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Summary

Goals
0Examine massively-parallel lightweight 

multithreading for modeling systems of 
intercommunicating agents
0Look at tradeoffs between programming productivity 

and execution efficiency for active graphs on MTA-2

Outline
0Definitions and example applications
0Representation of active graphs
0Experiments and results
0Conclusions and future work



3

Active Graphs

Definition
0Each node (possibly edge) tied to a distinct thread
0Flow of data through producer/consumer 

relationships between threads

Thread state
0input mailboxes
0working registers
0pointers to upstream/downstream nodes

Key issues
0exploiting parallelism
0managing synchronization
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Neural Net
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Rule 1:
If Sensor A > Sensor B & Sensor C == Sensor D
then Var X = Sensor A / Sensor C

Rule 2:
If X  > Sensor D & Sensor C == Sensor D
then Var Z = Var X + Sensor D
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• All rules are analyzed respect to one another for all possible 
global interactions with maximal sharing.

• A sophisticated mathematical transformation, based on graph-
theoretic data flow-analysis is introduced, that reduces the 
complexity of conflict-resolution during the match cycle from 
O(n2) to O(n).

• The underlying structure is mapped into temporally invariant 
dataflow elements.

• The final representation is either executed in a debugging 
environment or translated to a variety of target languages such 
as ADA, C and C++.

Then
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Agent-Based Simulation

NetLogo
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MTA Threads

Very lightweight; managed by compiler and runtime
0Thread creation, termination, synchronization, and 

scheduling are performed by user space library code

Runtime requests OS to add processors

Thread virtualization
0Application is coded without knowledge of stream 

count
0Runtime migrates thread state between memory and 

stream

Implicit creation by complier and user directives

Explicit creation using future statement
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Threads and streams
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Full/Empty Semantics

F/E status of a location influences load/store behavior and 
loads/stores can modify F/E status.
0Loads/stores can synchronize on F/E.
0Cheap and abundant synchronization operations.
0Prior MTA experience implementing f/e semantics.
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MTA F/E Implementation

What happens if A is not in the required state when the load_fe
or store_ef arrives?
0Cray MTA f/e behavior for load_fe with A empty.

0Eventually a timeout occurs, the thread traps to a software handler; 
the thread state is saved to memory and the thread sleeps until A is 
marked full.

0When A becomes full, thread state is reloaded from memory and the 
load_fe is restarted.
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Active Graph Representation

Dataflow execution of input correlated streams
0weighted sum at each node

Nodes, edges, streams are arrays
0MTA randomly scatters data in physical 

memory
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typedef struct {
int value;
int n_edges_in;
union {

int *edges_in;
int streamid;

} u;
int n_edges_out;
int *edges_out;

} Node;
typedef struct {
int from;
int to;
int weight;
int value;

} Edge;
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Scheduling Alternatives

for each data set
for each stage of the graph

#pragma mta assert parallel
for each node in that stage

read()
compute()
write()

for each data set
#pragma mta assert parallel
for each node in graph

readfe()
compute()
writeef()

Synchronous stages
0stages can be 

hard to identify in 
random graphs

Asynchronous using 
full/empty bits
0no need to 

identify stages
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Experiment: Parameterized 
Butterfly Graphs

Varied
0Number of nodes
0Radix
0Randomly deleted 

edges

Run on 10 MTA-2 
processor nodes
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Execution Time

execution time flat,
streams not yet saturated
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Streams
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Issue Rate
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Memory References



18

Trying for More Parallelism

#pragma mta assert parallel
for each node in graph

for each dataset
readfe()
compute()
writeef()

Deadlock after 512 nodes!!!

Why?
0Outstripped number of available streams
0Runtime scheduling becomes an issue
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Conclusions and Future Work

Active graphs are a natural way to formalize systems 
of interacting agents
0Easy implementation on MTA

Very low overhead synchronization using full/empty 
bits
0Avoids need for explicit scheduling—to a point

What’s next?
0More applications, including ZCHAFF SAT solver
0Investigate PGAS programming models and 

performance on Eldorado—path to Cascade


