!isl\n

Il.
)
ii"!.‘

»

e,

o,
(nnEi ‘
bW

‘i!
o
.

(
(

Evaluation of Active Graph

Applications on the MTA-2

IIIIIIIIIIII

Shannon Kuntz, Jay Brockman,
Peter Kogge, Matthias Scheutz
University of Notre Dame

Mark James, Ed Upchurch

NASA JPL

John Feo
Cray Inc.

R ANY"

Summary _JPES

¢ Goals
- Examine massively-parallel lightweight
multithreading for modeling systems of

Intercommunicating agents

- Look at tradeoffs between programming productivity
and execution efficiency for active graphs on MTA-2

¢ Outline
-~ Definitions and example applications

-~ Representation of active graphs
- Experiments and results
- Conclusions and future work

* F
@rotrebane SRk AN

lllllllllllllllllllllllllllll

Active Graphs

¢ Definition

- Each node (possibly edge) tied to a distinct thread
- Flow of data through producer/consumer
relationships between threads

& Thread state
- Input mailboxes

- working registers
— pointers to upstream/downstream nodes

¢ Key issues

- exploiting parallelism
- managing synchronization
R ASY” 3

UNIVERSITY OF

@ NOTRE DAME

lllllllllllllllllllllllllllll

Neural Net

Neural Net

2 outputs

CRRANY ¢

UNIVERSITY OF

NOTRE DAME

lllllllllllllllllllllllllll

Shine: Spacecraft Health
Inference Engine

Rule 1: Rule 2:
If Sensor Sensor Sensor Sensor If Sensor Sensor Sensor
then Var Sensor Sensor then Var Var Sensor

* All rules are analyzed respect to one another for all possible
global interactions with maximal sharing.

* A sophisticated mathematical transformation, based on graph-
theoretic data flow-analysis is introduced, that reduces the
complexity of conflict-resolution during the match cycle from
O(n?) to O(n).

* The underlying structure is mapped into temporally invariant

X dataflow elements.

B * The final representation is either executed in a debugging
i environment or translated to a variety of target languages such
= as ADA, C and C++.

X.1
Legend
D.3 - - -
D_1l L |
Dynamic token Dynamic token Dual port dynamic
Source generator token generator
D.2 I & >

- Operator enabler Operator Temporal dataflow

) NOTRE DAME sl CRANY ;5

ute of Technology

()
¥

Agent-Based Simulation

Interface

4

Infarmation || Procedures

[] I *abc Button ==8 Siider T8 Switch [Chooser 55 Monitor Pt =9 cutput Seer Tesd

NetLogo

pH level 7.4 = 0% Micotine lonization

V04 mmm— > 5 |

@ ¥ I —
=etup G0y thickness 25
@ I —

Releaze Micotine

number-of-pores i

dosage
number-of-reactants. 101
21 mg v
Smoking number-of-nonreactants 50
I
temp-scale 5
count iohized count nicotine count stuck-
B9 249 16
dosage * .7 dosage * 3 dosage * .05
Molecules Released Into Bloodstream Pens
173 Position vs. Molecules (SKi...Penzs Humber of Reactants
(]
]
3 B B
L 3 3
= = =
= =
0 0 _|—|_ 0
] [Titne 11117 = Minutes 1500 -30 Depth 30 0 Titme (51.117 = Minutes 913

UNIVERSITY OF

NOTRE DAME

PL

Jet Propulsion Laboratory
Califarnia Institute of Technolagy

()

5

Penz

Malecule Colar Key
Blug = Nicatine

Yellow = lonized Micatine
Black = Obstacle

White = Cell
Receptor Site

Green = Received
Receptor Site

Patch Color Key

“Yellowy = Edge of Patch

Pink = Skin Tiszue

Black = Open Pathweay

Light Purple = rritated Tizzue
Dark Purple = kritated Tizzue 2

Orange = Micotine Abzarbtion
Site:

Red = Bloodstream

R ANY"

MTA Threads

¢ Very lightweight; managed by compiler and runtime
- Thread creation, termination, synchronization, and
scheduling are performed by user space library code

¢ Runtime requests OS to add processors
¢ Thread virtualization
-~ Application is coded without knowledge of stream

count
- Runtime migrates thread state between memory and

stream
¢ Implicit creation by complier and user directives
¢ Explicit creation using future statement
UNIVERSITY OF JQELW ==AY .

@ NOTRE DAME

Unused streams
I
[
[

Kotibai JPL

Jet Propulsion Laboratory
California

Instituta of Technolagy

Sub-
problem

A

Sub-
problem

Programs
running in
parallel

Concurrent
threads of
computation

Hardware
streams
(128)

Instruction
Ready
Pool;

Pipeline of
executing
instructions

R ANY"

Full/Empty Semantics

& F/E status of a location influences load/store behavior and

loads/stores can modify F/E status.

- Loads/stores can synchronize on F/E.
- Cheap and abundant synchronization operations.

— Prior MTA experience implementing f/e semantics.
A

wait until F
-
load fe R2, A _ F/E
return data,
leave empty
wait until E A
-
store ef R2, A - F/E
write data,
leave full
R ANY 9

UNIVERSITY OF

@ NOTRE DAME

lllllllllllllllllllllllllll

MTA F/E Implementation _/OFS

¢ What happens if A is not in the required state when the 1oad fe

or store ef arrives?
— Cray MTA f/e behavior for 1oad fe with A empty.

load fe(hA, TZ:RZ)

N S

“not available®™)

reply (TZ:RZ,

- Eventually a timeout occurs, the thread traps to a software handler;
the thread state is saved to memory and the thread sleeps until A is

marked full.
- When A becomes full, thread state is reloaded from memory and the
load fe is restarted.
=R ANY" 0

UNIVERSITY OF 'pl
Jet Propulsion Laboratory
C chr

@ NOTRE DAME —

typedef struct {
int value;
int n_edges _in;
union {
int *edges in;
int streamid;
} u;
int n_edges_ out;
int *edges_ out;

} Node;
. . typedef struct {
¢ Dataflow execution of input correlated streams int from:
— weighted sum at each node int to;
int weight;
¢ Nodes, edges, streams are arrays } igt value;
_ Edge;
- MTA randomly scatters data in physical
memory
FINOTRE DAME =D C=ERAN

Califarnia Institute of Technology

for each data set
for each stage of the graph

#pragma mta assert parallel
for each node in that stage

read ()
compute ()
write ()

for each data set
#pragma mta assert parallel

for each node in graph

readfe ()

compute ()
writeef ()

UNIVERSITY OF

@g NOTRE DAME

lllllllllllllllllllllllllll

Scheduling Alternatives

¢ Synchronous stages

- stages can be
hard to identify in

random graphs

¢ Asynchronous using
full/lempty bits

- No need to
identify stages

CCRRANY" ©

Experiment: Parameterized PP
Butterfly Graphs FPCo

5 1 Stage 2 5 3 Stage 4
(0} o D Y tage\ v+ ;:: :i+]-:ll
1 +1 iy e

. o 5."‘*‘5-"%-\\'” & Varied

4 ;‘"5- V7S — Number of nodes
02 K0 N 7 .

g *B.?i ”:‘:':‘f - Radix

&) O~ AN a — Randomly deleted
Y = 5 \ l”m*t" edges
Sna .

i Lo - }:ifé; [][i\“ - ¢ Runon 10 MTA-2
Y. SO0/ /A processor nodes

14 ~e I.ﬁwﬂll‘\ 1-1
00 Lol Yol ¥

@/ NOTRE DAME JPL CRANY

lllllllllllllllllllllllllllll

—r

Exacuton Time |sac)
=
(=]

execution time flat,
streams not yet saturated

—#— stage d dataflow

— + — dataflow with f'a bits

8 10

Total Graph Nodas

UNIVERSITY OF

5) NOTRE DAME

()

CRRANY"

()

Avarage Straams par procassor

UNIVERSITY OF

5) NOTRE DAME

Streams DA

102
100
59
95
LY S

'EIE—_F

90

—#— stagad dataflow
— + — dataflow with f'a bits

i 8 10 12
Total Gragh Nodas ¥ 10°

CRRANY" 5

Issue Rate D7 &

[[[
- o uw
|
|

[
£

i3
e

|ss12 rate (issuas/cycle par procassor)
[i3
L Ln

(]
ra

oA —%— slagad datafiow]
— + - dataflow with fia bits
0 : ' ' ' I
0 2 4 § ? 19 2
Tatal Graph Nodas ¥ 10°

orssome: JPL AN

alifornia Institute of Technology

()

Avarage Memory Rafarance s par procassar

.05 —4%— stagad datafiow i
— + — dataflow with f'a bits
0 ' ' ' ' I
0 2 4 : 2 19 2

Total Graph Modas € 10°

orssoe: JPL AN 7

Califarnia Institute of Technology

()

Trying for More Parallelism

#pragma mta assert parallel
for each node in graph
for each dataset

readfe ()

compute ()
writeef ()

& Deadlock after 512 nodes!!!

¢ Why?
— Outstripped number of available streams
- Runtime scheduling becomes an issue
CRRANY

UNIVERSITY OF

@g NOTRE DAME

lllllllllllllllllllllllllll

Conclusions and Future Work

A ’

¢ Active graphs are a natural way to formalize systems

of interacting agents
- Easy implementation on MTA

¢ Very low overhead synchronization using full/empty

bits
- Avoids need for explicit scheduling—to a point

¢ What's next?
- More applications, including ZCHAFF SAT solver

-~ Investigate PGAS programming models and
performance on Eldorado—ypath to Cascade

CRRANY" 1

JPL

lllllllllllllllllllllllllllll

UNIVERSITY OF

@ NOTRE DAME

