
Evaluation of Active Graph
Applications on the MTA-2
Evaluation of Active Graph
Applications on the MTA-2

Shannon Kuntz, Jay Brockman,
Peter Kogge, Matthias Scheutz

University of Notre Dame

Mark James, Ed Upchurch
NASA JPL

John Feo
Cray Inc.

Shannon Kuntz, Jay Brockman,
Peter Kogge, Matthias Scheutz

University of Notre Dame

Mark James, Ed Upchurch
NASA JPL

John Feo
Cray Inc.

2

Summary

Goals
0Examine massively-parallel lightweight

multithreading for modeling systems of
intercommunicating agents
0Look at tradeoffs between programming productivity

and execution efficiency for active graphs on MTA-2

Outline
0Definitions and example applications
0Representation of active graphs
0Experiments and results
0Conclusions and future work

3

Active Graphs

Definition
0Each node (possibly edge) tied to a distinct thread
0Flow of data through producer/consumer

relationships between threads

Thread state
0input mailboxes
0working registers
0pointers to upstream/downstream nodes

Key issues
0exploiting parallelism
0managing synchronization

4

Neural Net

Neural Net

+
w1

w2

w3

3 inputs

2 outputs

5

>

Rule 1:
If Sensor A > Sensor B & Sensor C == Sensor D
then Var X = Sensor A / Sensor C

Rule 2:
If X > Sensor D & Sensor C == Sensor D
then Var Z = Var X + Sensor D

A

B &

C

D

Then X

&

Then

/

+

>

Z

• All rules are analyzed respect to one another for all possible
global interactions with maximal sharing.

• A sophisticated mathematical transformation, based on graph-
theoretic data flow-analysis is introduced, that reduces the
complexity of conflict-resolution during the match cycle from
O(n2) to O(n).

• The underlying structure is mapped into temporally invariant
dataflow elements.

• The final representation is either executed in a debugging
environment or translated to a variety of target languages such
as ADA, C and C++.

Then

Legend

Dynamic token
Source

Dynamic token
generator

Dual port dynamic
token generator

Operator enabler Operator Temporal dataflow

==

A.1

B.1

C.1

D.1

D.2

D.3

C.2

A.2

X.1

Shine: Spacecraft Health
Inference Engine

6

Agent-Based Simulation

NetLogo

7

MTA Threads

Very lightweight; managed by compiler and runtime
0Thread creation, termination, synchronization, and

scheduling are performed by user space library code

Runtime requests OS to add processors

Thread virtualization
0Application is coded without knowledge of stream

count
0Runtime migrates thread state between memory and

stream

Implicit creation by complier and user directives

Explicit creation using future statement

8

Threads and streams

i = n

i = 3

i = 2

i = 1

. . .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

. . .
Sub-

problem
B

Subproblem A

Serial
Code

Unused streams

. . . .

Programs
running in
parallel

Concurrent
threads of
computation

Hardware
streams
(128)

Instruction
Ready
Pool;

Pipeline of
executing
instructions

9

Full/Empty Semantics

F/E status of a location influences load/store behavior and
loads/stores can modify F/E status.
0Loads/stores can synchronize on F/E.
0Cheap and abundant synchronization operations.
0Prior MTA experience implementing f/e semantics.

10

MTA F/E Implementation

What happens if A is not in the required state when the load_fe
or store_ef arrives?
0Cray MTA f/e behavior for load_fe with A empty.

0Eventually a timeout occurs, the thread traps to a software handler;
the thread state is saved to memory and the thread sleeps until A is
marked full.

0When A becomes full, thread state is reloaded from memory and the
load_fe is restarted.

11

Active Graph Representation

Dataflow execution of input correlated streams
0weighted sum at each node

Nodes, edges, streams are arrays
0MTA randomly scatters data in physical

memory

e0

e4

e1

e3

e5

e2

e6

e7

e8
e9

e10

e11

e12

e13

n0

n1

n2

n3

n4

n5

n6

n7

n8

s0

s1

s2

typedef struct {
int value;
int n_edges_in;
union {

int *edges_in;
int streamid;

} u;
int n_edges_out;
int *edges_out;

} Node;
typedef struct {
int from;
int to;
int weight;
int value;

} Edge;

12

Scheduling Alternatives

for each data set
for each stage of the graph

#pragma mta assert parallel
for each node in that stage

read()
compute()
write()

for each data set
#pragma mta assert parallel
for each node in graph

readfe()
compute()
writeef()

Synchronous stages
0stages can be

hard to identify in
random graphs

Asynchronous using
full/empty bits
0no need to

identify stages

13

Experiment: Parameterized
Butterfly Graphs

Varied
0Number of nodes
0Radix
0Randomly deleted

edges

Run on 10 MTA-2
processor nodes

14

Execution Time

execution time flat,
streams not yet saturated

15

Streams

16

Issue Rate

17

Memory References

18

Trying for More Parallelism

#pragma mta assert parallel
for each node in graph

for each dataset
readfe()
compute()
writeef()

Deadlock after 512 nodes!!!

Why?
0Outstripped number of available streams
0Runtime scheduling becomes an issue

19

Conclusions and Future Work

Active graphs are a natural way to formalize systems
of interacting agents
0Easy implementation on MTA

Very low overhead synchronization using full/empty
bits
0Avoids need for explicit scheduling—to a point

What’s next?
0More applications, including ZCHAFF SAT solver
0Investigate PGAS programming models and

performance on Eldorado—path to Cascade

