of routing could be used to avoid 
potential bottlenecks when either multiple jobs have hot-
spots in the same region of the machine, or when a failed 
node causes an unusually large amount of traffic to pass 
through a certain region. Consider Figure 7 and Figure 8 
which show theoretical routing for the same job assuming 
an ‘All to All’ traffic pattern in one and a 2d Grid 
computation with a 4x4 size in the other. The hot spots in 
terms of traffic are in quite different locations. If another 
job is allocated in such a way that it also places heavy 
network demands in the same region – or if a failed node 
causes rerouting of neighbouring traffic through this 
region, then the performance of the job may be 
unpredictable. 
 
 

 
Figure 8: Traffic pattern for the same job as Figure 7 

assuming a traffic pattern of a 2D 4x4 grid 

Conclusions 
The CrayViz tool was originally developed to help 

identify patterns produced by a node failure mechanism, 
but the reason for the failures was identified and a 
solution put in place before the tool had been able to be 
used for the pattern analysis. 

The development of a 3-D visualization tool for 
studying the Cray has proved to be very valuable in 
understanding processor distribution within jobs, node 
failures and possible network contention based on 
theoretical communication patterns. The incorporation of 
the correct network topology information in the MySQL 
database allowed CrayViz to become fully portable 
between XT3 machines.  

Future development of tools such as IPM to gather 
information from applications on real communication 
patterns would enhance the potential of CrayViz to be 
used as a tool for bandwidth contention analysis. 
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Obtaining summary information from the SeaStar 
processors could also be useful, particularly in 
determining any build up of message queues to indicate 
bandwidth contention. 
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