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Outline

• Overview
• Portals objects
• Portals API
• Portals semantics
• XT3 implementation
• Upcoming work



Portals Timeline

• Portals 0.0  - 1991
– SUNMOS (Sandia/UNM OS)
– nCUBE, Intel Paragon
– Direct access to network FIFOs
– Message co-processor

• Portals 1.0  - 1993
– Message passing data structures in user-space
– Kernel-managed and user-managed memory descriptors
– Published but never implemented

• Portals 2.0  - 1994
– Puma/Cougar lightweight operating system
– Message selection capability (match lists)
– Four types of memory descriptors (three implemented)

• Portals 3.0  - 1998
– Cplant Linux clusters
– Functional API
– Target intelligent/programmable network interfaces (Myrinet)



Portals 3.3 Features

• Best effort, in-order delivery
• One-sided operations

– Put, Get, Atomic swap
• Supports zero-copy
• Supports OS-bypass
• Supports application offload

– No polling or threads to move data
– No host CPU overhead

• Well-defined transport failure semantics
• Unexpected operations are discarded
• Receive-side access control
• Runtime-system independent



What Makes Portals Different?

• Connectionless RDMA with matching
• Provides elementary building blocks for 

supporting higher-level protocols well
– MPI, RPC, Lustre, etc.

• Allows structures to be placed in user-space, 
kernel-space, or NIC-space

• Receiver-managed offset allows for efficient and 
scalable buffering of MPI “unexpected” messages 

• Supports multiple protocols within a process
– Needed for compute nodes where everything is a 

message



Basic Objects:  Memory Descriptors and Addresses

• Memory descriptors
– Logically contiguous region of memory
– Explicit creation

• Pin pages (for Linux)
• Pass address map to network interface

– Scatter/gather semantics
• Remote addresses include:

– Destination id (node id, process id)
– Portal table index (protocol switch)
– Message selection bits (MPI style matching)
– Offset – sender-managed memory descriptors
– Access control cookie



Addressing



Steps for Address Translation



Library Initialization/Shutdown

•int PtlInit( int *max_interfaces );

•void PtlFini( void );



Network Interfaces

• Supports the use of multiple network interfaces
• Each interface is independent
• Each interface provides

– A portal table
• With at least 8 entries

– An access control table
– Status registers

• Every portals object is associated with a specific 
interface



Network Interface Creation & Destruction Functions

•int PtlNIInit(
ptl_interface_t iface,
ptl_pid_t pid,
ptl_ni_limits_t *desired,
ptl_ni_limits_t *actual,
ptl_handle_ni_t *ni_handle

);

•int PtlNIFini(
ptl_handle_ni_t ni_handle

);



Network Interface Utility Functions

•int PtlNIStatus(
ptl_handle_ni_t ni_handle,
ptl_sr_index_t status_register,
ptl_sr_value_t *status

);

•int PtlNIDist(
ptl_handle_ni_t ni_handle,
ptl_process_id_t pid,
unsigned long *distance

);



Identification

• User Id
– Every process runs on behalf of a user
– Mandates trusted header information

• Process Id
– Uniquely identifies a process on a portals network

• Job Id
– Allows for processes to be aggregated
– Useful for parallel jobs



Identification Functions

•int PtlGetUid (
ptl_handle_ni_t ni_handle,
ptl_uid_t *uid

);

•int PtlGetId(
ptl_handle_ni_t ni_handle,
ptl_process_id_t *pid

);

•int PtlGetJid(
ptl_handle_ni_t ni_handle,
ptl_job_id_t *jid

);



Match Entry (ME) and Match Lists

• Each match entry contains
– Source node id
– Source process id
– 64 match bits
– 64 ignore bits

• A match entry is attached to a portal table entry
• Match entries can be linked to create a match list
• Can be automatically unlinked and freed from list 

when used up



Match Entry Creation Functions

• int PtlMEAttach(
ptl_handle_ni_t ni_handle,
ptl_pt_index_t pt_index,
ptl_process_id_t match_id,
ptl_match_bits_t match_bits,
ptl_match_bits_t ignore_bits,
ptl_unlink_t unlink_op,
ptl_ins_pos_t position,
ptl_handle_me_t *me_handle

);

• int PtlMEAttachAny(
ptl_handle_ni_t ni_handle,
ptl_pt_index_t *pt_index,
ptl_process_id_t match_id,
ptl_match_bits_t match_bits,
ptl_match_bits_t ignore_bits,
ptl_unlink_t unlink_op,
ptl_ins_pos_t position,
ptl_handle_me_t *me_handle

);



Match Entry Insertion Function

•int PtlMEInsert(
ptl_handle_me_t base,
ptl_process_id_t match_id,
ptl_match_bits_t match_bits,
ptl_match_bits_t ignore_bits,
ptl_unlink_t unlink_op,
ptl_ins_pos_t position,
ptl_handle_me_t *me_handle

);



Match Entry Destruction Function

•int PtlMEUnlink( ptl_handle_me_t me_handle );



Memory Descriptor (MD)

• Describes regions of memory for data movement 
operations

• Defines what operations can be performed on the 
memory

• Can be automatically freed when used up



Memory Descriptor Structure

• start
– Starting address of memory region

• length
– Length in bytes of memory region

• threshold
– Maximum number of operations

• max_size
– Largest incoming request

• options
– See next slide

• user_ptr
– User-specific value returned in events

• eq_handle
– Event queue where operations are recorded



Memory Descriptor Options

• PTL_MD_OP_PUT
– Respond to put operations

• PTL_MD_OP_GET
– Respond to get operations

• PTL_MD_MANAGE_REMOTE
– Offset is specified in the request

• PTL_MD_TRUNCATE
– Truncate incoming request to size of MD

• PTL_MD_ACK_DISABLE
– Do not allow put acknowledgements

• PTL_MD_IOVEC
– Start and length refer to a ptl_md_iovec_t

• PTL_MD_MAX_SIZE
– Recognize the max_size value in the MD

• PTL_MD_EVENT_START_DISABLE
– Turn off start events

• PTL_MD_EVENT_END_DISABLE
– Turn off end events



Scatter/Gather MD

•typedef struct {
void *iov_base;
ptl_size_t iov_len;

} ptl_md_iovec_t;



Memory Descriptor Creation Functions

•int PtlMDAttach(
ptl_handle_me_t me_handle,
ptl_md_t md,
ptl_unlink_t unlink_op,
ptl_handle_md_t *md_handle

);

•int PtlMDBind(
ptl_handle_ni_t ni_handle,
ptl_md_t md,
ptl_unlink_t unlink_op,
ptl_handle_md_t *md_handle

);



Memory Descriptor Destruction Function

•int PtlMDUnlink( ptl_handle_md_t md_handle );



Function to Change an Existing MD

•int PtlMDUpdate(
ptl_handle_md_t md_handle,
ptl_md_t *old_md,
ptl_md_t *new_md,
ptl_handle_eq_t eq_handle

);

• Primarily needed to allow for the atomic search-and-post 
function needed by MPI



Event Queue (EQ)

• Circular queue that records operations on MDs
• Signal the start and end of data transmission into 

or out of an MD
• Finite number of entries
• Overflowing an event queue will overwrite events



Event Entry Contents

• Event type
• Initiator of event (nid,pid)
• Portal table index
• Match bits
• Requested length
• Manipulated length
• Offset
• 64 bits of out-of-band data



Type of Events

•PTL_EVENT_GET_START
•PTL_EVENT_GET_END
•PTL_EVENT_PUT_START
•PTL_EVENT_PUT_END
•PTL_EVENT_GETPUT_START
•PTL_EVENT_GETPUT_END
•PTL_EVENT_REPLY_START
•PTL_EVENT_REPLY_END
•PTL_EVENT_SEND_START
•PTL_EVENT_SEND_END
•PTL_EVENT_ACK
•PTL_EVENT_UNLINK



Event Structure

• typedef struct {
ptl_event_kind_t type;
ptl_process_id_t initiator;
ptl_uid_t uid;
ptl_jid_t jid;
ptl_pt_index_t pt_index;
ptl_match_bits_t match_bits;
ptl_size_t rlength;
ptl_size_t mlength;
ptl_handle_md_t md_handle;
ptl_md_t md;
ptl_hdr_data_t hdr_data;
ptl_seq_t link;
ptl_ni_fail_t ni_fail_type;
volatile ptl_seq_t sequence;

} ptl_even_t;



EQ Handlers

• Not covered in this tutorial



Events for a Put



Events for a Get



Events for a GetPut



EQ Creation and Destruction Functions

•int PtlEQAlloc(
ptl_handle_ni_t ni_handle,
ptl_size_t count,
ptl_eq_handler_t eq_handler,
ptl_handle_eq_t *eq_handle

);

•int PtlEQFree(
ptl_handle_eq_t *eq_handle

);



Functions for Obtaining Events

• int PtlEQGet(
ptl_handle_eq_t eq_handle,
ptl_event_t *event

);

• int PtlEQWait(
ptl_handle_eq_t eq_handle,
ptl_event_t *event

);

• int PtlEQPoll(
ptl_handle_eq_t *eq_handles,
int size,
ptl_time_t timeout,
ptl_event_t *event,
int *which

);



Events, Packets, and Failure
• Portals ensures best effort delivery
• Underlying network may break messages into packets
• Two consequences

– Out of order completion
• Consequence of zero copy and packets

– May trash application's memory
• Consequence of failure, zero copy, and packets

• Event sequences
– Start, followed by end (success) or fail
– e.g., PUT_START, PUT_END
– Failure is absolute
– Nothing happens after end or fail



Access Control

• Controls which processes are allowed to perform 
operations

• Default entry of 0 allows for all processes with the 
same user ID to communicate

• Operations that fail due to access control are not 
user-visible



Access Control Table Manipulation Function

•int PtlACEntry( 
ptl_handle_ni_t ni_handle,
ptl_ac_index_t ac_index,
ptl_process_id_t match_id,
ptl_uid_t uid,
ptl_jid_t jid,
ptl_pt_index_t pt_index

);



Data Movement Operations

• Put
– Initiator sends data to a remote portal
– Can receive an optional acknowledgment

• Get
– Initiator sends request for remote data from a portal
– Data is delivered to local memory descriptor

• GetPut
– Atomic swap



Put Operation



Put Functions

• int PtlPut(
ptl_handle_md_t md_handle,
ptl_ack_req_t ack_req,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
ptl_hdr_data_t hdr_data

);

• int PtlPutRegion(
ptl_handle_md_t md_handle,
ptl_size_t local_offset,
ptl_size_t length,
ptl_ack_req_t ack_req,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
ptl_hdr_data_t hdr_data

);



Get Operation



Get Functions

• int PtlGet(
ptl_handle_md_t md_handle,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset

);

• int PtlGetRegion(
ptl_handle_md_t md_handle,
ptl_size_t local_offset,
ptl_size_t length,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,

);



GetPut Operation



GetPut Function

•int PtlGetPut(
ptl_handle_md_t get_md_handle,
ptl_handle_md_t put_md_handle,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset
ptl_hdr_data_t hdr_data

);



Summary
• Minimal library space

– Nothing depends on message size
– All objects can be confirmed when created

• Designed for library writers
– Not for application developers
– Low-level API

• We're happy to drop requests
• Structures are complicated
• Some functions (PtlMDUpdate()) are not obvious

• Designed to reflect underlying hardware
– NICs
– Packets and failure

• Provide the right amount of protection



What Portals Does
• Separates communication space from computation space

– Moderately dynamic
• During descriptor construction
• Any part of an application's memory can be used for 

communication
– Simplifies coherence issues

• Important for PCI implementations as well
• Handles important protocol processing

– MPI long message strategy
• Force rendezvous at receiver
• Post and forget

– Supports parallel servers



What Portals Doesn't Do

• Dynamic integration of computation and 
communication space
– May be needed for things like UPC
– Race conditions
– Memory consistency models

• Poor support for collectives
– Each process must actively participate in collective 

operation
– Would prefer to have a “contribute and forget”

capability
– Reduce variance in time for collective operations



Example: Implementing MPI on Portals



MPI on Portals

• Fundamental problem:
– Rendezvous between sender and receiver

• Receiver can wildcard sender, sender cannot 
wildcard receiver
– Destination is known
– Origin may not be known

• Rendezvous must occur at the receiver
– Easy if receiver is ready when send starts: use 

eager send
– MPI standard recommends pre-posted receives



How to do MPI
• Two portal entries

– One for receiving messages
– One for unexpected long messages

• Match list for receive portal
– Expected, pre-posted, receives (MPI matching)
– Unexpected short messages
– Unexpected long messages

• Long MPI send – eager
– Build an MD and add to unexpected long message portal
– Perform the put
– Unexpected messages are dropped and later read

• Short MPI send is eager
– Build a free-floating MD
– Perform the put
– Unexpected messages held for matching receive

• Very short MPI send is eager
– Copy user data into pre-allocated MD
– Perform the put



MPI Receive in Portals

Match
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Match
short

Match
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MaxOffset
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none

Application
buffer

MaxOffset
unlink

length=0
truncate

Unexpected
Queue

Buffer

Buffer

Buffer

Mark

Pre-posted

Unexpected

Memory 
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MPI Long Message Protocol

receive
send

match

put

Buffer

receive
and

match

send
put

Buffer

get

Pre-posted Receive Late Receive



Good Things to do with Portals

• Use catchalls at the end of every match list
– Never have to worry about “losing” messages
– Can be used to generate “negative”

acknowledgments
• Use persistent MDs as much as possible

– Catamount supports creating an MD over entire 
memory regions (data, stack, heap)

– Can eliminate overhead of creating an MD each 
time



XT3 Implementation



Portals Reference Implementation Design

Transport

API

Library

API Space

Library Space
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Myrinet Kernel Implementation
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Network
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Myrinet MCP Implementation
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Cray SeaStar NIC/Router

• 16 1.6 Gb/s HyperTransport to Opteron
• 500 MHz embedded PowerPC 440
• 384 KB on-board scratch RAM
• Seven-port router
• Six 12-channel 3.2 Gb/s high-speed serial links



SeaStar Block Diagram



Portals 3.3 for SeaStar

• Cray started with Sandia reference implementation
• Needed single version of NIC firmware that supports all 

combinations of
– User-level and kernel-level API
– NIC-space and kernel-space library

• Cray added bridge layer to reference implementation to 
allow NAL to interface multiple API NALs and multiple 
library NALs
– qkbridge for Catamount applications
– ukbridge for Linux user-level applications
– kbridge for Linux kernel-level applications



SeaStar NAL

• Portals processing in kernel-space
– Interrupt-driven
– “generic” mode

• Portals processing in NIC-space
– No interrupts
– “accelerated” mode



Upcoming

• “Accelerated” Portals – see talk on Thursday
• Portals collective library

– Collective operations built on top of Portals
• Non-blocking collective functions

– Collective operations integrated into Portals
– SeaStar can support offloading collective operations
– Barrier proof-of-concept is done and working

• Portals 4.0
– Laundry list of issues with Portals 3.3 is too big
– Unnecessary symmetry (PTL_EVENT_SEND_START)
– Unneeded operations (arbitrary list insertion)



XT3 Specifics

• Differences from the current specification
– Send events are generated on a get
– AC table is not implemented

• Keep N at 256 for N-to-1
• Use copy block for short messages to avoid wire-

level acknowledgements
• No PTL_EVENT_UNLINK
• PtlNIDist() is not implemented
• Not all fields returned in an event structure are 

valid



XT3 Portals Limits

• Max MEs: 2048
• Max MDs: 2048
• Max EQs: 512
• Max PT index: 128
• Max IOVECs: unlimited
• Max ME list: 2048
• Max GetPut size: 8
• Max outstanding messages: 2048



Compiling for XT3

• #include”portals/portals3.h”
• module add PrgEnv-gcc or PrgEnv-pgi
• Must be compiled with qk-gcc

– PGI and GNU don’t align consistently



Compute Node OS Library

• #include”catamount/cnos_mpi_os.h”
• int cnos_get_rank()
• int cnos_get_size()
• cnos_nidpid_map_t *nidpid;
• nidpid_size = cnos_get_nidpid_map( &nidpid );
• int cnos_barrier()



Questions?
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