

CUG 2006 Proceedings 1 of 6

The Cray Programming Environment for BlackWidow

Luiz DeRose, Terry Greyzck, Mary Beth Hribar, Brian
Johnson, Mark Pagel, Howard Pritchard, and Greg Titus

Cray Inc

ABSTRACT: The BlackWidow Programming Environment provides a natural follow on
to the Cray X1/X1e software. It focuses on optimization and easy of use. In this paper we
describe the main features and enhancements of the Cray BlackWidow programming
environment, which is being designed to help users achieve the highest possible
performance from the hardware.

KEYWORDS: BlackWidow, Programming environment, programming models,
compilers, scientific libraries, application tools.

1. Introduction
In this paper we describe the Programming Environment
for the Cray BlackWidow vector system, which is a
follow on to the Cray X1E system. The BlackWidow
programming environment is being designed to help users
achieve the highest possible performance from the
hardware. In addition, by continuing the move towards a
common software infrastructure among Cray products, it
will provide a natural follow on to the Cray X1E systems.

2. Overview of the BlackWidow System
In this section we describe some of the hardware and
software features that are significant to the programming
environment.

The Cray X1 and X1E systems require automatic multi-
level parallelism, at the shared memory processor level
(multistreaming) and at the vector level (vectorization)
for full utilization of the machine. With the switch to
harnessing the power of a single processor, the need for
multistreaming has been eliminated from the
BlackWidow architecture. This allows the compiler to
focus on the much simpler task of automatic single level
parallelism, at the vector level.

Similarly to the Cray X1, the Cray BlackWidow system
uses a remote translation table to link the address spaces
of several nodes into one, which allows the referencing of
off node memory with simple loads and stores. This
allows users to achieve higher parallel performance with
the use of PGAS languages and the use of one-sided
communication mechanisms like Cray SHMEM.

While the Cray X1E used a big-endian data
representation; the Cray BlackWidow system switches to
use a little-endian representation. The data sizes and
layouts are as specified in the AMD64 ABI, with the
exception that 80-bit floating point is not supported (128-
bit floating point is used instead). For most user codes,
this endian change is transparent.

3. Parallel Programming Models
The programming environment of the Cray BlackWidow
system supports an extensive set of programming models,
including distributed memory approaches like MPI and
SHMEM, shared memory mechanisms like OpenMP, and
the PGAS languages UPC and Co-Array Fortran. In this
section we describe the main characteristics of each of
these models.

3.1 MPI

The Cray BlackWidow MPI is based on the MPICH2
from Argonne National Laboratory (ANL), with a custom
ADI3 device to better exploit BlackWidow’s distributed,
shared memory architecture. The ADI3 device uses a
virtualization method to allow for multiple methods for
message delivery. For example, a special very low
latency method is used for message notification between
processes on the same node, while a more scalable, but
somewhat higher latency method is used for inter-node
message notification. This virtualization approach allows
for reuse of the Cray BlackWidow ADI3 device on future
Cray platforms. The design also facilitates reuse of this
core technology within other MPI implementations,
should that prove to be desirable.

CUG 2006 Proceedings 2 of 6

In addition to point-to-point optimizations within the
ADI3 device, collective optimizations employed in the
X1 MPI implementation will be adapted for use in the
MPICH2 framework. The vector AMO capabilities of the
Cray BlackWidow processor and the network topology
will allow for additional enhancements to the algorithms
employed in the Cray X1 MPI implementation. The initial
set of optimized collectives will include:

• MPI_Barrier,
• MPI_Win_fence,
• MPI_Allreduce,
• MPI_Reduce,
• MPI_Bcast,
• MPI_Gather(v),
• MPI_Scatter(v),
• MPI_Allgather, and
• MPI_Alltoall(v,w).

All features of MPI-2 remote memory access (RMA) will
be supported in the first Cray BlackWidow MPT release,
including use of derived types in MPI_Get, MPI_Put, and
MPI_Accumulate operations. Passive RMA operations
will also be supported. RMA is optimized for Cray
BlackWidow's distributed, shared memory architecture.

Additional MPI-2 features such as dynamic process
management support (MPI_Comm_spawn) and thread
safety will be made available in subsequent releases of
the Cray BlackWidow MPI software.

3.2 Cray SHMEM

The logically shared, distributed memory access (Cray
SHMEM) routines provide low-latency, high-bandwidth
communication for use in highly parallelized scalable
programs and will be fully supported on the Cray
BlackWidow architecture.

The implementation builds off of the highly optimized
X1E version and will include further optimizations of the
SHMEM barrier routine for the first release. Additional
optimizations will be done in subsequent releases.

3.3 OpenMP

OpenMP provides multithreaded, shared-memory
parallelism using directives to specify data locality, work
distribution, and control flow. The API is available for
both C/C++ and Fortran. OpenMP for Cray BlackWidow
will be equivalent to that for X1, and will conform to the
OpenMP 2.0 API. OpenMP concurrency will span at
most one node, with a maximum thread count of 4.

3.4 Co-Array Fortran and UPC

Co-Array Fortran (CAF) and Unified Parallel C (UPC)
are dialects extending Fortran and C, respectively, to
allow programmers to specify both data distribution and
work distribution in a single program multiple data
(SPMD) programming model. The CAF and UPC
support in the compiler is closely integrated with the
optimizer, allowing the emitted code to take full
advantage of the Cray BlackWidow memory architecture
for low latency communication.

CAF and UPC for the Cray BlackWidow system will be
equivalent to that for the Cray X1 system. CAF will
initially conform to the original 1998 CAF specification
plus extensions. However, since, CAF will become an
official part of the Fortran language in the next standard,
the Cray BlackWidow CAF will evolve to conform with
the Fortran standard as that is codified. UPC will
conform to the UPC 1.2 specification.

4. BlackWidow Programming Languages
C, C++ and Fortran are the languages supported by the
Cray Programming Environment compilers on the
BlackWidow system. They are based on the X1
compilers. These compilers will carry forward most of the
user interface and functionality of the Cray X1 compilers,
including command-line options, pragmas, directives,
listing, loopmark, and inlining capabilities. In addition,
Cray will provide a gcc compiler that targets the
BlackWidow architecture.

4.1 C Language Support

The Cray BlackWidow C compiler supports ISO/IEC
9899:1999 commonly called C99. There are some minor,
and little used features that are not fully supported. The
Cray C compiler makes use of front-end technology from
EDG and supports some common gcc language
extensions.

4.2 C++ Language Support

The Cray BlackWidow C++ compiler supports ISO/IEC
14882:1998 with some exceptions. It is based on the same
EDG front-end technology. Cray plans to use the gnu g++
runtime library for BlackWidow.

4.3 Gcc for BlackWidow

Cray plans to release a gcc compiler that targets the
BlackWidow architecture. It is intended for command
builds or for codes that depend on complete gcc
compliance. Cray will support dynamic linking of
commands with this compiler.

CUG 2006 Proceedings 3 of 6

4.4 Fortran Language Support and Fortran
2003 Status

The Cray BlackWidow Fortran compiler is based on the
X1 compiler front end and is intended to be fully Fortran
2003 compliant, ISO/IEC 1539:1-2004 by 2007. Good
progress has been made toward that goal and a growing
set of F2003 features are now available in our Cray X1
compiler.

As of the Cray programming environment release 5.5 the
following F2003 features are supported:

• Basic syntax enhancements
• PROTECTED attribute
• VOLATILE attribute
• INTENT attribute for pointers
• mixed PUBLIC and PRIVATE component

attributes
• allocatable components
• allocatable dummy arguments
• allocatable function results
• allocatable array assignment
• ASSOCIATE construct
• intrinsic modules
• ISO_FORTRAN_ENV module
• ISO_C_BINDING module
• C interoperability
• IMPORT statement
• PROCEDURE statement
• procedure declaration and abstract interfaces
• procedure pointers
• pointer assignment lower bounds
• pointer rank remapping
• FLUSH statement
• IOMSG keyword in I/O statements
• MAX and MIN with character arguments
• NEW_LINE intrinsic
• GET_COMMAND intrinsic
• COMMAND_ARGUMENT_COUNT intrinsic
• GET_COMMAND_ARGUMENT intrinsic
• GET_ENVIRONMENT_VARIABLE intrinsic
• IS_IOSTAT_END intrinsic
• IS_IOSTAT_EOR intrinsic
• parameterized derived types
• keywords in derived type constructors
• type specifiers in array constructors
• allocatable character scalars
• allocatable character assignment
• IEEE_FEATURES module
• IEEE_ARITHMETIC module
• IEEE_EXCEPTIONS module

• Keywords in READ and WRITE statements
• Result KIND specifiers in intrinsics
• Array reallocation - MOVE_ALLOC intrinsic

The following F2003 features are planned to be supported
with the programming environment release 5.6, which is
scheduled for the 4th quarter of 2006:

• Assumed and deferred type parameters
• Asynchronous I/O and WAIT statement
• Stream I/O
• DECIMAL mode in I/O statements
• Rounding mode in I/O statements
• Derived type extension
• Type-bound procedures
• Finalizers
• polymorphic objects
• SELECT TYPE construct

The remaining features to be completed after the
programming environment release 5.6 include:

• enhanced initialization expressions
• user derived type I/O control
• ISO character set support
• text encoding selection in I/O

5. BlackWidow Compiler Optimization
The optimizer for the Cray BlackWidow compiler is
derived from the Cray X1 compiler. With default
compilation, aggressive automatic optimization is
performed at both a scalar and vector level. The primary
optimization changes from the X1 implementation derive
from the hardware differences between the architectures.

The Cray BlackWidow architecture is based on the NV2
ISA specification, which is an extension of the NV1 ISA
specification used for the Cray X1. Significant
improvements over the X1 from a compiler standpoint
include:

• New inclusive-or bit matrix operation
• Full-speed bit matrix multiplication
• Full-speed vector compress
• 32-bit vector compress and gather/scatter
• A maximum vector length of 128 (versus 64)
• Vector mask registers are 128 bits wide
• 32 vector mask registers (versus 8)
• 32 load buffers
• Branch prediction hints
• Vector atomic memory operations

CUG 2006 Proceedings 4 of 6

The compiler uses all of these improvements to create
higher performing applications. Compiler directives for
finer grain control of optimizations are supported, but are
generally not needed.

On the Cray X1, an exclusive-or version of bit matrix
multiplication is supported. On the Cray BlackWidow, a
new variation that uses inclusive-or has been added. This
is available through new vector intrinsic operations, and
is also being evaluated for automatic use by the compiler
for some vector idioms.

On the Cray X1, vector compress and bit matrix
multiplication instructions run at half speed. On the
BlackWidow, they run at full speed. This results in
obvious speed-ups for bit matrix intrinsics, and speed-ups
for complicated conditional code due to the vector
compress improvements. Vector reduction performance
is also improved, as reductions use the vector compress
instruction heavily. This is especially noticeable for
smaller trip counts, where the final collapse of a vector’s
worth of data to a single scalar result relies heavily on the
speed of vector compression.

The maximum allowable vector length for the Cray
BlackWidow has been increased. The compiler
automatically takes advantage of this, effectively halving
the number of strip-mined iterations it takes to complete a
vector loop. Also, by using constant trip count
information and information derived by symbolic range
analysis, many loops can be proven to have fewer
iterations than the vector length. When this is determined
at compilation time, the vectorized loop is guaranteed to
execute in one chunk, and all control flow associated with
the looping structure is removed.

Similarly, the number of vector mask registers has been
increased, which allows the compiler to be much more
aggressive in optimizing conditional vector code,
allowing the pipelining of comparison operations, and
improving other optimizations such as the common
subexpression elimination of vector mask expressions.
Vector mask registers are very expensive to spill, so the
larger set allows for greater optimization opportunities.

The BlackWidow architecture supports branch prediction
hints. The compiler automatically makes use of these;
estimating branch probability based on internal
knowledge of control flow, and on external data provided
by the probability and loop_info compiler directives.

Vector atomic memory operations have been added in the
Cray BlackWidow architecture. These provide a limited
set of operation-in-memory capability for 64-bit integer
operations. For a select set of self-modifying operations
on data, the actual work is done in the memory system.
The compiler sends an address, a stride or vector of

indirect indices, and a vector value to the memory system,
and it does the rest. The compiler automatically uses
vector atomic memory operations for update operations,
and for other operations when they are known to be
accessing remote data. The supported operations are 64-
bit integer bitwise and, bitwise or, bitwise exclusive or,
and integer addition.

As an example, the following loop:

 for (i = 0; i < 128; i++) {
 a[ix[i]] = a[ix[i]] ^ b[i];
 }

Translates into the assembly code:

 a04 a00|128
 vl a04
 v02,L [a03,1],m00 ; Load b[i]
 v03,L [a02,1],m00 ; Load ix[i]
 [a01,v03] v02,m00,axor,con

The b[i] and ix[i] operands are loaded into vector
registers and sent to the vector atomic memory operation.
Note that a[ix[i]] is never loaded into a register; the
operation is performed in the memory system. By using
atomic updates, an exact answer is obtained, even if there
are repeated values in array ix.

On the Cray X1, stores to small data types inhibit
vectorization, due to false sharing issues. Vector atomic
memory operations provide a hardware-based mechanism
to address this. The Cray BlackWidow compiler uses
vector atomic memory operations to vectorize stores to 8-
and 16-bit data, and supports full vectorization of small
data types (char and short in C, integer (kind=1) and
integer (kind=2) in Fortran), without any restrictions on
data alignment.

6. LibSci
The Scientific libraries for Cray's vector systems are
provided in LibSci, while the C and Fortran mathematical
intrinsics are provided by Libm.

6.1 Cray X1/X1E LibSci

 The libraries for the Cray BlackWidow system are based
on the Cray X1/X1E libraries, which provides Fortran
interfaces for all routines, supporting 32- and 64-bit
default data types.

Libm contains single processor support for:

• Scalar mathematical intrinsics, such as EXP, LOG,
and SIN

CUG 2006 Proceedings 5 of 6

• Vector mathematical intrinsics
• 32-, 64-, and 128-bit real types
• Random number generation
• Other C and Fortran language features

The latest LibSci release is 5.5. It contains single
processor routines, distributed memory and parallel
routines, as well as shared memory parallel routines. The
LibSci single processor routines support:

• Fast Fourier transform (FFT), convolution, and
filtering routines

• Basic Linear Algebra Subprograms (BLAS)
• Linear Algebra Package (LAPACK) routines
• Sparse direct solvers

Multiprocessor in a distributed memory environment is
supported on:

• FFT routines
• Scalable LAPACK (ScaLAPACK) routines
• Basic Linear Algebra Communication Subprograms

(BLACS)

Finally, LibSci also contains four-way shared memory
parallel support across a single node for all Level 3 BLAS
routines and for the Level 2 BLAS routines sgemv,
dgemv, cgemv, and zgemv. This library is implemented
with OpenMP, and including the -lompsci option on the
link line accesses it.

There is a small set of LibSci routines that can be inlined
with the -O inlinelib option. All Level 1 BLAS routines
can be inlined as well as some Level 2 BLAS routines
(sgemv, dgemv, cgemv, zgemv, sger, dger, cgerc, cgeru,
zgerc, and zgeru).

6.2 BlackWidow LibSci

The LibSci for BlackWidow extends the functionality
provided on the Cray X1/X1E systems with additional
shared memory parallel routines, sparse computational
support, and optimisations, as described next.

The LibSci for BlackWidow will contain additional
support for the four-way SMP nodes. In addition to
parallel BLAS, there will be parallel FFTs, some parallel
LAPACK routines (sgetrf, dgetrf, cgetrf, zgetrf, spotrf,
dpotrf, cpotrf, zpotrf, ssytrd, dsytrd, csytrd, zsytrd, ssytrd,
dsytrd), and parallel sparse direct solvers. These parallel
routines will be implemented with OpenMP and will be
integrated into LibSci. It will no long be necessary to
specify the –lompsci option at link time. At execution
time, the shared memory parallel routines will be used if
the application is launched to run on the SMP node using
the –d option.

There will be sparse BLAS-like routines included in
LibSci to support sparse iterative solvers. It is planned

that these sparse routines will support the iterative solvers
provided in the PETSc and Trilinos software packages.
In addition, these sparse routines can be used in user
defined iterative solvers.

Finally, the LibSci will be tuned for the BlackWidow
architecture. This architecture contains different cache
and memory sizes from the Cray X1/X1E architecture.
Routines that are memory bandwidth bound will need to
be evaluated and improved, if necessary. In addition, the
communication in ScaLAPACK and the distributed
memory parallel FFTs will be tuned to exploit the fast
one-side communication that the BlackWidow
architecture provides.

7. Tools
The Etnus TotalView debugger will be available on the
Cray BlackWidow system. TotalView represents the state
of the art in visual parallel debugger technology. It is a
powerful, sophisticated, and programmable tool that lets
users debug, analyze, and tune the performance of
complex serial, multiprocessor, and multithreaded
programs. TotalView will be available with both its
command line interface (CLI) and its graphical interface,
supporting threads, MPI, SHMEM, OpenMP, C/C++ and
Fortran, as well as mixed-language codes. In addition, it
provides some basic support for UPC and Co-Array
Fortran.

The Cray performance measurement, analysis, and
visualization infrastructure will be available on the
BlackWidow system. This framework for performance
analysis, which consists of the CrayPat Performance
Collector and the Cray Apprentice2 Performance
Analyzer, provides an intuitive and easy to use interface
for performance tuning of scientific applications on all
Cray platforms. The CrayPat performance collector can
gather a wide range of performance data by process and
by thread, and can generate a variety of reports.
Developers can use these capabilities to locate
opportunities for improvements in both performance and
system resource usage. The Cray Apprentice2

Performance Analyzer is a graphical user interface for
performance debugging that leverages the CrayPat
instrumentation. Rather than trying to focus on
performance debugging in a general sense, Cray
Apprentice2 delves further into specific performance
debugging domains like MPI, OpenMP, or I/O. Cray
Apprentice2, however, attempts to share intuitive
graphical components between the various domains to
promote ease of use and it identical interface between the
Cray product lines.

CUG 2006 Proceedings 6 of 6

8. Conclusions
In this paper we presented the programming environment
for the Cray BlackWidow vector system, which consists
of state of the art compiler tools, and scientific libraries,
supporting a wide range of programming models. The
BlackWidow programming environment is being
designed to help users achieve the highest possible
performance from the hardware. Its design focus is on
providing an easy to use and optimised follow on to the
Cray X1/X1e software.

About the Authors

Dr. Luiz DeRose is a Sr. Principal Engineer and the
Programming Environments Director at Cray Inc. He has
more than twenty years of experience in HPC software
design and development. He has published more than 40
peer-review articles in scientific publications, primarily
on programming environment topics. He can be reached
at ldr@cray,.com.

Terry Greyzck is a Principal Engineer and the lead of the
compiler optimisation group at Cray Inc. He has more
than 20 years of expertise in Compiler development. He
can be reached at tdg@cray.com.

Dr. Mary Beth Hribar is the manager of the Scientific
Libraries group at Cray Inc. She has more than 10 years
of expertise in the field. She can be reached at
marybeth@cray.com.

Brian Johnson is the manager of the Compiler Front End
group at Cray Inc. He has more than 20 years of
experience in compiler development. He can be reached
at bhj@cray.com

Mark Pagel is the manager of the MPT group at Cray Inc.
He has more than 15 years of experience on software
support for high performance computing. He can be
reached at pags@cray.com

Dr. Howard Pritchard is a Principal Engineer and the
technical lead of the message passing team at Cray Inc.
He has more than 20 years of experience in software
support for high performance computing. He can be
reached at howardp@cray.com.

Greg Titus is a Principal Engineer and the technical lead
of the runtime group. He has more than 20 years of
experience in software support for high performance
computing. He can be reached at gbt@cray.com

