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ABSTRACT: Supercomputing users continually seek to solve more demanding problems 
by increasing the scalability of their applications. These efforts are often severely 
hindered by programming complexity and inter-processor communication costs. Co-
Array Fortran (CAF) offers innate advantages over previous parallel programming 
models, both in programmer productivity and performance. This presentation will discuss 
the fundamental advantages of CAF, the importance of underlying hardware support, 
and several code examples from the EPIC code showing how CAF is being effectively 
used to improve scalability. 
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1. Introduction 
The Army High Performance Computing Research 

Center (AHPCRC) is a Government-University-Industry 
partnership conducting high performance computing 
(HPC) research supporting the United States Army’s HPC 
goals.  A key area of activity at the Center is the 
investigation of methods to improve the scalability of 
complex, mission critical applications. 

 
The Center operates a wide variety of advanced 

computing platforms, including a Cray X1E.  The X1E 
features a completely global address space, allowing each 
CPU to directly load and store data to and from any other 
CPU’s memory.  This feature offers some fundamental 
advantages for the scaling of parallel applications. 

 
The Message Passing Interface (MPI), used for inter-

processor communication in most parallel programs, 
cannot take full advantage of a global address space, as 
will be discussed in more detail later.  Co-Array Fortran 
(CAF), a simple extension to Fortran, has the potential to 
make the performance advantages of a global memory 
space more readily available to parallel programmers. 

2.  Project Description 
This paper describes an ongoing project to improve 

the scalability of the EPIC (Elastic-Plastic Impact 
Computations) code, using CAF to replace MPI in 
selected areas. 

 
This project has several related goals.  The first is to 

investigate and demonstrate the benefits of CAF for 
parallel performance.  The second is to begin developing 
a set of practical guidelines to help programmers obtain 
the best results when using CAF.  The third is to deliver 
improved parallel performance for end users of EPIC. 

3. Introduction to CAF 
While a complete description of CAF is beyond the 

scope of this paper, a brief overview will be given, as 
background for the discussion that follows. 

 
CAF is a small extension to the Fortran language, 

which will be included in the next revision of the Fortran 
standard.  Most significantly, CAF provides syntax to 
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express inter-processor communication without the use of 
function calls. 

 
To illustrate this, consider the following MPI code: 
 
 
 
 
 
 
 
This simple code communicates ‘N’ elements of 

array ‘A’ from one CPU to another CPU, using the 
MPI_SEND and MPI_RECV functions.  To achieve the 
same result using CAF, the following code could be used: 

 
 
 
 
In this code, the inter-processor communication is 

expressed using a simple assignment statement.  The 
array ‘A’ is a co-array.  A co-array is an array that has a 
copy on every CPU running the program.  Each CPU’s 
copy of ‘A’ can be referenced using its co-index, specified 
in the square brackets.  When a co-array is referenced 
with no co-index, the reference is to the copy on the CPU 
executing the statement.  Thus, the assignment statement 
above results in the same inter-processor communication 
as the preceding MPI code. 

 
The co-array extension is the primary feature of CAF.   

It provides an elegant and readable syntax to express 
inter-processor communication.  It is also one-sided, in 
that only one CPU needs to execute code for 
communication to occur. 

 
This syntax also offers a fundamental performance 

benefit.  Because inter-processor communication is 
represented by simple assignment statements, a compiler 
can perform optimisations that would otherwise be 
prevented by the presence of function calls.  This will be 
illustrated by some examples. 

 
It should be noted that the performance 

characteristics of CAF are dependent on the underlying 
implementation.  The work described here was carried out 
on a Cray X1E with a ‘native’ CAF compiler that takes 
full advantage of the system’s global address space.  This 
allows the instructions that move data between CPUs to 
be optimised in the same ways that local memory 
operations are optimised by most modern compilers.  
CAF implementations that rely on emulated global 
address space may not be able to offer the same 
performance benefits. 

 

 

4. Overview of EPIC scalability issues 
EPIC is a finite element application used to simulate 

a variety of complex problems involving extreme 
deformation of solids.  One such problem is that of 
projectile-target interaction, as shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  This image from an EPIC simulation shows a 
projectile just after passing through three layers of armor 
plate.  The projectile has made a hole in all three plates, 
and has been severely damaged in the process. 

 
The problems for which EPIC is used involve very 

complex physical phenomena.  As a result, EPIC 
simulations tend to be very computationally intensive.  To 
allow more demanding and realistic problems to be solved 
in shorter run-times, EPIC has been parallelized, using 
MPI. 

 
One portion of the EPIC application is problematical 

to parallelize efficiently.  This is the contact algorithm.  
This algorithm is responsible for correctly accounting for 
contact between distinct bodies during the simulation, as 
shown in Figure 2. 

 
The nature of the contact problem makes efficient 

parallel execution inherently difficult.  When a program is 
parallelized, the underlying problem is carefully divided 
into parts, or sub-domains.  Ideally, the programmer 
knows in advance which sub-domains must communicate 
with each other, and can design the communication 
scheme for optimum performance. 

CALL MPI_SEND(A,N,MPI_REAL,MYPE+M,    & 
          TAG, COMM,IERR) 
CALL MPI_RECV(A,N,MPI_REAL,MYPE-M,    & 
          TAG, COMM,ISTAT,IERR) 

A(1:N)[MYPE+M]=A(1:N) 
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Figure 2.  This schematic illustrates the operation of the 
EPIC contact algorithm.  During the course of a 
simulation, body A and body B have moved in such a way 
that node NS, a part of body A, has penetrated the 
segment between nodes N1 and N2, which is part of body 
B.  The contact algorithm rectifies this non-physical 
situation by iteratively deforming the two bodies such that 
the penetration does not occur, and such that the 
velocities and momenta of all bodies are physically 
correct. 
 
 

In EPIC, it is not known in advance which sub-
domains will be in contact with each other, so it is 
impossible to specify an optimal communication scheme 
in advance.  Moreover, the contact algorithm requires 
several iterations, each of which involve inter-processor 
communication. 

 
From a parallel programmer’s perspective, latency is 

the main problem introduced by the frequent inter-
processor communication required by the EPIC contact 
algorithm.  Even though a relatively small amount of data 
is communicated with each MPI function call, the 
overhead incurred by the large number of calls limits 
scalability. 

 
In this project, we are working to improve the 

scalability of the contact algorithm by reducing the 
latency penalty.  CAF is helpful in two distinct ways.  
First, the minimum attainable latency is lower with CAF 
than with MPI.  At least part of the reason for this is that 
CAF does not require a function call to transfer data 
between CPUs, so there is no function call overhead.  
Second, using CAF syntax allows the compiler to 
optimise the code to ‘hide’ much of the communication 
time. 

 
Often, this optimisation takes the form of pipelining.  

Modern compilers often pipeline serial loops, by 
arranging to load data for a subsequent loop iteration 

while computations for the current iteration are in 
progress.  This technique can overlap memory access time 
with computation, thus hiding the delays associated with 
memory access.  CAF allows this same technique to be 
used for remote memory operations. 

 
On the Cray X1E, accessing data from a remote 

CPU’s memory can be accomplished with a standard 
vector memory reference.  This allows the latency-hiding 
benefit of vector memory operations to be used for inter-
processor communication.  On a non-vector system with a 
global memory system, similar pipelining techniques 
could be applied.  

5. Code examples 
Two examples, drawn from EPIC, will be used to 

show how CAF was used to improve the scaling of the 
contact algorithm. 

 
Consider this MPI call: 
 

 
 
 
 
 
 

This call is used to ‘gather’ the first element of 
‘NUMALTERED’ from each CPU into the array ‘ITMP’ 
on each CPU, in rank order.  After this call, each CPU’s 
copy of ‘ITMP’ will contain the values of 
‘NUMALTERED(1)’ from all the CPUs, including itself.  
This is a common operation in parallel applications.  
Because each transfer of data between CPUs is so small, 
the time spent on this type of operation is dominated by 
function call overhead and communication latency. 

 
The equivalent  CAF code follows: 
 
 
 
 
 
 
This simple loop vectorizes easily, which hides the 

latency of all but the first data transfer to each CPU.  
Also, there is no function call overhead to reduce 
performance. 

 
For a variety of cases, the CAF code was at least 8 

times faster than the MPI code. 
 
The second example is a bit more complicated.  In 

this case, three arrays, ‘X’, Y, and ‘Z’ are to be updated in 

Before Adjustment After Adjustment 

N1 
N2 

NS 

Body A 

Body B 

N1 
N2 

NS 

Body A 

Body B 

CALL  MPI_ALLGATHER(NUMALTERED,      & 
   1,MPI_INTEGER,ITMP,NUM,MPI_INTEGER, & 
   MPI_COMM_WORLD,IER) 
 

DO I=1,NPES 
     ITMP(I)=NUMALTERED(1)[I] 
ENDDO 
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a computational loop, using the arrays ‘PX’, ‘PY’, and 
‘PZ’.  Before the computation can be carried out, the 
current values of ‘PX’, ‘PY’, ‘PZ’, and ‘UPDATE’ must 
be obtained from all other CPUs.  Below is the original 
MPI code: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are several performance issues in this code.  

The reductions performed on arrays ‘PX’, ‘PY’, and ‘PZ’ 
result in unnecessarily communicating and summing 
many elements that won’t be used in the computations.  
Also, all four ‘MPI_REDUCE’ calls must complete 
before the following computations can begin.  It would be 
preferable to communicate and sum only the needed 
elements of the arrays, and to pipeline the computations 
with the communication, thus ‘hiding‘ the communication 
time. 

 
In the CAF version of the code, we are able to 

achieve both of these goals.  First, each CPU executes a 
loop that determines which elements of ‘PX’, ‘PY’, and 
‘PZ’ are needed, and packs those elements into temporary 
arrays ‘PXTEMP’, ‘PYTEMP’, and ‘PZTEMP’, which 
are co-arrays.  The total number of elements packed in the 
arrays is stored in the co-array ‘ICOUNT’, and the 
original indices are stored in the co-array ‘ICTEMP’. 

 
Then the computation loop is modified to access the 

necessary elements of ‘PX’, ‘PY’, and ‘PZ’, directly from 
the remote CPUs, using the appropriate co-indices.  An 
additional loop is added outside the original loop, to 
access the contributions from each CPU. 

 
In this code, only the elements of ‘PX’, ‘PY’, and 

‘PZ’ that are needed are communicated between CPUs 
and summed.  Also, the computation loop is completely 
vectorized, so that the computations begin as soon as the 
first element of data arrives from the remote CPU.  This 
eliminates the need to wait for all of the data to be 
communicated before the computations begin. 

 
The CAF code is below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The CAF code runs at least 5 times as fast as the 

original code for all the cases tested.  

6. Overall performance 
CAF code has replaced MPI code in many parts of 

the contact algorithm, two of which were described in the 
preceding examples.  The situations varied considerably, 
but generally the performance improvements to date are 
due to either a simple reduction in the latency of a 
communication operation, or significant overlapping of 
communication with computation through pipelining. 

 
The improvement in performance is shown in Figure 

3.   This plot shows only the scaling of the contact 
algorithm itself.  The scaling of the contact algorithm 
tends to be considerably worse than the scaling of the 
other portions of EPIC.  Generally, the more time a 
problems spends in the contact algorithm, the worse it 
scales.  The CAF version of the contact algorithm 

TEMP(1:SLDTOT)=PX(1:SLDTOT) 
CALL MPI_ALLREDUCE(TEMP, PX, SLDTOT,   & 
                              MPI_DOUBLE_PRECISION,    & 
             MPI_SUM, MPI_COMM_WORLD, IER) 
TEMP(1:SLDTOT)=PY(1:SLDTOT) 
CALL MPI_ALLREDUCE(TEMP, PY, SLDTOT,    & 
                              MPI_DOUBLE_PRECISION,    & 
              MPI_SUM, MPI_COMM_WORLD, IER) 
TEMP(1:SLDTOT)=PZ(1:SLDTOT) 
CALL MPI_ALLREDUCE(TEMP, PZ, SLDTOT,     & 
                              MPI_DOUBLE_PRECISION,     & 
                        MPI_SUM, MPI_COMM_WORLD, IER) 
LTEMP(1:SLDTOT)=UPDATE(1:SLDTOT) 
CALL MPI_ALLREDUCE(LTEMP,UPDATE,SLDTOT, & 
                                             MPI_LOGICAL,MPI_LOR, & 
                                            MPI_COMM_WORLD,IER) 
DO M=1,SLDTOT 
     IF (UPDATE(M)) THEN 
          CALL NFIX(IXYZ(M),IRIG,IXX,IYY,IZZ) 
          X(M) = X(M) + PX(M)*(1-IXX) 
          Y(M) = Y(M) + PY(M)*(1-IYY) 
          Z(M) = Z(M) + PZ(M)*(1-IZZ) 
     ENDIF 
ENDDO 

ICOUNT=0 
DO I=1,SLDTOT 
   IF (UPDATE(I)) THEN 
      ICOUNT=ICOUNT+1 
      ICTEMP(ICOUNT)=I 
      PXTEMP(ICOUNT)=PX(I) 
      PYTEMP(ICOUNT)=PY(I) 
      PZTEMP(ICOUNT)=PZ(I) 
   ENDIF 
ENDDO 
CALL SYNC_IMAGES() 
 
DO ITER=1,NPES 
   ISRC=MYPN-ITER+1 
   IF (ISRC.LE.0) ISRC=ISRC+NPES 
      DO M=1,ICOUNT[ISRC] 
         GLOB=ICTEMP(M)[ISRC] 
         CALL NFIX(IXYZ(GLOB),IRIG,IXX,IYY,IZZ) 
         X(GLOB)=X(GLOB)+PXTEMP(M)[ISRC]*(1-IXX) 
         Y(GLOB)=Y(GLOB)+PYTEMP(M)[ISRC]*(1-IYY) 
         Z(GLOB)=Z(GLOB)+PZTEMP(M)[ISRC]*(1-IZZ) 
     ENDDO 
ENDDO 
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continues to benefit from the use of additional CPUs 
when run with 64 CPUs, long after the original version 
has levelled off.  In practice, the scaling of contact-
dominated EPIC jobs generally dictates that they be run 
with 16 CPUs or fewer, in order to make good use of 
resources. 

 
 

 
Figure 3.  This plot shows the scaling of the original, 
MPI, version of the contact algorithm and the CAF 
version.  The CAF version continues to benefit from 
additional CPUs after the performance of the original 
version has levelled off. 

 

7. Observations 
The performance of the CAF version of the EPIC 

contact algorithm demonstrates that significant 
performance improvements are achievable, compared to 
MPI.  The performance of latency-dominated 
communication operations involving small messages can 
be dramatically improved.  Similar improvements are 
possible when inter-processor communication can be 
overlapped with computation by accessing the remote 
data via vector loads. 

 
While no testing was carried out with any other CAF 

implementations, it is clear that the performance benefits 
observed cannot be attributed to the use of CAF syntax 
per se.  The underlying implementation is critical.  The 
author has come to the view that CAF is a uniquely 
appropriate parallel programming model for taking 
advantage of advanced, high-performance hardware 
features such as global memory systems and pipeline-able 
remote memory instructions. 

 

The ability to effectively pipeline remote memory 
operations seems to be a fundamentally enabling feature.  
All modern CPU architectures employ some form of 
pipelining to hide the latency of local memory operations.  
Since inter-processor latency is generally much higher 
than local latency, it seems that the ability to pipeline 
remote operations should be viewed as a key feature of 
advanced parallel systems. 

 
In the course of optimising the contact algorithm, 

CAF code was used to replace MPI code only in specific 
places.  The vast majority of the MPI code was left in 
place.  Since many early users of CAF will likely be in 
this situation, it is important to note that CAF is quite 
compatible with MPI, although this might depend on the 
implementation.  Since references to co-arrays without the 
co-indices simply refer to the local copy of the array, 
most of the code can remain unmodified. 
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