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Summary _JPES

¢ Goals
- Examine massively-parallel lightweight
multithreading for modeling systems of

Intercommunicating agents

- Look at tradeoffs between programming productivity
and execution efficiency for active graphs on MTA-2

¢ Outline
-~ Definitions and example applications

-~ Representation of active graphs
- Experiments and results
- Conclusions and future work
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Active Graphs

¢ Definition

- Each node (possibly edge) tied to a distinct thread
- Flow of data through producer/consumer
relationships between threads

& Thread state
- Input mailboxes

- working registers
— pointers to upstream/downstream nodes

¢ Key issues

- exploiting parallelism
- managing synchronization
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Neural Net

Neural Net

2 outputs
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Shine: Spacecraft Health
Inference Engine

Rule 1: Rule 2:
If Sensor Sensor Sensor Sensor If Sensor Sensor Sensor
then Var Sensor Sensor then Var Var Sensor

* All rules are analyzed respect to one another for all possible
global interactions with maximal sharing.

* A sophisticated mathematical transformation, based on graph-
theoretic data flow-analysis is introduced, that reduces the
complexity of conflict-resolution during the match cycle from
O(n?) to O(n).

* The underlying structure is mapped into temporally invariant

X dataflow elements.

B * The final representation is either executed in a debugging
i environment or translated to a variety of target languages such
= as ADA, C and C++.

X.1
Legend
D.3 - - -
D_1l L |
Dynamic token Dynamic token Dual port dynamic
Source generator token generator
D.2 I & >

- Operator enabler Operator Temporal dataflow
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Agent-Based Simulation

Interface

4

Infarmation || Procedures
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MTA Threads

¢ Very lightweight; managed by compiler and runtime
- Thread creation, termination, synchronization, and
scheduling are performed by user space library code

¢ Runtime requests OS to add processors
¢ Thread virtualization
-~ Application is coded without knowledge of stream

count
- Runtime migrates thread state between memory and

stream
¢ Implicit creation by complier and user directives
¢ Explicit creation using future statement
UNIVERSITY OF JQELW ==AY .
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Unused streams
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Full/Empty Semantics

& F/E status of a location influences load/store behavior and

loads/stores can modify F/E status.

- Loads/stores can synchronize on F/E.
- Cheap and abundant synchronization operations.

— Prior MTA experience implementing f/e semantics.
A

wait until F
-
load fe R2, A _ F/E
return data,
leave empty
wait until E A
-
store ef R2, A - F/E
write data,
leave full
R ANY 9

UNIVERSITY OF

@ NOTRE DAME

lllllllllllllllllllllllllll




MTA F/E Implementation _/OFS

¢ What happens if A is not in the required state when the 1oad fe

or store ef arrives?
— Cray MTA f/e behavior for 1oad fe with A empty.

load fe(hA, TZ:RZ)

N S

“not available®™)

reply (TZ:RZ,

- Eventually a timeout occurs, the thread traps to a software handler;
the thread state is saved to memory and the thread sleeps until A is

marked full.
- When A becomes full, thread state is reloaded from memory and the
load fe is restarted.
=R ANY" 0
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typedef struct {
int value;
int n_edges _in;
union {
int *edges in;
int streamid;
} u;
int n_edges_ out;
int *edges_ out;

} Node;
. . typedef struct {
¢ Dataflow execution of input correlated streams int from:
— weighted sum at each node int to;
int weight;
¢ Nodes, edges, streams are arrays } igt value;
_ Edge;
- MTA randomly scatters data in physical
memory
FINOTRE DAME =D C=ERAN
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for each data set
for each stage of the graph

#pragma mta assert parallel
for each node in that stage

read ()
compute ()
write ()

for each data set
#pragma mta assert parallel

for each node in graph

readfe ()

compute ()
writeef ()

UNIVERSITY OF
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Scheduling Alternatives

¢ Synchronous stages

- stages can be
hard to identify in

random graphs

¢ Asynchronous using
full/lempty bits

- No need to
identify stages
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Experiment: Parameterized PP
Butterfly Graphs FPCo
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Trying for More Parallelism

#pragma mta assert parallel
for each node in graph
for each dataset

readfe ()

compute ()
writeef ()

& Deadlock after 512 nodes!!!

¢ Why?
— Outstripped number of available streams
- Runtime scheduling becomes an issue
CRRANY

UNIVERSITY OF

@g NOTRE DAME

lllllllllllllllllllllllllll




Conclusions and Future Work

A ’

¢ Active graphs are a natural way to formalize systems

of interacting agents
- Easy implementation on MTA

¢ Very low overhead synchronization using full/empty

bits
- Avoids need for explicit scheduling—to a point

¢ What's next?
- More applications, including ZCHAFF SAT solver

-~ Investigate PGAS programming models and
performance on Eldorado—ypath to Cascade
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