
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Portals Programming on the XT3

Ron Brightwell Rolf Riesen
Sandia National Laboratories

Scalable Computing Systems Department

Barney Maccabe
University of New Mexico

Scalable System Lab

Cray Users’ Group
Annual Technical Conference

May 8, 2006

Outline

• Overview
• Portals objects
• Portals API
• Portals semantics
• XT3 implementation
• Upcoming work

Portals Timeline

• Portals 0.0 - 1991
– SUNMOS (Sandia/UNM OS)
– nCUBE, Intel Paragon
– Direct access to network FIFOs
– Message co-processor

• Portals 1.0 - 1993
– Message passing data structures in user-space
– Kernel-managed and user-managed memory descriptors
– Published but never implemented

• Portals 2.0 - 1994
– Puma/Cougar lightweight operating system
– Message selection capability (match lists)
– Four types of memory descriptors (three implemented)

• Portals 3.0 - 1998
– Cplant Linux clusters
– Functional API
– Target intelligent/programmable network interfaces (Myrinet)

Portals 3.3 Features

• Best effort, in-order delivery
• One-sided operations

– Put, Get, Atomic swap
• Supports zero-copy
• Supports OS-bypass
• Supports application offload

– No polling or threads to move data
– No host CPU overhead

• Well-defined transport failure semantics
• Unexpected operations are discarded
• Receive-side access control
• Runtime-system independent

What Makes Portals Different?

• Connectionless RDMA with matching
• Provides elementary building blocks for

supporting higher-level protocols well
– MPI, RPC, Lustre, etc.

• Allows structures to be placed in user-space,
kernel-space, or NIC-space

• Receiver-managed offset allows for efficient and
scalable buffering of MPI “unexpected” messages

• Supports multiple protocols within a process
– Needed for compute nodes where everything is a

message

Basic Objects: Memory Descriptors and Addresses

• Memory descriptors
– Logically contiguous region of memory
– Explicit creation

• Pin pages (for Linux)
• Pass address map to network interface

– Scatter/gather semantics
• Remote addresses include:

– Destination id (node id, process id)
– Portal table index (protocol switch)
– Message selection bits (MPI style matching)
– Offset – sender-managed memory descriptors
– Access control cookie

Addressing

Steps for Address Translation

Library Initialization/Shutdown

•int PtlInit(int *max_interfaces);

•void PtlFini(void);

Network Interfaces

• Supports the use of multiple network interfaces
• Each interface is independent
• Each interface provides

– A portal table
• With at least 8 entries

– An access control table
– Status registers

• Every portals object is associated with a specific
interface

Network Interface Creation & Destruction Functions

•int PtlNIInit(
ptl_interface_t iface,
ptl_pid_t pid,
ptl_ni_limits_t *desired,
ptl_ni_limits_t *actual,
ptl_handle_ni_t *ni_handle

);

•int PtlNIFini(
ptl_handle_ni_t ni_handle

);

Network Interface Utility Functions

•int PtlNIStatus(
ptl_handle_ni_t ni_handle,
ptl_sr_index_t status_register,
ptl_sr_value_t *status

);

•int PtlNIDist(
ptl_handle_ni_t ni_handle,
ptl_process_id_t pid,
unsigned long *distance

);

Identification

• User Id
– Every process runs on behalf of a user
– Mandates trusted header information

• Process Id
– Uniquely identifies a process on a portals network

• Job Id
– Allows for processes to be aggregated
– Useful for parallel jobs

Identification Functions

•int PtlGetUid (
ptl_handle_ni_t ni_handle,
ptl_uid_t *uid

);

•int PtlGetId(
ptl_handle_ni_t ni_handle,
ptl_process_id_t *pid

);

•int PtlGetJid(
ptl_handle_ni_t ni_handle,
ptl_job_id_t *jid

);

Match Entry (ME) and Match Lists

• Each match entry contains
– Source node id
– Source process id
– 64 match bits
– 64 ignore bits

• A match entry is attached to a portal table entry
• Match entries can be linked to create a match list
• Can be automatically unlinked and freed from list

when used up

Match Entry Creation Functions

• int PtlMEAttach(
ptl_handle_ni_t ni_handle,
ptl_pt_index_t pt_index,
ptl_process_id_t match_id,
ptl_match_bits_t match_bits,
ptl_match_bits_t ignore_bits,
ptl_unlink_t unlink_op,
ptl_ins_pos_t position,
ptl_handle_me_t *me_handle

);

• int PtlMEAttachAny(
ptl_handle_ni_t ni_handle,
ptl_pt_index_t *pt_index,
ptl_process_id_t match_id,
ptl_match_bits_t match_bits,
ptl_match_bits_t ignore_bits,
ptl_unlink_t unlink_op,
ptl_ins_pos_t position,
ptl_handle_me_t *me_handle

);

Match Entry Insertion Function

•int PtlMEInsert(
ptl_handle_me_t base,
ptl_process_id_t match_id,
ptl_match_bits_t match_bits,
ptl_match_bits_t ignore_bits,
ptl_unlink_t unlink_op,
ptl_ins_pos_t position,
ptl_handle_me_t *me_handle

);

Match Entry Destruction Function

•int PtlMEUnlink(ptl_handle_me_t me_handle);

Memory Descriptor (MD)

• Describes regions of memory for data movement
operations

• Defines what operations can be performed on the
memory

• Can be automatically freed when used up

Memory Descriptor Structure

• start
– Starting address of memory region

• length
– Length in bytes of memory region

• threshold
– Maximum number of operations

• max_size
– Largest incoming request

• options
– See next slide

• user_ptr
– User-specific value returned in events

• eq_handle
– Event queue where operations are recorded

Memory Descriptor Options

• PTL_MD_OP_PUT
– Respond to put operations

• PTL_MD_OP_GET
– Respond to get operations

• PTL_MD_MANAGE_REMOTE
– Offset is specified in the request

• PTL_MD_TRUNCATE
– Truncate incoming request to size of MD

• PTL_MD_ACK_DISABLE
– Do not allow put acknowledgements

• PTL_MD_IOVEC
– Start and length refer to a ptl_md_iovec_t

• PTL_MD_MAX_SIZE
– Recognize the max_size value in the MD

• PTL_MD_EVENT_START_DISABLE
– Turn off start events

• PTL_MD_EVENT_END_DISABLE
– Turn off end events

Scatter/Gather MD

•typedef struct {
void *iov_base;
ptl_size_t iov_len;

} ptl_md_iovec_t;

Memory Descriptor Creation Functions

•int PtlMDAttach(
ptl_handle_me_t me_handle,
ptl_md_t md,
ptl_unlink_t unlink_op,
ptl_handle_md_t *md_handle

);

•int PtlMDBind(
ptl_handle_ni_t ni_handle,
ptl_md_t md,
ptl_unlink_t unlink_op,
ptl_handle_md_t *md_handle

);

Memory Descriptor Destruction Function

•int PtlMDUnlink(ptl_handle_md_t md_handle);

Function to Change an Existing MD

•int PtlMDUpdate(
ptl_handle_md_t md_handle,
ptl_md_t *old_md,
ptl_md_t *new_md,
ptl_handle_eq_t eq_handle

);

• Primarily needed to allow for the atomic search-and-post
function needed by MPI

Event Queue (EQ)

• Circular queue that records operations on MDs
• Signal the start and end of data transmission into

or out of an MD
• Finite number of entries
• Overflowing an event queue will overwrite events

Event Entry Contents

• Event type
• Initiator of event (nid,pid)
• Portal table index
• Match bits
• Requested length
• Manipulated length
• Offset
• 64 bits of out-of-band data

Type of Events

•PTL_EVENT_GET_START
•PTL_EVENT_GET_END
•PTL_EVENT_PUT_START
•PTL_EVENT_PUT_END
•PTL_EVENT_GETPUT_START
•PTL_EVENT_GETPUT_END
•PTL_EVENT_REPLY_START
•PTL_EVENT_REPLY_END
•PTL_EVENT_SEND_START
•PTL_EVENT_SEND_END
•PTL_EVENT_ACK
•PTL_EVENT_UNLINK

Event Structure

• typedef struct {
ptl_event_kind_t type;
ptl_process_id_t initiator;
ptl_uid_t uid;
ptl_jid_t jid;
ptl_pt_index_t pt_index;
ptl_match_bits_t match_bits;
ptl_size_t rlength;
ptl_size_t mlength;
ptl_handle_md_t md_handle;
ptl_md_t md;
ptl_hdr_data_t hdr_data;
ptl_seq_t link;
ptl_ni_fail_t ni_fail_type;
volatile ptl_seq_t sequence;

} ptl_even_t;

EQ Handlers

• Not covered in this tutorial

Events for a Put

Events for a Get

Events for a GetPut

EQ Creation and Destruction Functions

•int PtlEQAlloc(
ptl_handle_ni_t ni_handle,
ptl_size_t count,
ptl_eq_handler_t eq_handler,
ptl_handle_eq_t *eq_handle

);

•int PtlEQFree(
ptl_handle_eq_t *eq_handle

);

Functions for Obtaining Events

• int PtlEQGet(
ptl_handle_eq_t eq_handle,
ptl_event_t *event

);

• int PtlEQWait(
ptl_handle_eq_t eq_handle,
ptl_event_t *event

);

• int PtlEQPoll(
ptl_handle_eq_t *eq_handles,
int size,
ptl_time_t timeout,
ptl_event_t *event,
int *which

);

Events, Packets, and Failure
• Portals ensures best effort delivery
• Underlying network may break messages into packets
• Two consequences

– Out of order completion
• Consequence of zero copy and packets

– May trash application's memory
• Consequence of failure, zero copy, and packets

• Event sequences
– Start, followed by end (success) or fail
– e.g., PUT_START, PUT_END
– Failure is absolute
– Nothing happens after end or fail

Access Control

• Controls which processes are allowed to perform
operations

• Default entry of 0 allows for all processes with the
same user ID to communicate

• Operations that fail due to access control are not
user-visible

Access Control Table Manipulation Function

•int PtlACEntry(
ptl_handle_ni_t ni_handle,
ptl_ac_index_t ac_index,
ptl_process_id_t match_id,
ptl_uid_t uid,
ptl_jid_t jid,
ptl_pt_index_t pt_index

);

Data Movement Operations

• Put
– Initiator sends data to a remote portal
– Can receive an optional acknowledgment

• Get
– Initiator sends request for remote data from a portal
– Data is delivered to local memory descriptor

• GetPut
– Atomic swap

Put Operation

Put Functions

• int PtlPut(
ptl_handle_md_t md_handle,
ptl_ack_req_t ack_req,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
ptl_hdr_data_t hdr_data

);

• int PtlPutRegion(
ptl_handle_md_t md_handle,
ptl_size_t local_offset,
ptl_size_t length,
ptl_ack_req_t ack_req,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
ptl_hdr_data_t hdr_data

);

Get Operation

Get Functions

• int PtlGet(
ptl_handle_md_t md_handle,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset

);

• int PtlGetRegion(
ptl_handle_md_t md_handle,
ptl_size_t local_offset,
ptl_size_t length,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,

);

GetPut Operation

GetPut Function

•int PtlGetPut(
ptl_handle_md_t get_md_handle,
ptl_handle_md_t put_md_handle,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset
ptl_hdr_data_t hdr_data

);

Summary
• Minimal library space

– Nothing depends on message size
– All objects can be confirmed when created

• Designed for library writers
– Not for application developers
– Low-level API

• We're happy to drop requests
• Structures are complicated
• Some functions (PtlMDUpdate()) are not obvious

• Designed to reflect underlying hardware
– NICs
– Packets and failure

• Provide the right amount of protection

What Portals Does
• Separates communication space from computation space

– Moderately dynamic
• During descriptor construction
• Any part of an application's memory can be used for

communication
– Simplifies coherence issues

• Important for PCI implementations as well
• Handles important protocol processing

– MPI long message strategy
• Force rendezvous at receiver
• Post and forget

– Supports parallel servers

What Portals Doesn't Do

• Dynamic integration of computation and
communication space
– May be needed for things like UPC
– Race conditions
– Memory consistency models

• Poor support for collectives
– Each process must actively participate in collective

operation
– Would prefer to have a “contribute and forget”

capability
– Reduce variance in time for collective operations

Example: Implementing MPI on Portals

MPI on Portals

• Fundamental problem:
– Rendezvous between sender and receiver

• Receiver can wildcard sender, sender cannot
wildcard receiver
– Destination is known
– Origin may not be known

• Rendezvous must occur at the receiver
– Easy if receiver is ready when send starts: use

eager send
– MPI standard recommends pre-posted receives

How to do MPI
• Two portal entries

– One for receiving messages
– One for unexpected long messages

• Match list for receive portal
– Expected, pre-posted, receives (MPI matching)
– Unexpected short messages
– Unexpected long messages

• Long MPI send – eager
– Build an MD and add to unexpected long message portal
– Perform the put
– Unexpected messages are dropped and later read

• Short MPI send is eager
– Build a free-floating MD
– Perform the put
– Unexpected messages held for matching receive

• Very short MPI send is eager
– Copy user data into pre-allocated MD
– Perform the put

MPI Receive in Portals

Match
none

Match
short

Match
short

Match
any

MPI
Match

MaxOffset
unlink

none

Application
buffer

MaxOffset
unlink

length=0
truncate

Unexpected
Queue

Buffer

Buffer

Buffer

Mark

Pre-posted

Unexpected

Memory
descriptor

Event
queue

BuffersMatch list

MPI Long Message Protocol

receive
send

match

put

Buffer

receive
and

match

send
put

Buffer

get

Pre-posted Receive Late Receive

Good Things to do with Portals

• Use catchalls at the end of every match list
– Never have to worry about “losing” messages
– Can be used to generate “negative”

acknowledgments
• Use persistent MDs as much as possible

– Catamount supports creating an MD over entire
memory regions (data, stack, heap)

– Can eliminate overhead of creating an MD each
time

XT3 Implementation

Portals Reference Implementation Design

Transport

API

Library

API Space

Library Space

Network

Abstraction

Layer

Myrinet Kernel Implementation

API

Library

RTS/CTS MCP

User Space

Kernel Space

Network

Abstraction

Layer

Myrinet MCP Implementation

API

Library

Wire

User Space

NIC Space

Network

Abstraction

Layer

Cray SeaStar NIC/Router

• 16 1.6 Gb/s HyperTransport to Opteron
• 500 MHz embedded PowerPC 440
• 384 KB on-board scratch RAM
• Seven-port router
• Six 12-channel 3.2 Gb/s high-speed serial links

SeaStar Block Diagram

Portals 3.3 for SeaStar

• Cray started with Sandia reference implementation
• Needed single version of NIC firmware that supports all

combinations of
– User-level and kernel-level API
– NIC-space and kernel-space library

• Cray added bridge layer to reference implementation to
allow NAL to interface multiple API NALs and multiple
library NALs
– qkbridge for Catamount applications
– ukbridge for Linux user-level applications
– kbridge for Linux kernel-level applications

SeaStar NAL

• Portals processing in kernel-space
– Interrupt-driven
– “generic” mode

• Portals processing in NIC-space
– No interrupts
– “accelerated” mode

Upcoming

• “Accelerated” Portals – see talk on Thursday
• Portals collective library

– Collective operations built on top of Portals
• Non-blocking collective functions

– Collective operations integrated into Portals
– SeaStar can support offloading collective operations
– Barrier proof-of-concept is done and working

• Portals 4.0
– Laundry list of issues with Portals 3.3 is too big
– Unnecessary symmetry (PTL_EVENT_SEND_START)
– Unneeded operations (arbitrary list insertion)

XT3 Specifics

• Differences from the current specification
– Send events are generated on a get
– AC table is not implemented

• Keep N at 256 for N-to-1
• Use copy block for short messages to avoid wire-

level acknowledgements
• No PTL_EVENT_UNLINK
• PtlNIDist() is not implemented
• Not all fields returned in an event structure are

valid

XT3 Portals Limits

• Max MEs: 2048
• Max MDs: 2048
• Max EQs: 512
• Max PT index: 128
• Max IOVECs: unlimited
• Max ME list: 2048
• Max GetPut size: 8
• Max outstanding messages: 2048

Compiling for XT3

• #include”portals/portals3.h”
• module add PrgEnv-gcc or PrgEnv-pgi
• Must be compiled with qk-gcc

– PGI and GNU don’t align consistently

Compute Node OS Library

• #include”catamount/cnos_mpi_os.h”
• int cnos_get_rank()
• int cnos_get_size()
• cnos_nidpid_map_t *nidpid;
• nidpid_size = cnos_get_nidpid_map(&nidpid);
• int cnos_barrier()

Questions?

	Portals Programming on the XT3
	Outline
	Portals Timeline
	Portals 3.3 Features
	What Makes Portals Different?
	Basic Objects: Memory Descriptors and Addresses
	Addressing
	Steps for Address Translation
	Library Initialization/Shutdown
	Network Interfaces
	Network Interface Creation & Destruction Functions
	Network Interface Utility Functions
	Identification
	Identification Functions
	Match Entry (ME) and Match Lists
	Match Entry Creation Functions
	Match Entry Insertion Function
	Match Entry Destruction Function
	Memory Descriptor (MD)
	Memory Descriptor Structure
	Memory Descriptor Options
	Scatter/Gather MD
	Memory Descriptor Creation Functions
	Memory Descriptor Destruction Function
	Function to Change an Existing MD
	Event Queue (EQ)
	Event Entry Contents
	Type of Events
	Event Structure
	EQ Handlers
	Events for a Put
	Events for a Get
	Events for a GetPut
	EQ Creation and Destruction Functions
	Functions for Obtaining Events
	Events, Packets, and Failure
	Access Control
	Access Control Table Manipulation Function
	Data Movement Operations
	Put Operation
	Put Functions
	Get Operation
	Get Functions
	GetPut Operation
	GetPut Function
	Summary
	What Portals Does
	What Portals Doesn't Do
	Example: Implementing MPI on Portals
	MPI on Portals
	How to do MPI
	MPI Receive in Portals
	MPI Long Message Protocol
	Receive Side Structures
	Good Things to do with Portals
	XT3 Implementation
	Portals Reference Implementation Design
	Myrinet Kernel Implementation
	Myrinet MCP Implementation
	Cray SeaStar NIC/Router
	SeaStar Block Diagram
	Portals 3.3 for SeaStar
	SeaStar NAL
	Upcoming
	XT3 Specifics
	XT3 Portals Limits
	Compiling for XT3
	Compute Node OS Library
	Questions?

