

CUG 2006 Proceedings 1 of 7

CrayViz, a Tool for Visualizing Job Status and Routing in 3D on
the Cray XT3

John Biddiscombe, and Neil Stringfellow, Swiss National
Supercomputing Centre

ABSTRACT: When initially installed, the Cray XT3 at CSCS showed node failures
which appeared to occur in a pattern. The tools available for the analysis of the failures
were limited to 2D printouts of node status and were difficult to interpret given the 3
dimensional connectivity between the processors. A visualization tool capable of
displaying the status of compute nodes and the routes between them was developed to
assist in the diagnosis of the failures. It has the potential to assist in the analysis of the
working system and the development of improved allocation and job scheduling
algorithms..

KEYWORDS: Cray XT3, Visualization, Network Topology, Tool

1. Introduction
A pattern of node failures which occurred on the

Cray XT3 systems shortly after their introduction in the
early summer of 2005, led CSCS to request the help of
the visualization group in developing a tool to analyse
routes taken by network traffic when traversing the 3-D
Torus topology of the machine, since translating 2-D
textual representations of the physical layouts of the
cabinets into probable routing information was proving
difficult with the tools which were then available.

Although the node failure mechanism was identified,
and a solution provided before the tool was ready to be
used, the overall ability to visualize the status of the
machine had shown great potential and therefore this
utility was developed further to analyse job placement
and node failure information in a historical context.

With the continuing maturation of the Cray XT3, and
as more performance monitoring libraries are ported to
this architecture, there is a place for. further development
of the tool to carry out enhanced performance monitoring
and network contention analyses.

Historical Context
The early Cray XT3 systems, which were delivered

in late 2004 and the first half of 2005, had to be rebooted
several times per day due to large numbers of
unexplained node failures, and the frequency of these
node failures meant that it was difficult to carry out useful
scientific research in the intervals between reboots. This

limitation was enhanced by the fact that the nature of the
node failures appeared to spread rapidly around the
machine as though there were a contagion on the
interconnect, and furthermore the in-built RAS system
which attempted to identify failed nodes was sometimes
unable to detect nodes which were unusable.

In order to get a better picture of what was happening
on the system at CSCS, an approach was made Pittsburgh
Supercomputer Centre (PSC) who had a utility to query
the operational status of several nodes. The base
ping_node tool to ping a single node had been written
by Cray and Sandia National Laboratories and this was
then further developed by PSC [1] to a ping_list
utility in order to allow it to ping several nodes at once.
The original single node utility was deemed unsuitable for
studying the overall state of the machine as each call
could take several seconds per node, and on a system
consisting of over a thousand processors there would be a
strong possibility that a system reboot would be required
while collecting the information.

Using this tool to enhance the standard machine
viewing tools allowed the failures to be "seen" on the
machine, and it was soon clear that the node failures
occurred in regular patterns with either the same
positioned node on several cabinets failing, or else the
same nodes in a vertical or horizontal line on a cabinet
appearing as failures - it should be noted that other sites
with different classes of topology may have seen different
failure patterns.

By using different nodes to carry out the ping,
different failure patterns could be seen, implying that not
all of the nodes had really failed, and furthermore the

CUG 2006 Proceedings 2 of 7

output from the ping_list utility could be combined
with the information held in the central database to show
nodes which were not able to be pinged from a login
node, but which the system still thought were alive and
would therefore be considered as eligible for a job to be
launched on them.

A basic knowledge of the interconnect topology and
the simple routing algorithms permitted an insight into
what was happening - only one or two nodes were failing,
but it was the SeaStar which was having the problem and
this disruption to the high speed network stopped all
traffic through the SeaStar. This effectively meant that
any nodes which could only be pinged from a certain
position by traffic passing through the node on either the
outward or inward direction would become invisible from
the pinging node. Although the ping_list utility was
invaluable in this analysis, the text-based tools for
collecting this information were insufficient for gaining
true insight into the state of the system.

Figure 1: Network connections for an 8 cabinet system

Physical and Logical Layouts
The arrangement of nodes, blades, chassis and

cabinets in physical terms follows simple rules to build up
multiple rows of a system from basic building blocks, but
the connection between the nodes is dependent upon the
number of cabinets in a configuration which determines
the topology of the 3-D Torus. There are 4 classes of
topology, ranging from a class 0 Topology which can
have up to 3 cabinets, then there is a class 1 topology
which consists of a single row of cabinets and through to
class 2 and 3 topologies which consist of 2 or more rows
of cabinets. The class of topology is important in
determining which chassis and cabinets are connected to
each other and the physical distance between two cabinets
does not determine how many SeaStar routing chips a
message has to pass through when communicating
between them. To determine the route which a message
has to take between two nodes, it is necessary to consider
the logical layout of the processors in the 3-D Torus.

Apart from at the ends of each row, adjacent physical
cabinets are not normally directly connected to each other
by cables for any topology which is greater than class 0.
For example, in an 8 cabinet class 1 topology the cabinets
are connected as in Figure 1 where adjacent cabinets in
the logical layout are as shown in routing (1)

013576420 ↔↔↔↔↔↔↔↔ (1)

This type of connection scheme minimises the cable

length as joining together adjacent cabinets would require
a very long cable to connect the end cabinets.

From this method of connecting chassis and cabinets
together in continuous loops, logically all topologies are
actually 3-D Torus configurations so that two routes can
always be taken between two points in a given dimension.
These toroidal configurations can be thought of as
wraparound cubes – analogies include computer games
such as Asteroids and Pac-Man where the screen is a
square, but when an object disappears from one side of
the screen it reappears on the other side.

For the purpose of analysing the routes between any
two points, it can be seen that the physical location of
cabinets is unimportant but that the logical connections in
the 3-D Torus are the significant element, and from this
information it is then also necessary to know what route
would be taken by a message between 2 points. On the
Cray XT3 static routes are pre-calculated at machine boot
time for how to get from one node to another, and this
information is then dispatched to the SeaStar processors
to use for all routing of messages.

In most cases the forward and return routes between
two points are different, and only for nodes which have 2
of the X, Y and Z coordinates the same do the forward
and return routes coincide. As an example, assuming that
there was no wraparound and that the topology was a
simple mesh then traversing between logical points
(0,3,3) and (3,2,4) would involve passing through all of
the intermediate nodes along the routes shown in routes
(2) and (3)

)4,2,3()4,2,2(
)4,2,1()4,2,0()4,3,0()3,3,0(

⇒⇒
⇒⇒⇒

 (2)

)3,3,0()3,3,1(
)3,3,2()3,3,3()3,2,3()4,2,3(

⇒⇒
⇒⇒⇒

 (3)

In its simplest form, the traversal of different routes

on the 3-D Torus involves a preference for moving along
the network in the priority order Z+,Z-,Y+,Y-,X+,X- and
this means that in our 8 cabinet example shown in figure
[1] that a ping between a node on cabinet 0 and cabinet 7
would move through the cabinets in the order
0⇒2⇒4⇒6⇒7 on the outward direction and then
7⇒5⇒3⇒1⇒0 in the return direction. This means that a
ping-pong message between any two nodes which were
separated by half of the machine in one of the dimensions
would cross all of the planes in that dimension on either
the outward or return journeys.

CUG 2006 Proceedings 3 of 7

Despite the fact that the logical depiction of the 3-D
Torus topology is the correct method to determine a
metric of how close two nodes are on the machine and
therefore the shortest path between two nodes, for
historical reasons the processors are given out to jobs in a
very simple manner from the first processor number in
the database onwards, and this means that the nodes are
given out in terms of physical cabinets instead of the best
approach for minimising communication along the high
speed network. The short hop time between SeaStars
means that this is not so significant for latency, but
bandwidth contention between many messages trying to
traverse the machine could potentially have a high impact
on the performance of communication intensive
applications. For example, in the 8 cabinet example nodes
for a job might be allocated on the physically adjacent
cabinets numbered 3 and 4 even though they are on
opposite sides of the machine as far as the high speed
interconnect is concerned.

Text Based Tools
The original text-based tools for viewing the

operation of the machine were very soon shown to be
inadequate for carrying out any sort of analysis of the
failure patterns, and enhancements to the standard utilities
were therefore required. As well as the invaluable
ping_list utility, the main additional tool available
was xtshowmesh which gave an overview of node
utilisation with information on which nodes currently had
jobs running on them which nodes were free for batch
and interactive use, and most importantly for the analysis,
which nodes were marked as down in the system
database.

The original version of xtshowmesh provided its
information in a format which was more suited to the Red
Storm architecture than the XT3 in that the cabinets were
displayed as 24 columns each with the 4 processors on a
blade, and the traversal of the columns was from blade 0
to blade 7 along the bottom row, then from blade 7 to
blade 0 in reverse on the second row and finally from
blade 0 to blade 7 on the top row. This format made it
very difficult to read when considering the layout of the
3-D Torus topology on the Cray XT3 and therefore this
output was rearranged and tied together with the results of
carrying out ping_list on a cabinet by cabinet basis to
give a newer utility for studying the status of the machine.

A sample output of the new utility is shown in Figure
2 where the cabinets are now arranged in two rows such
that a message passes between cabinets in a circular
direction either clockwise or anti-clockwise depending
upon the shortest distance between them. Failed nodes
from the database are shown as an ``X'' and failed nodes
from ping_list are shown in reverse video, with
failed nodes in both the database and ping_list being
shown as a reverse video ‘X’.

This example shows that the cabinets along the
bottom row (in this case the even numbered cabinets) all
show a failure from ping_list, but the final cabinet on
the bottom row has no failures according to the database,
while the first cabinet on the top row does have a failure
according to the database.

The layout of machine information in cabinets was
later implemented in Cray's xtshowcabs utility, as this
is a much more useful way of seeing the system on a Cray
XT3 as opposed to viewing the status of Red Storm.
Although the combined tool allowed a better viewing of
the system it was still inadequate for a true analysis of the
problem as routes between nodes still required a
translation from a 2-D representation into a 3-D
perception in the mind of the analyst.

Figure 2: Sample output showing xtshowmesh and

ping_list combined

A Graphical Visualization Tool
In order to further analyse the problem on the Cray

XT3, CSCS was able to make use of the fact that it
already has a well established scientific visualization
group providing services to the Swiss scientific research
community. It was clear that the skills of this group could
be utilised to transform the physical representation of
cabinets in 2-D into a logical representation of the
network topology in 3-D.

With a vague specification of what was required, a
visualization tool was rapidly developed which allowed
either a representation of the machine in terms of the
layout of physical cabinets, or allowed a 3-D visualization
of the logical layout according to the network topology so
that it was easily possible to see which nodes were really
next to each other on the 3-D Torus.

CUG 2006 Proceedings 4 of 7

By analysing the routing information which was
output at boot time on the system management
workstation (SMW), the routing algorithm could be
deduced and this allowed the tool to be enhanced so that
it was possible to visualize the real paths through the
machine which would be taken by messages between two
nodes.

The visualization tool incorporated some of the text
based tools for information, and was able to use
ping_list from different nodes to have alternative
views of which nodes had failed, although due to the
agglomeration of service nodes at the bottom of only 2
cabinets, the routes taken when issuing ping_list
where not drastically altered by using a different login
node. An early version of the tool can be seen in figure
Figure 3 which shows each node in the machine as a point
on a grid. Nodes which have failed are drawn as large
coloured cubes and the route from the login (ping) node
to the failed node is shown. Forward and return paths are
shown using different colours – they are mirror images of
each other when viewed singly.

Figure 3: Routes to and from failed nodes to the login node

Just as the visualization tool was becoming useful for

this analysis and it was becoming possible to identify the
nodes which were the probable culprits for multiple node
failures, Cray engineers carried out system maintenance
on the SeaStar processors where a small voltage increase
from 1.5 to 1.6 volts made the problem disappear
completely. Fortunately, the effort to develop the tool was
not wasted as new possibilities were evident in the areas
of gaining a system overview of running jobs, historical
information about node usage and the potential to analyse
how job performance could be affected by network
bandwidth contention.

Later Tool Development
It was clear that this tool was still very useful for

gaining information about the usage of the system at the
time at which the tool was running, and this was very
clear when seeing how jobs were distributed around the
3-D Torus. Some jobs appeared to be allocated in a
manner which meant that there were short distances
between nodes when looking at the output from the text
based tools showing allocations by cabinet, but using the
visualization tool it could now be seen that they were in
fact poorly distributed across the 3-D Torus and that jobs
running on other nodes which were themselves poorly
distributed would cause the potential for bandwidth
contention.

Figure 4: Jobs running at one instant in time are shown as

coloured cubes (the JobCube), allowing their distribution on
the machine to be visualized immediately

An investigation of the information held in the

MySQL accounting database revealed that it contained all
of the necessary information about jobs, the nodes which
were allocated to jobs and node failure information, such
that the tool could be used for historical data as well as
taking a snapshot of the running machine (see Figure 4).
The only aspect which would then be missing from the
design of the original tool would be the ability to ping
nodes, but with the voltage increase on the SeaStar
processors there were no known occasions where node
failures in the database were different from information
gained from ping_list.

For this reason the tool was then changed to directly
query the database for information about jobs, and it was
now possible to take snapshots of the state of the machine
at various times, to look for possible node failure patterns
in a given period, and to have dynamically changing

CUG 2006 Proceedings 5 of 7

information in the form of time-line animations, either
between fixed points in time or analyses such as the
changing state of the machine during the lifetime of a
particular job.

A further enhancement came when Cray put the
correct 3-D topology grid coordinates for an XT3 system
in the MySQL administration database instead of the
coordinates for a Red Storm system, and this had the side-
effect that xtshowmesh no longer worked on the XT3
and the xtshowcabs utility was good enough for
general usage whereas the visualization tool itself was the
only real way to write an xtshowtorus utility. The
ability to take this information from the database meant
that the tool was now fully portable and could be taken to
any other Cray XT3 and used without any extra effort.
Unfortunately the routing information was still not held
on the database, and therefore the routing algorithm still
needed to be hard coded into the tool. However a problem
with hard-coding this information was that a failure to
initiate nodes at boot time would lead to a different
routing algorithm from the default being employed in the
network but there was no way for the tool to know this.

Figure 5: One job distributed between several cabinets. Jobs

running on the in-between nodes will cause traffic
congestion.

Then a further development came with the inclusion

of an option to carry out analysis of theoretical link
contention based on expected communication patterns,
with three main options being available to an analyst:-

All-to-all
It is assumed that random access between processes

would occur and therefore all routes are calculated in
order to determine likely network contention.

Nearest neighbour
A simple communication pattern of sending

messages to the nearest neighbour with a 1-D wraparound
is used to determine routes. Since some distributions of
processors are sufficiently separated even this type of
communication could cause bandwidth contention.

Figure 6: The same job as that shown Figure 5 but with

routing of each node to each other, the region where traffic
is densest appears red

Square and Cubic Mesh neighbours
 The dimensions of a 2-D or 3-D grid could be

entered so that communication in this manner would be
calculated as this type of messaging is typical in many
high performance computing applications.

An example of an analysis of network contention

caused by a job is shown in Figure 6

Additional output from the tool
Once the routing analysis has been computed it is

possible to produce some statistics, such as the mean and
standard deviation of route lengths from one node to
another for a particular job. Should the same job be run
on different occasions with significantly better or worse
performance during one run, such information could give
clues as to the reason for the difference.

A test for this routing analysis capability was
provided when a job which had been submitted more
recently was found to have computed only 30% as much
data as the same job submitted some months before.
Looking at the distribution of compute nodes and the
traffic patterns which would arise from the two jobs made
it clear that the earlier job should run more efficiently.
However, no direct link between the route lengths or
traffic patterns could ever be made without detailed data
collection and examination for both runs – and it seems

CUG 2006 Proceedings 6 of 7

unlikely that such a large performance reduction could
have been caused by traffic contention alone.

CrayViz is now useful for examining historical

information from a theoretical standpoint, but the real
value of this tool could come with an upgrade from
theoretical routing within an application to the actual
communication patterns which occurred during a run.
Although the collection of all message information such
as start and finish times, source and destination and
amount of data would be cumbersome, general
information patterns could be used and in this context the
IPM tool [2], which is currently being ported to the Cray
XT3 would be a good candidate for general performance
data collection.

It may also be possible to directly gain real data
collected from the SeaStar processors, whether this be
actual runtime collection of data for real-time analysis, or
a summary data collection at the end of a job run which
would be more suitable for off-line analysis.

Although there are now few occasions where failures
in SeaStars occur, and therefore the simple routing
algorithm used by CrayViz could be expected to correctly
calculate the paths between processors, the current hard-
coding of this routing algorithm into the program does not
fit well with the elegance of the rest of the code which
uses the MySQL database wherever possible allowing the
visualization to be based entirely on external information.
Dumping the routing information onto the database at
boot time with a time stamp to indicate the start period for
which this routing information is valid, would be a much
better way of allowing a full historical analysis of job,
performance and network contention.

Figure 7: Traffic pattern for a job assuming ‘All to All’

communication between nodes

Correct calculation of routing could be used to avoid
potential bottlenecks when either multiple jobs have hot-
spots in the same region of the machine, or when a failed
node causes an unusually large amount of traffic to pass
through a certain region. Consider Figure 7 and Figure 8
which show theoretical routing for the same job assuming
an ‘All to All’ traffic pattern in one and a 2d Grid
computation with a 4x4 size in the other. The hot spots in
terms of traffic are in quite different locations. If another
job is allocated in such a way that it also places heavy
network demands in the same region – or if a failed node
causes rerouting of neighbouring traffic through this
region, then the performance of the job may be
unpredictable.

Figure 8: Traffic pattern for the same job as Figure 7

assuming a traffic pattern of a 2D 4x4 grid

Conclusions
The CrayViz tool was originally developed to help

identify patterns produced by a node failure mechanism,
but the reason for the failures was identified and a
solution put in place before the tool had been able to be
used for the pattern analysis.

The development of a 3-D visualization tool for
studying the Cray has proved to be very valuable in
understanding processor distribution within jobs, node
failures and possible network contention based on
theoretical communication patterns. The incorporation of
the correct network topology information in the MySQL
database allowed CrayViz to become fully portable
between XT3 machines.

Future development of tools such as IPM to gather
information from applications on real communication
patterns would enhance the potential of CrayViz to be
used as a tool for bandwidth contention analysis.

CUG 2006 Proceedings 7 of 7

Obtaining summary information from the SeaStar
processors could also be useful, particularly in
determining any build up of message queues to indicate
bandwidth contention.

About the Authors
John A. Biddiscombe completed his degree in

electronic engineering at Warwick University in 1989.
From 1990 onwards he held several positions at the
Rutherford Appleton Laboratory, in 1995 he moved to the
Radio Communications Research Unit where he became
software development manager for theoretical modelling,
working on radio propagation and 3D simulation tools. In
2004 he joined the visualization group of CSCS bringing
his specialized VTK knowledge to the group. In this role
he has worked on a variety of visualization and
programming projects for the CSCS user community.

Neil D. Stringfellow studied Mathematics at

undergraduate and master's level before attending
Cranfield University where he obtaining a PhD also in
Mathematics. After completing his post-doctoral studies
he joined the staff of the University of Manchester where
he provided application and optimisation support to
scientific researchers who used CSAR, one of the United
Kingdom's national supercomputing services. Neil joined
the staff of CSCS in 2004 and since then he has been
providing support to specific groups from CSCS' user
community and he has also been involved in the
introduction and development of the Cray XT3
supercomputer.

References
 [1] John Kochmar Chad Vizino, Nathan Stone and J. Ray
Scott. Batch scheduling on the cray xt3. In Cray User
Group 2005, Alberquerque, New Mexico, May 16-19,
2005, 2005. available at http://www.cug.org/5-members
only/1-attendees/proceedings attendee lists/2005CD/S05
Proceedings/pages/Authors/Vizino/Vizino paper.pdf
(cited May 2006).

[2] David Skinner of NERSC. Integrated performance
monitoring. Available at (cited May 2006)
http://sourceforge.net/projects/ipm-hpc

