
Evaluation of Active Graph Applications on the Cray Eldorado

Architecture

Shannon Kuntz, Peter Kogge, Jay Brockman, and Matthias Scheutz

University of Notre Dame

Gary Block and Mark James

NASA JPL

John Feo

Cray Inc.

Ed Upchurch

California Institute of Technology

May 5, 2006

Abstract

In this paper, we discuss an approach to such problems called an ”active graph”, where each node in
the graph is tied to a distinct thread and where the flow of data over the edges is expressed by produc-
er/consumer exchanges between threads. We will show how several cognitive applications, including a
neural network and a production system, may be expressed as active graph problems and provide results
on how active graph problems scale on both the MTA-2 and Eldorado architectures.

1 Introduction

As a recent National Academics report declared, “The peak performance of supercomputers has increased
rapidly in the last decades, but their sustained performance has lagged, and the productivity of super-
computing users has lagged” ([1] page 5). As true as this may be for numeric, floating-point, problems,
there are many emerging applications for very large, high end, ground-based systems with growing prob-
lems with irregularly structured and dynamically changing data, increasing high bandwidth and real-time
I/O, 24x7 availability, and an increasing fragility in our ability to program, manage, and optimize their
operation. Such applications will be found with web serving and searching, multi-sensor data collection
fusion and distribution, intelligence analysis, data mining, knowledge discovery, catastrophe management,
and homeland security. To solve such problems we must shift our thinking about architectures for such
high end use from flops to memory, from complex human tuning to autonomy, from batch to real-time
continuous operation, and from preplanned application scheduling to large amounts of self-management,
learning, and planning. These are significantly different in behavior than the typical application stud-
ied by computer architects. The NRC report [1] gives several specific examples of such problems and
the characteristics of the resulting processing. Signals Intelligence fall into two categories, intelligence
processing and intelligence analysis, and place heavy emphasis on bit level processing, computing in
nonstandard algebras, random access to extremely large data sets over large distributed memories, and
processing of extremely large and dynamic graphs. Bioinformatics and Computational Biology is seeing
the combination of equations-of-physics simulations with massive-data-driven computations, statistical
data processing, data mining, and pattern recognition. Human/Organizational Systems Studies will
need to simulate up to billions of independent agents for long time periods. Web searching, data mining,
and knowledge discovery similarly involve the dynamic construction, searching, and updating of massive
structures, often time-correlated. Virtually all of these involve graph problems of one form or another.
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This paper addresses this emerging class of very high end applications that challenge even the most
modern of conventional parallel systems designs. Such applications typically involve large, often randomly
interconnected, graphlike data structures where processing is node-centric, potentially highly concurrent,
and driven by the interchange of data between nodes. The class of architectures best suited to this
set of applications are massively multi-threaded in nature, where each thread requires a bare minimum
of machine state, the manipulation of thread states is a low-cost operation, and low-cost, fine-grain
synchronization mechanisms are available. The MTA-2 and Eldorado systems provide just such features
and would allow individual graph nodes to be mapped isomorphically to different threads, which then
interact with each other as required by graph operations.

The remainder of this paper discusses the active graph model and how such applications would scale
on the MTA-2 and Eldorado. Section 2 discusses the active graph model and how different applications
can be mapped to this model. The experimental methodology used to evaluate the scaling of active
graphs on the MTA-2 and Eldorado is presented in Section 3 and Section 4 discusses the results and
observations of our experiments. Finally, in Section 5, we present our conclusions and future work.

2 Active Graphs

We define an active graph application as one based on a graph-like structure of nodes connected by
(potentially directed) edges, where in implementation each node is tied to a distinct thread, and where
the flow of data over edges is expressed by producer/consumer exchanges between the corresponding
threads. We call nodes to which edges go from one node as downstream of that node; nodes with edges
directed into a node are termed upstream of that node. Each thread has associated with it some set of
dedicated memory locations, registers, or both, with subsets allocated to:

• Input values: containers for values that have been transmitted from other nodes who have edges
pointing inwards to this node.

• Working locations: where intermediate computations are done leading to the computation of one
or more output values that must be shared with downstream nodes.

• Downstream nodes: the addresses of the appropriate input value locations for downstream nodes,
i.e. are to receive output values when they are computed by this node.

• Sync: for each distinct downstream node, a location that may be used by the downstream node to
signal this node that the downstream node is ready to accept a new input.

• Upstream nodes: address of a sync location for each upstream node that provides a value.

• Control: a location used by other (usually upstream) nodes to signal a new input is available.

• Management chain: a pointer to the next node in order of creation.

Conceptually, operation is as follows. Some set of nodes are initially active, with the rest blocked.
Each of these active nodes computes some value(s) and, when allowed to, proceeds to write the appro-
priate value to each of its downstream node input location(s), and signal that node that a new value
is available. At some point each such active node also fills a sync location in the appropriate upstream
node, indicating to that node that it is ready to accept a new input from that node. The active node
then looks for an indication that a new computation cycle is already to start, and if not, it will block.

How a node thread unblocks to begin an active phase depends on the firing rules for the graph
application. Some applications may require that there be new values deposited in all input locations. In
such cases, the thread code can simply proceed down each input and attempt to do an atomic read and
empty against that location. If there is no value available when the access is attempted, the thread blocks
until the location is filled. On the other extreme, a node thread may wish to be activated whenever any
input value is provided. In this case, the thread is programmed to empty the control location when it
unblocks, and then interrogate the same location when it has completed its cycle, and wishes to see if
any new inputs have arrived in the meantime.

During this time, an AMO to the thread’s control location from any of the upstream nodes can
signal the current thread that a new input has arrived. The use of an AMO is crucial here, since it is
possible that multiple upstream nodes may signal updates before the thread is physically unblocked by
the hardware from the first such update. Variations in the AMO from upstream nodes can range from
a simple store and unblock, through a bit significant OR to memory that records which input has been
provided (and perhaps which kind of processing is to be performed), to an increment/decrement that
counts the number of changes. Finally, a practical consideration for such active graphs is the need to
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perform a variety of housekeeping functions against them, such as reset, read out status, or terminate
execution and return all associate storage.

This active graph model can be applied to numerous applications including many in cognitive process-
ing. Cognitive processing has become an increasingly important part of the workload for a number of
government agencies but existing applications have typically not scaled well on parallel architectures.
Using the active graph model to improve performance for these applications allows us to:

• analyze more complex problems

• perform more complete analysis

• generate results more quickly

• provide more accurate results.

It can also enable solutions to a class of problems that were previously not possible. The following
subsections demonstrate how two cognitive processing applications, neural networks and production rule
systems, can be implemented using the active graph model.

2.1 Neural Networks

We assume that the target neural net application is one constructed out of an acyclic graph of neurons,
where each neuron accepts numeric inputs from some number of other neurons and generates outputs
that go to some other set of neuron inputs. Operation of a neuron is as follows. Whenever one or more
of the input values change, some function is applied to the current values, and used to compute a new
output value. A change in the output value should cause the neuron to relay this value to its target
children, where the cycle repeats itself. A typical function involves summing up all input values and
comparing to a threshold. For simplicity we assume that the initial type of neuron described here is very
asynchronous, that is it is only guaranteed to go through its evaluation cycle at some undetermined point
after one of its inputs have changed. We assume no handshake with any of its connected partners; nor
do we assume an ordering of evaluation that matches the time-ordering of the changes to the inputs. All
of these additional features can be provided by extensions of the basic thread model discussed below.

..
Neural Net

Figure 1: Neural Network

Our goal for such networks is maximum useful concurrency. Individual neurons should consume
processing resources only when they have a change in an input, and when multiple neurons see the same
change in values that they should be capable of being executed concurrently. We assume an active graph
implementation where each neuron is a separate lightweight thread with its own register frame. The
neuron thread is established when the neural net is built, and lives until the net is to be shut down. In
between, it will cycle between active and blocked, as inputs change.

We assume the following registers and initial values:

• inputs: empty

• signaling register: empty

• outputs: address of matching input to downstream neuron

Each thread then attempts to access its own signaling register with some instruction that blocks on
empty, reads the value, and replaces the register value with an empty. If that register is empty, then no
upstream neuron has sent a new value, and the thread simply blocks. When a non-empty value is found,
the thread is re-awakened, and the instruction that blocked now automatically reempties the signaling
register. Having been reawakened, the thread can recompute the output value based on current registers,
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compare the value against the stored value, go through the fan-out ritual again, and then block on its
own signaling register. Note that the use of an AMO from all parents into a child neuron’s signaling
register means that the child will never miss a change notification, even if it happens for timing reasons
to handle multiple changes with a single awakening.

2.2 Production Rule Systems

SHINE [2] is a knowledge base tool that uses dataflow representations of the production rule system
to exploit parallelism and, as such, is well suited to an active graph model. We assume the knowledge
bases are represented by a set of production rules that can be transformed into an acyclic dataflow
graph as shown in Figure 2. Threads are created for each production rule in the system and use a
producer/consumer style of interaction via synchronized memory locations to communicate data. Each
thread monitors its input values, waiting for them to become full, then reading them and leaving them
empty. Once all values have arrived, the rule begins processing and, when complete, the result is
synchronously written to the downstream rules. This cycle then repeats for the downstream nodes. In
this implementation we assume that a rule fires when all new values have arrived. However, modifications
to this basic structure could support rule firing on the change of any input as discussed in the neural
network application. This implementation makes significant use of the advantages provided by memory
based synchronization support and lightweight multithreading to control the exchange of data between
rules and provide data driven execution.

..
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Figure 2: Dataflow Representation of Knowledge Base

3 Experimental Methodology

In this set of experiments we investigate how active graphs scale with size and connectivity on the
MTA-2 as well as examining both the productivity and performance provided by using full/empty bit
synchronization as opposed to attempting to predetermine the execution ordering of the graph in the
code. Active graph structures have many different characteristics depending on the application being
explored. In order to evaluate the performance of lightweight multithreading and synchronization for
a range of graph sizes and types, we synthetically generate graphs with the characteristics we wish to
explore. These synthetic graphs and the associated dataflow code are based on the FFT butterfly, an
example of which is shown in Figure 3.

The FFT graph is defined by the number of input nodes, N , and the radix, R. For a graph of radix
R with N input nodes there are S = logRN stages with N nodes per stage for a total of T = S ∗ R + R

nodes and E = N ∗ R ∗ S edges in the graph. Graphs with different characteristics are generated for
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Figure 3: FFT Butterfly Structure

different values of N and R with N correlating to both total graph size and degree of parallelism while
R specifies the number of edges incident to each node. Because our focus is on the memory accesses and
synchronization aspects of execution, our dataflow code does not implement the complex computations
of the FFT at each node but does a simple weighted sum. At each stage, each node in the stage reads
the values from its in edges, computes the weighted sum, and writes the result to the out edges for the
nodes in the next stage of the graph.

We have developed two versions of this FFT dataflow code to allow us to explore the advantages
provided by full/empty bits on the MTA-2. In the first version the flow of data through the graph is
controlled by executing each stage in succession while in the second version full/empty bits are used
to control the flow of data between nodes for finer grained synchronization and increased parallelism.
Figure 4 provides the pseudocode for each.

for each data set

for each stage of the graph

#pragma mta assert parallel

for each node in that stage

read()

compute()

write()

VERSION 1: Staged Dataflow

for each data set

#pragma mta assert parallel

for each node in graph

readfe()

compute()

writeef()

VERSION 2: Full/Empty Bits

Figure 4: Pseudocode of main loops for staged dataflow and dataflow with full/empty bits

The staged dataflow code controls the flow of data through the graph by executing one stage at a time
assuring that each node has the correct data available from the previous stage when it begins execution.
Each node in the stage reads its input data, computes the weighted sum, and writes the result to its out
edges. This allows all nodes within a stage to execute in parallel but a node in the next stage cannot
begin execution until ALL nodes in the previous stage have completed. The full/empty bit dataflow
code uses fine-grained synchronization to control the flow of data through the system and all nodes in
the graph are allowed to execute in parallel. Each node in the graph tries to read its input data. If
it finds an input to be empty it blocks, waiting for the data to arrive. Once the all input data arrives
the node computes the weighted sum and then does a synchronized write to the out edges, blocking
if it finds an edge still full. This allows a node to begin processing as soon as it has its input values
available as opposed to having to wait for all nodes in the previous stage to complete. Comparing these
two implementations allows us to explore the characteristics of active graph applications that make them
best suited to the fine-grain synchronization provided by full/empty bits.
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The experiments were run on the MTA-2 using 10 processors. Graph sizes were swept from 1024 to
65536 N for both radix 2 and 4 FFT graphs as given in Table 1. Both the staged dataflow code and
the full/empty bit dataflow code were run for each of the graphs. Section 5 discuses the results of these
experiments.

FFT radix-2 FFT radix-4
N S T E S T E

1024 10 11264 20480 5 6144 20480
2048 11 24576 45056 — — —
4096 12 53248 98304 6 28672 98304
8192 13 114688 212992 — — —
16384 14 245760 458752 7 131072 458752
32768 15 524288 983040 — — —
65536 16 1114112 2097152 8 589824 2097152

Table 1: Graph Characteristics

4 Results and Observations

The first set of experiments explored the performance characteristics for radix-2 FFT butterfly dataflow
graphs of increasing size. The graphs were generated by doubling the number of inputs at each data point
which approximately doubles the total number of nodes in the graph. Inputs ranged from 1024 to 65536
nodes corresponding to 11,264 to 1,114,112 total nodes in the graph as given in Table 1. Figure 5 shows
the performance characteristics for these graphs by both the staged dataflow version of the application
and the full/empty bit version.

We would expect the execution time to double as the size of the graph doubles. However Table 2
demonstrates that, for the smaller graphs, execution time increases only minimally as the graph size
increases. For example, increasing the graph from 11264 to 106496 total nodes increases the execution
time for the staged dataflow from 0.242 to 0.364 seconds while the full/empty bit version increases
from 0.141 to 0.263 seconds corresponding to less than a 2X increase in execution time for almost a 10X
increase in graph size. This occurs because the smaller graphs do not have enough parallelism to saturate
the processor and mask the memory latencies and so, as the graph size increases the processor is able to
execute more efficiently. This effect is reflected in both the average number of streams per processor and
average issue rate per processor presented in Figures 5(b) and (c) respectively. As the number of streams
increases from 88 to 100 streams, there is a corresponding increase in issue rate from 0.2 to 0.75. So, as
the size of the graph increases more parallelism is gained and execution is interleaved to more fully utilize
the processor. Once graph sizes of approximately 500,000 nodes are reached there is a corresponding
plateau in both the number of streams and the issue rate. At this point the processor begins to saturate
with over 100 streams and reaches approximately 85% utilization and the expected doubling of execution
time with doubled graph sizes occurs. So as the size of the active graph and the corresponding available
parallelism increases, the performance increases as well until the processor begins to saturate.

N Staged Full/Empty
(sec) (sec)

11264 0.141 0.242
24576 0.157 0.272
53248 0.194 0.31
106496 0.263 0.364
245760 0.445 0.53
491520 0.722 0.75
1114112 1.531 1.44

Table 2: Execution Time for FFT Radix-2 Graphs
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Figure 5: Performance characteristics for staged dataflow and dataflow with full/empty bits on radix-2 FFT
butterfly graphs
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In addition to exploring how multithreaded active graphs problems scale, we investigate the use
of full/empty bits in programming such problems. Overall the performance characteristics of the two
versions are very similar. For smaller graphs the full/empty bit version provides better performance; as
the graphs increase in size the staged dataflow version begins to perform slightly better. This is due to
two factors: the overhead involved in going parallel and the amount of parallelism available. For smaller
graphs the full/empty bits provide an advantage because they provide lower overhead for going parallel,
once for all nodes rather than once for each stage of nodes. The full/empty bits also allow nodes from
later stages to begin execution sooner. Thus, when the graphs are smaller and the amount of available
parallelism per stage is less, the combination of increased parallelism and lower overhead provided by
the full/empty bits results in better performance. However, for larger graphs the number of nodes in
each stage, and thus available parallelism, has grown to the point that the staged version almost fully
saturates the processor and the full/empty bits no longer provide that edge.

The second set of experiments explored the effects of increasing the number of edges in the graph
by generating FFT butterfly graphs of radix 4. This increases the number of edges per node from
2 to 4 but it also has the effect of increasing the number of nodes per stage, and thus the available
parallelism, as compared to radix-2 graphs of approximately the same total size. If we consider our
dataflow algorithm, doubling the number of edges between nodes doubles both the number of inputs
and the number of outputs. For each node this increases the memory operations by a factor of 4 but
increases the computation per node by only a factor of 2 thereby increasing the number of streams
needed to mask the memory latency. As a consequence, our performance results show that the increase
in parallelism seems to approximately balance the increase in memory reference and associated latency
leading to performance very similar to that of the radix-2 examples.

Figure 6 gives the performance characteristics for the radix-4 FFT dataflow experiments. The graphs
were generated with inputs of 1024 to 65536 nodes corresponding to total graph sizes of 6144 to 589,824
nodes. Figure 6 (a) presents execution times very close to that of the radix-2 experiments even though
the number of edges at each node has doubled. The average streams (b) and issue rate (c) are also very
close to those of the radix-2 graphs. However, a significant difference is seen in the number of memory
references, presented in subfigures (d). For the radix-4 example, the average memory references per
processor per cycle peaks at approximately 0.45 for 600,000 nodes whereas the radix-2 graphs plateau
at approximately 0.4. As the number of edges per node increases, the number of memory references
increases as well. Therefore, active graphs with larger numbers of edges need an associated increase in
arithmetic operations and/or parallelism to offset the increased memory latency.

Comparing the performance of the staged dataflow and full/empty bit dataflow on the radix-4 graphs
shows similar trends to those found with the radix-2 graphs. Increasing the size of the graph from 6144
to 28763 total nodes gives a corresponding change in execution time of only 0.199 to 0.236 seconds for the
staged dataflow code and 0.137 to 0.175 seconds for the full/empty bit dataflow code. However, increasing
the graph size from 131072 to 589824 total nodes provides enough parallelism to more fully saturate the
processor and corresponds to an increase in execution time from 0.395 to 1.017 for the staged dataflow
and from 0.359 to 1.14 for the full/empty bit dataflow. Again we see that for small graphs the staged
dataflow cannot provide enough parallelism and the full/empty bit version provides better performance.
Large graphs provide enough parallelism in both the staged and full/empty bit dataflow codes to begin
to saturate the processor and, at this point, they begin to provide similar performance.

In summary, for active graphs that can be efficiently scheduled in the code to provide sufficient
parallelism without using the full/empty bits there is some performance benefit to doing so. However,
for many graphs it is either impossible or time prohibitive to determine a scheduling of loops in the
code that will provide sufficient parallelism. The code may be highly irregular, difficult to stage, or the
available staging may not provide enough parallelism. In these cases the use of full/empty bits allows
the programmer to parallelize over all nodes, spending much less time in analyzing and tuning the code
for equivalent, if not improved, performance.

5 Conclusions and Future Work

Even as the performance for many computationally intensive applications has improved, there is a large
class of applications that continue to challenge conventional parallel architectures. These applications
frequently involve irregular graph-like structures, dataflow-type execution models, and memory intensive
computations. These applications can be efficiently represented with an active graph model in which
components of the system are nodes in a graph and, in implementation, each node is represented by a
thread with the flow of data between nodes expressed as producer/consumer exchanges between threads.
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Figure 6: Performance characteristics for staged dataflow and dataflow with full/empty bits on radix-4 FFT
butterfly graphs
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This execution model makes them better suited to and provides better performance on massively mul-
tithreaded architectures with low-cost, fine-grain synchronization such as the MTA-2 and, ultimately,
Eldorado.

Our experiments demonstrate that active graph applications scale well on the MTA-2. Memory
intensive applications such as the FFT dataflow application achieve performance by interleaving the
execution of multiple threads to mask memory latencies. For applications in which it is difficult or even
impossible to explicitly schedule the code in a way that provides sufficient parallelism, full/empty bit
synchronization provides a productive way to increase both available parallelism and performance. The
use of full/empty bits allows the programmer to open up the parallelism found in the entire graph and
allow the flow of data through the graph to control scheduling. This results in much less time spent in
analyzing graph dependencies and tuning the code for parallelism while it provides performance that is
similar to that of explicitly scheduling the code.

In future work we plan to explore how a broader range of applications can be represented as active
graphs as well as how these different types of graphs scale on the MTA-2 and Eldorado. Neural networks,
production rule systems, and decision trees are just a few of the applications with which we are currently
experimenting. We also plan to explore the use of futures for more direct, task-level implementation of
threads in the graph model.
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