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Project Description

• Investigate benefits of CAF
– Replace MPI with CAF in key regions

• Begin to establish CAF ‘Best Practice’
• Improve EPIC performance for user base
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CAF Overview
In a nutshell, CAF replaces this:
CALL MPI_SEND(A,N,MPI_REAL,MYPE+M,TAG, COMM,IERR)
CALL MPI_RECV(A,N,MPI_REAL,MYPE-M,TAG, COMM,ISTAT,IERR)

with this:
A(1:N)[MYPE+M]=A(1:N)

• Both code fragments move N elements of A from CPU MYPE to
CPU MYPE+M

• The CAF code is:
– Actual language syntax, rather than library calls
– One-sided, so that only one CPU needs to execute code for data to be

communicated
• CAF on the X1E is native

– Hardware instructions directly load/store remote data
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Advantages of CAF

• Performance
– No function calls for communication

• No function call overhead
• Compilers can optimize inter-processor communication
• Non-native CAF compilers don’t have these advantages

• Productivity
– CAF Fortran syntax often more readable than

complex MPI calling sequence
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EPIC Overview
• Elastic-Plastic Impact
Computations
• A finite element code
used to simulate
projectile-target
interaction
• Complex phenomena
• Computationally
intensive
• Large legacy code
initially developed for
serial execution
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MPI Scaling of EPIC Cases
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Contact Algorithm Overview

• Simulating contact of multiple bodies is a critical
feature of EPIC

• When bodies make contact, nodes ‘penetrate’ surfaces
• The contact algorithm consists of iterative adjustment

to eliminate penetration
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Contact Scalability Issues

• Contact between bodies is unpredictable
– Good load balancing is tricky
– Inter-processor communication is complex

• The contact algorithm is iterative
– Inter-processor communication is frequent
– Latency limits scaling
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CAF Parallel Performance Optimizations

• Low latency communication
– Critical when messages are small

• Fine-grain communication hiding
– Work on incoming data as it arrives, rather

than waiting
– A form of pipelining
– Uniquely valuable when no independent

work is available to hide communication
time



11
AHPCRC NETWORK COMPUTING SERVICES, INC.

                                       © 2006

Example 1: Low Latency

DO I=1,NPES
     ITMP(I)=NUMALTERED(1)[I]
ENDDO

CALL  MPI_ALLGATHER(NUMALTERED,1,
       MPI_INTEGER,ITMP,NUM,MPI_INTEGER,
        MPI_COMM_WORLD,IER)

Original Code:

CAF Code:

• CAF code 8 times faster
than MPI
– Latency advantage

important for small
messages
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Example #2: Fine-Grain Communication Hiding
TEMP(1:SLDTOT)=PX(1:SLDTOT)
CALL MPI_ALLREDUCE(TEMP, PX, SLDTOT,   &
                              MPI_DOUBLE_PRECISION,    &
             MPI_SUM, MPI_COMM_WORLD, IER)
TEMP(1:SLDTOT)=PY(1:SLDTOT)
CALL MPI_ALLREDUCE(TEMP, PY, SLDTOT,    &
                              MPI_DOUBLE_PRECISION,    &
              MPI_SUM, MPI_COMM_WORLD, IER)
TEMP(1:SLDTOT)=PZ(1:SLDTOT)
CALL MPI_ALLREDUCE(TEMP, PZ, SLDTOT,     &
                              MPI_DOUBLE_PRECISION,     &
                        MPI_SUM, MPI_COMM_WORLD, IER)
LTEMP(1:SLDTOT)=UPDATE(1:SLDTOT)
CALL MPI_ALLREDUCE(LTEMP,UPDATE,SLDTOT, &
                                             MPI_LOGICAL,MPI_LOR, &
                                            MPI_COMM_WORLD,IER)
DO M=1,SLDTOT
     IF (UPDATE(M)) THEN
          CALL NFIX(IXYZ(M),IRIG,IXX,IYY,IZZ)
          X(M) = X(M) + PX(M)*(1-IXX)
          Y(M) = Y(M) + PY(M)*(1-IYY)
          Z(M) = Z(M) + PZ(M)*(1-IZZ)
     ENDIF
ENDDO

Original Code:

• The computations in the
loop cannot begin until
the 4 MPI_ALLREDUCE
calls finish

• Unnecessary
computation &
communication for many
elements of PX, PY, and
PZ whose values are 0.0
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Example #2: Fine-Grain Communication Hiding
CAF Code: ICOUNT=0

DO I=1,SLDTOT
   IF (UPDATE(I)) THEN
      ICOUNT=ICOUNT+1
      ICTEMP(ICOUNT)=I
      PXTEMP(ICOUNT)=PX(I)
      PYTEMP(ICOUNT)=PY(I)
      PZTEMP(ICOUNT)=PZ(I)
   ENDIF
ENDDO
CALL SYNC_IMAGES()

DO ITER=1,NPES
   ISRC=MYPN-ITER+1
   IF (ISRC.LE.0) ISRC=ISRC+NPES
      DO M=1,ICOUNT[ISRC]
         GLOB=ICTEMP(M)[ISRC]
         CALL NFIX(IXYZ(GLOB),IRIG,IXX,IYY,IZZ)
         X(GLOB)=X(GLOB)+PXTEMP(M)[ISRC]*(1-IXX)
         Y(GLOB)=Y(GLOB)+PYTEMP(M)[ISRC]*(1-IYY)
         Z(GLOB)=Z(GLOB)+PZTEMP(M)[ISRC]*(1-IZZ)
     ENDDO
ENDDO

• Only non-zero values are
communicated

• Virtually all communication is
‘hidden’ by concurrent
computations
– Vector loads directly from

remote memory
• 5 times as fast as the

original MPI code
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Performance Results
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Observations

• CAF significantly faster for latency-sensitive
communication

• CAF allows fine-grain communication hiding not
possible with MPI

• The implementation matters
– Requires underlying support for pipelining remote memory

operations
• CAF offers a natural way to take full advantage of

high performance hardware
• Adding CAF to MPI is painless (on the X1E)
• If pipelining is important to ‘hide’ local memory

operations (it is), it must be really important for
hiding remote memory operations


