

1 of 5

Using Co-Array Fortran to Enhance the Scalability
of the EPIC Code

Jef Dawson

Army High Performance Computing Research Center,
Network Computing Services, Inc.

ABSTRACT: Supercomputing users continually seek to solve more demanding problems
by increasing the scalability of their applications. These efforts are often severely
hindered by programming complexity and inter-processor communication costs. Co-
Array Fortran (CAF) offers innate advantages over previous parallel programming
models, both in programmer productivity and performance. This presentation will discuss
the fundamental advantages of CAF, the importance of underlying hardware support,
and several code examples from the EPIC code showing how CAF is being effectively
used to improve scalability.

KEYWORDS: Co-Array Fortran, EPIC, MPI, communication, latency, overlapping,
pipelining

1. Introduction
The Army High Performance Computing Research

Center (AHPCRC) is a Government-University-Industry
partnership conducting high performance computing
(HPC) research supporting the United States Army’s HPC
goals. A key area of activity at the Center is the
investigation of methods to improve the scalability of
complex, mission critical applications.

The Center operates a wide variety of advanced

computing platforms, including a Cray X1E. The X1E
features a completely global address space, allowing each
CPU to directly load and store data to and from any other
CPU’s memory. This feature offers some fundamental
advantages for the scaling of parallel applications.

The Message Passing Interface (MPI), used for inter-

processor communication in most parallel programs,
cannot take full advantage of a global address space, as
will be discussed in more detail later. Co-Array Fortran
(CAF), a simple extension to Fortran, has the potential to
make the performance advantages of a global memory
space more readily available to parallel programmers.

2. Project Description
This paper describes an ongoing project to improve

the scalability of the EPIC (Elastic-Plastic Impact
Computations) code, using CAF to replace MPI in
selected areas.

This project has several related goals. The first is to

investigate and demonstrate the benefits of CAF for
parallel performance. The second is to begin developing
a set of practical guidelines to help programmers obtain
the best results when using CAF. The third is to deliver
improved parallel performance for end users of EPIC.

3. Introduction to CAF
While a complete description of CAF is beyond the

scope of this paper, a brief overview will be given, as
background for the discussion that follows.

CAF is a small extension to the Fortran language,

which will be included in the next revision of the Fortran
standard. Most significantly, CAF provides syntax to

2 of 5

express inter-processor communication without the use of
function calls.

To illustrate this, consider the following MPI code:

This simple code communicates ‘N’ elements of

array ‘A’ from one CPU to another CPU, using the
MPI_SEND and MPI_RECV functions. To achieve the
same result using CAF, the following code could be used:

In this code, the inter-processor communication is

expressed using a simple assignment statement. The
array ‘A’ is a co-array. A co-array is an array that has a
copy on every CPU running the program. Each CPU’s
copy of ‘A’ can be referenced using its co-index, specified
in the square brackets. When a co-array is referenced
with no co-index, the reference is to the copy on the CPU
executing the statement. Thus, the assignment statement
above results in the same inter-processor communication
as the preceding MPI code.

The co-array extension is the primary feature of CAF.

It provides an elegant and readable syntax to express
inter-processor communication. It is also one-sided, in
that only one CPU needs to execute code for
communication to occur.

This syntax also offers a fundamental performance

benefit. Because inter-processor communication is
represented by simple assignment statements, a compiler
can perform optimisations that would otherwise be
prevented by the presence of function calls. This will be
illustrated by some examples.

It should be noted that the performance

characteristics of CAF are dependent on the underlying
implementation. The work described here was carried out
on a Cray X1E with a ‘native’ CAF compiler that takes
full advantage of the system’s global address space. This
allows the instructions that move data between CPUs to
be optimised in the same ways that local memory
operations are optimised by most modern compilers.
CAF implementations that rely on emulated global
address space may not be able to offer the same
performance benefits.

4. Overview of EPIC scalability issues
EPIC is a finite element application used to simulate

a variety of complex problems involving extreme
deformation of solids. One such problem is that of
projectile-target interaction, as shown in Figure 1.

Figure 1. This image from an EPIC simulation shows a
projectile just after passing through three layers of armor
plate. The projectile has made a hole in all three plates,
and has been severely damaged in the process.

The problems for which EPIC is used involve very

complex physical phenomena. As a result, EPIC
simulations tend to be very computationally intensive. To
allow more demanding and realistic problems to be solved
in shorter run-times, EPIC has been parallelized, using
MPI.

One portion of the EPIC application is problematical

to parallelize efficiently. This is the contact algorithm.
This algorithm is responsible for correctly accounting for
contact between distinct bodies during the simulation, as
shown in Figure 2.

The nature of the contact problem makes efficient

parallel execution inherently difficult. When a program is
parallelized, the underlying problem is carefully divided
into parts, or sub-domains. Ideally, the programmer
knows in advance which sub-domains must communicate
with each other, and can design the communication
scheme for optimum performance.

CALL MPI_SEND(A,N,MPI_REAL,MYPE+M, &
 TAG, COMM,IERR)
CALL MPI_RECV(A,N,MPI_REAL,MYPE-M, &
 TAG, COMM,ISTAT,IERR)

A(1:N)[MYPE+M]=A(1:N)

3 of 5

Figure 2. This schematic illustrates the operation of the
EPIC contact algorithm. During the course of a
simulation, body A and body B have moved in such a way
that node NS, a part of body A, has penetrated the
segment between nodes N1 and N2, which is part of body
B. The contact algorithm rectifies this non-physical
situation by iteratively deforming the two bodies such that
the penetration does not occur, and such that the
velocities and momenta of all bodies are physically
correct.

In EPIC, it is not known in advance which sub-
domains will be in contact with each other, so it is
impossible to specify an optimal communication scheme
in advance. Moreover, the contact algorithm requires
several iterations, each of which involve inter-processor
communication.

From a parallel programmer’s perspective, latency is

the main problem introduced by the frequent inter-
processor communication required by the EPIC contact
algorithm. Even though a relatively small amount of data
is communicated with each MPI function call, the
overhead incurred by the large number of calls limits
scalability.

In this project, we are working to improve the

scalability of the contact algorithm by reducing the
latency penalty. CAF is helpful in two distinct ways.
First, the minimum attainable latency is lower with CAF
than with MPI. At least part of the reason for this is that
CAF does not require a function call to transfer data
between CPUs, so there is no function call overhead.
Second, using CAF syntax allows the compiler to
optimise the code to ‘hide’ much of the communication
time.

Often, this optimisation takes the form of pipelining.

Modern compilers often pipeline serial loops, by
arranging to load data for a subsequent loop iteration

while computations for the current iteration are in
progress. This technique can overlap memory access time
with computation, thus hiding the delays associated with
memory access. CAF allows this same technique to be
used for remote memory operations.

On the Cray X1E, accessing data from a remote

CPU’s memory can be accomplished with a standard
vector memory reference. This allows the latency-hiding
benefit of vector memory operations to be used for inter-
processor communication. On a non-vector system with a
global memory system, similar pipelining techniques
could be applied.

5. Code examples
Two examples, drawn from EPIC, will be used to

show how CAF was used to improve the scaling of the
contact algorithm.

Consider this MPI call:

This call is used to ‘gather’ the first element of
‘NUMALTERED’ from each CPU into the array ‘ITMP’
on each CPU, in rank order. After this call, each CPU’s
copy of ‘ITMP’ will contain the values of
‘NUMALTERED(1)’ from all the CPUs, including itself.
This is a common operation in parallel applications.
Because each transfer of data between CPUs is so small,
the time spent on this type of operation is dominated by
function call overhead and communication latency.

The equivalent CAF code follows:

This simple loop vectorizes easily, which hides the

latency of all but the first data transfer to each CPU.
Also, there is no function call overhead to reduce
performance.

For a variety of cases, the CAF code was at least 8

times faster than the MPI code.

The second example is a bit more complicated. In

this case, three arrays, ‘X’, Y, and ‘Z’ are to be updated in

Before Adjustment After Adjustment

N1
N2

NS

Body A

Body B

N1
N2

NS

Body A

Body B

CALL MPI_ALLGATHER(NUMALTERED, &
 1,MPI_INTEGER,ITMP,NUM,MPI_INTEGER, &
 MPI_COMM_WORLD,IER)

DO I=1,NPES
 ITMP(I)=NUMALTERED(1)[I]
ENDDO

4 of 5

a computational loop, using the arrays ‘PX’, ‘PY’, and
‘PZ’. Before the computation can be carried out, the
current values of ‘PX’, ‘PY’, ‘PZ’, and ‘UPDATE’ must
be obtained from all other CPUs. Below is the original
MPI code:

There are several performance issues in this code.

The reductions performed on arrays ‘PX’, ‘PY’, and ‘PZ’
result in unnecessarily communicating and summing
many elements that won’t be used in the computations.
Also, all four ‘MPI_REDUCE’ calls must complete
before the following computations can begin. It would be
preferable to communicate and sum only the needed
elements of the arrays, and to pipeline the computations
with the communication, thus ‘hiding‘ the communication
time.

In the CAF version of the code, we are able to

achieve both of these goals. First, each CPU executes a
loop that determines which elements of ‘PX’, ‘PY’, and
‘PZ’ are needed, and packs those elements into temporary
arrays ‘PXTEMP’, ‘PYTEMP’, and ‘PZTEMP’, which
are co-arrays. The total number of elements packed in the
arrays is stored in the co-array ‘ICOUNT’, and the
original indices are stored in the co-array ‘ICTEMP’.

Then the computation loop is modified to access the

necessary elements of ‘PX’, ‘PY’, and ‘PZ’, directly from
the remote CPUs, using the appropriate co-indices. An
additional loop is added outside the original loop, to
access the contributions from each CPU.

In this code, only the elements of ‘PX’, ‘PY’, and

‘PZ’ that are needed are communicated between CPUs
and summed. Also, the computation loop is completely
vectorized, so that the computations begin as soon as the
first element of data arrives from the remote CPU. This
eliminates the need to wait for all of the data to be
communicated before the computations begin.

The CAF code is below:

The CAF code runs at least 5 times as fast as the

original code for all the cases tested.

6. Overall performance
CAF code has replaced MPI code in many parts of

the contact algorithm, two of which were described in the
preceding examples. The situations varied considerably,
but generally the performance improvements to date are
due to either a simple reduction in the latency of a
communication operation, or significant overlapping of
communication with computation through pipelining.

The improvement in performance is shown in Figure

3. This plot shows only the scaling of the contact
algorithm itself. The scaling of the contact algorithm
tends to be considerably worse than the scaling of the
other portions of EPIC. Generally, the more time a
problems spends in the contact algorithm, the worse it
scales. The CAF version of the contact algorithm

TEMP(1:SLDTOT)=PX(1:SLDTOT)
CALL MPI_ALLREDUCE(TEMP, PX, SLDTOT, &
 MPI_DOUBLE_PRECISION, &
 MPI_SUM, MPI_COMM_WORLD, IER)
TEMP(1:SLDTOT)=PY(1:SLDTOT)
CALL MPI_ALLREDUCE(TEMP, PY, SLDTOT, &
 MPI_DOUBLE_PRECISION, &
 MPI_SUM, MPI_COMM_WORLD, IER)
TEMP(1:SLDTOT)=PZ(1:SLDTOT)
CALL MPI_ALLREDUCE(TEMP, PZ, SLDTOT, &
 MPI_DOUBLE_PRECISION, &
 MPI_SUM, MPI_COMM_WORLD, IER)
LTEMP(1:SLDTOT)=UPDATE(1:SLDTOT)
CALL MPI_ALLREDUCE(LTEMP,UPDATE,SLDTOT, &
 MPI_LOGICAL,MPI_LOR, &
 MPI_COMM_WORLD,IER)
DO M=1,SLDTOT
 IF (UPDATE(M)) THEN
 CALL NFIX(IXYZ(M),IRIG,IXX,IYY,IZZ)
 X(M) = X(M) + PX(M)*(1-IXX)
 Y(M) = Y(M) + PY(M)*(1-IYY)
 Z(M) = Z(M) + PZ(M)*(1-IZZ)
 ENDIF
ENDDO

ICOUNT=0
DO I=1,SLDTOT
 IF (UPDATE(I)) THEN
 ICOUNT=ICOUNT+1
 ICTEMP(ICOUNT)=I
 PXTEMP(ICOUNT)=PX(I)
 PYTEMP(ICOUNT)=PY(I)
 PZTEMP(ICOUNT)=PZ(I)
 ENDIF
ENDDO
CALL SYNC_IMAGES()

DO ITER=1,NPES
 ISRC=MYPN-ITER+1
 IF (ISRC.LE.0) ISRC=ISRC+NPES
 DO M=1,ICOUNT[ISRC]
 GLOB=ICTEMP(M)[ISRC]
 CALL NFIX(IXYZ(GLOB),IRIG,IXX,IYY,IZZ)
 X(GLOB)=X(GLOB)+PXTEMP(M)[ISRC]*(1-IXX)
 Y(GLOB)=Y(GLOB)+PYTEMP(M)[ISRC]*(1-IYY)
 Z(GLOB)=Z(GLOB)+PZTEMP(M)[ISRC]*(1-IZZ)
 ENDDO
ENDDO

5 of 5

continues to benefit from the use of additional CPUs
when run with 64 CPUs, long after the original version
has levelled off. In practice, the scaling of contact-
dominated EPIC jobs generally dictates that they be run
with 16 CPUs or fewer, in order to make good use of
resources.

Figure 3. This plot shows the scaling of the original,
MPI, version of the contact algorithm and the CAF
version. The CAF version continues to benefit from
additional CPUs after the performance of the original
version has levelled off.

7. Observations
The performance of the CAF version of the EPIC

contact algorithm demonstrates that significant
performance improvements are achievable, compared to
MPI. The performance of latency-dominated
communication operations involving small messages can
be dramatically improved. Similar improvements are
possible when inter-processor communication can be
overlapped with computation by accessing the remote
data via vector loads.

While no testing was carried out with any other CAF

implementations, it is clear that the performance benefits
observed cannot be attributed to the use of CAF syntax
per se. The underlying implementation is critical. The
author has come to the view that CAF is a uniquely
appropriate parallel programming model for taking
advantage of advanced, high-performance hardware
features such as global memory systems and pipeline-able
remote memory instructions.

The ability to effectively pipeline remote memory
operations seems to be a fundamentally enabling feature.
All modern CPU architectures employ some form of
pipelining to hide the latency of local memory operations.
Since inter-processor latency is generally much higher
than local latency, it seems that the ability to pipeline
remote operations should be viewed as a key feature of
advanced parallel systems.

In the course of optimising the contact algorithm,

CAF code was used to replace MPI code only in specific
places. The vast majority of the MPI code was left in
place. Since many early users of CAF will likely be in
this situation, it is important to note that CAF is quite
compatible with MPI, although this might depend on the
implementation. Since references to co-arrays without the
co-indices simply refer to the local copy of the array,
most of the code can remain unmodified.

About the Author
Jef Dawson is a Performance Analysis Specialist at

the AHPCRC, employed by Network Computing
Services, Inc. He optimises software for users of
AHPCRC systems, carries out applied research into
emerging HPC programming technologies, and teaches
classes in CAF, Unified Parallel C, and MPI. He can be
reached at 1200 Washington Avenue South, Minneapolis,
MN 55415, USA. Email: jdawson@ahpcrc.org

