
1
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Using Co-Array Fortran to Enhance the
Scalability of the EPIC Code

Jef Dawson

Army High Performance Computing Research
Center

jdawson@ahpcrc.org

2
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Outline

Army High Performance Computing Research Center
Support Infrastructure Contract
Network Computing Services, Inc. , Prime Contractor
Contract DAAD19-03-D-0001

This presentation was developed in connection with contract DAAD19-03-D-0001 with the U.S. Army Research Laboratory. The views and conclusions
contained in this presentation are those of the authors and should not be interpreted as presenting the official policies or positions, either expressed or
implied, of the U.S. Army Research Laboratory or the U.S. Government unless so designated by other authorized documents. Citation of
manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

• Project Description
• Co-Array Fortran (CAF) Overview
• EPIC Overview & Scaling Issues
• CAF Code Examples
• Performance Results
• Observations

3
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Project Description

• Investigate benefits of CAF
– Replace MPI with CAF in key regions

• Begin to establish CAF ‘Best Practice’
• Improve EPIC performance for user base

4
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

CAF Overview
In a nutshell, CAF replaces this:
CALL MPI_SEND(A,N,MPI_REAL,MYPE+M,TAG, COMM,IERR)
CALL MPI_RECV(A,N,MPI_REAL,MYPE-M,TAG, COMM,ISTAT,IERR)

with this:
A(1:N)[MYPE+M]=A(1:N)

• Both code fragments move N elements of A from CPU MYPE to
CPU MYPE+M

• The CAF code is:
– Actual language syntax, rather than library calls
– One-sided, so that only one CPU needs to execute code for data to be

communicated
• CAF on the X1E is native

– Hardware instructions directly load/store remote data

5
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Advantages of CAF

• Performance
– No function calls for communication

• No function call overhead
• Compilers can optimize inter-processor communication
• Non-native CAF compilers don’t have these advantages

• Productivity
– CAF Fortran syntax often more readable than

complex MPI calling sequence

6
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

EPIC Overview
• Elastic-Plastic Impact
Computations
• A finite element code
used to simulate
projectile-target
interaction
• Complex phenomena
• Computationally
intensive
• Large legacy code
initially developed for
serial execution

7
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

MPI Scaling of EPIC Cases

8
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Before Adjustment After Adjustment

N1
N2

NS

Body A

Body B

N1
N2

NS

Body A

Body B

Contact Algorithm Overview

• Simulating contact of multiple bodies is a critical
feature of EPIC

• When bodies make contact, nodes ‘penetrate’ surfaces
• The contact algorithm consists of iterative adjustment

to eliminate penetration

9
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Contact Scalability Issues

• Contact between bodies is unpredictable
– Good load balancing is tricky
– Inter-processor communication is complex

• The contact algorithm is iterative
– Inter-processor communication is frequent
– Latency limits scaling

10
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

CAF Parallel Performance Optimizations

• Low latency communication
– Critical when messages are small

• Fine-grain communication hiding
– Work on incoming data as it arrives, rather

than waiting
– A form of pipelining
– Uniquely valuable when no independent

work is available to hide communication
time

11
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Example 1: Low Latency

DO I=1,NPES
 ITMP(I)=NUMALTERED(1)[I]
ENDDO

CALL MPI_ALLGATHER(NUMALTERED,1,
 MPI_INTEGER,ITMP,NUM,MPI_INTEGER,
 MPI_COMM_WORLD,IER)

Original Code:

CAF Code:

• CAF code 8 times faster
than MPI
– Latency advantage

important for small
messages

12
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Example #2: Fine-Grain Communication Hiding
TEMP(1:SLDTOT)=PX(1:SLDTOT)
CALL MPI_ALLREDUCE(TEMP, PX, SLDTOT, &
 MPI_DOUBLE_PRECISION, &
 MPI_SUM, MPI_COMM_WORLD, IER)
TEMP(1:SLDTOT)=PY(1:SLDTOT)
CALL MPI_ALLREDUCE(TEMP, PY, SLDTOT, &
 MPI_DOUBLE_PRECISION, &
 MPI_SUM, MPI_COMM_WORLD, IER)
TEMP(1:SLDTOT)=PZ(1:SLDTOT)
CALL MPI_ALLREDUCE(TEMP, PZ, SLDTOT, &
 MPI_DOUBLE_PRECISION, &
 MPI_SUM, MPI_COMM_WORLD, IER)
LTEMP(1:SLDTOT)=UPDATE(1:SLDTOT)
CALL MPI_ALLREDUCE(LTEMP,UPDATE,SLDTOT, &
 MPI_LOGICAL,MPI_LOR, &
 MPI_COMM_WORLD,IER)
DO M=1,SLDTOT
 IF (UPDATE(M)) THEN
 CALL NFIX(IXYZ(M),IRIG,IXX,IYY,IZZ)
 X(M) = X(M) + PX(M)*(1-IXX)
 Y(M) = Y(M) + PY(M)*(1-IYY)
 Z(M) = Z(M) + PZ(M)*(1-IZZ)
 ENDIF
ENDDO

Original Code:

• The computations in the
loop cannot begin until
the 4 MPI_ALLREDUCE
calls finish

• Unnecessary
computation &
communication for many
elements of PX, PY, and
PZ whose values are 0.0

13
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Example #2: Fine-Grain Communication Hiding
CAF Code: ICOUNT=0

DO I=1,SLDTOT
 IF (UPDATE(I)) THEN
 ICOUNT=ICOUNT+1
 ICTEMP(ICOUNT)=I
 PXTEMP(ICOUNT)=PX(I)
 PYTEMP(ICOUNT)=PY(I)
 PZTEMP(ICOUNT)=PZ(I)
 ENDIF
ENDDO
CALL SYNC_IMAGES()

DO ITER=1,NPES
 ISRC=MYPN-ITER+1
 IF (ISRC.LE.0) ISRC=ISRC+NPES
 DO M=1,ICOUNT[ISRC]
 GLOB=ICTEMP(M)[ISRC]
 CALL NFIX(IXYZ(GLOB),IRIG,IXX,IYY,IZZ)
 X(GLOB)=X(GLOB)+PXTEMP(M)[ISRC]*(1-IXX)
 Y(GLOB)=Y(GLOB)+PYTEMP(M)[ISRC]*(1-IYY)
 Z(GLOB)=Z(GLOB)+PZTEMP(M)[ISRC]*(1-IZZ)
 ENDDO
ENDDO

• Only non-zero values are
communicated

• Virtually all communication is
‘hidden’ by concurrent
computations
– Vector loads directly from

remote memory
• 5 times as fast as the

original MPI code

14
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Performance Results

15
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2006

Observations

• CAF significantly faster for latency-sensitive
communication

• CAF allows fine-grain communication hiding not
possible with MPI

• The implementation matters
– Requires underlying support for pipelining remote memory

operations
• CAF offers a natural way to take full advantage of

high performance hardware
• Adding CAF to MPI is painless (on the X1E)
• If pipelining is important to ‘hide’ local memory

operations (it is), it must be really important for
hiding remote memory operations

