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ABSTRACT: The BlackWidow Programming Environment provides a natural follow on 
to the Cray X1/X1e software. It focuses on optimization and easy of use. In this paper we 
describe the main features and enhancements of the Cray BlackWidow programming 
environment, which is being designed to help users achieve the highest possible 
performance from the hardware.  
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1. Introduction 
In this paper we describe the Programming Environment 
for the Cray BlackWidow vector system, which is a 
follow on to the Cray X1E system.  The BlackWidow 
programming environment is being designed to help users 
achieve the highest possible performance from the 
hardware. In addition, by continuing the move towards a 
common software infrastructure among Cray products, it 
will provide a natural follow on to the Cray X1E systems. 

2. Overview of the BlackWidow System 
In this section we describe some of the hardware and 
software features that are significant to the programming 
environment.  
 
The Cray X1 and X1E systems require automatic multi-
level parallelism, at the shared memory processor level 
(multistreaming) and at the vector level (vectorization) 
for full utilization of the machine.  With the switch to 
harnessing the power of a single processor, the need for 
multistreaming has been eliminated from the 
BlackWidow architecture.  This allows the compiler to 
focus on the much simpler task of automatic single level 
parallelism, at the vector level. 
 
Similarly to the Cray X1, the Cray BlackWidow system 
uses a remote translation table to link the address spaces 
of several nodes into one, which allows the referencing of 
off node memory with simple loads and stores. This 
allows users to achieve higher parallel performance with 
the use of PGAS languages and the use of one-sided 
communication mechanisms like Cray SHMEM. 
 

While the Cray X1E used a big-endian data 
representation; the Cray BlackWidow system switches to 
use a little-endian representation.  The data sizes and 
layouts are as specified in the AMD64 ABI, with the 
exception that 80-bit floating point is not supported (128-
bit floating point is used instead). For most user codes, 
this endian change is transparent. 
 

3. Parallel Programming Models 
The programming environment of the Cray BlackWidow 
system supports an extensive set of programming models, 
including distributed memory approaches like MPI and 
SHMEM, shared memory mechanisms like OpenMP, and 
the PGAS languages UPC and Co-Array Fortran. In this 
section we describe the main characteristics of each of 
these models.  

3.1 MPI 
 
The Cray BlackWidow MPI is based on the MPICH2 
from Argonne National Laboratory (ANL), with a custom 
ADI3 device to better exploit BlackWidow’s distributed, 
shared memory architecture. The ADI3 device uses a 
virtualization method to allow for multiple methods for 
message delivery.  For example, a special very low 
latency method is used for message notification between 
processes on the same node, while a more scalable, but 
somewhat higher latency method is used for inter-node 
message notification.  This virtualization approach allows 
for reuse of the Cray BlackWidow ADI3 device on future 
Cray platforms.  The design also facilitates reuse of this 
core technology within other MPI implementations, 
should that prove to be desirable. 
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In addition to point-to-point optimizations within the 
ADI3 device, collective optimizations employed in the 
X1 MPI implementation will be adapted for use in the 
MPICH2 framework.  The vector AMO capabilities of the 
Cray BlackWidow processor and the network topology 
will allow for additional enhancements to the algorithms 
employed in the Cray X1 MPI implementation. The initial 
set of optimized collectives will include: 

• MPI_Barrier, 
• MPI_Win_fence, 
• MPI_Allreduce, 
• MPI_Reduce, 
• MPI_Bcast, 
• MPI_Gather(v), 
• MPI_Scatter(v), 
• MPI_Allgather, and 
• MPI_Alltoall(v,w). 

 
All features of MPI-2 remote memory access (RMA) will 
be supported in the first Cray BlackWidow MPT release, 
including use of derived types in MPI_Get, MPI_Put, and 
MPI_Accumulate operations.  Passive RMA operations 
will also be supported.  RMA is optimized for Cray 
BlackWidow's distributed, shared memory architecture. 
 
Additional MPI-2 features such as dynamic process 
management support (MPI_Comm_spawn) and thread 
safety will be made available in subsequent releases of 
the Cray BlackWidow MPI software. 
 

3.2 Cray SHMEM 
 
The logically shared, distributed memory access (Cray 
SHMEM) routines provide low-latency, high-bandwidth 
communication for use in highly parallelized scalable 
programs and will be fully supported on the Cray 
BlackWidow architecture. 
 
The implementation builds off of the highly optimized 
X1E version and will include further optimizations of the 
SHMEM barrier routine for the first release. Additional 
optimizations will be done in subsequent releases. 
 

3.3 OpenMP 
 
OpenMP provides multithreaded, shared-memory 
parallelism using directives to specify data locality, work 
distribution, and control flow.  The API is available for 
both C/C++ and Fortran.  OpenMP for Cray BlackWidow 
will be equivalent to that for X1, and will conform to the 
OpenMP 2.0 API.  OpenMP concurrency will span at 
most one node, with a maximum thread count of 4. 
 

3.4 Co-Array Fortran and UPC 
 
Co-Array Fortran (CAF) and Unified Parallel C (UPC) 
are dialects extending Fortran and C, respectively, to 
allow programmers to specify both data distribution and 
work distribution in a single program multiple data 
(SPMD) programming model.  The CAF and UPC 
support in the compiler is closely integrated with the 
optimizer, allowing the emitted code to take full 
advantage of the Cray BlackWidow memory architecture 
for low latency communication. 
 
CAF and UPC for the Cray BlackWidow system will be 
equivalent to that for the Cray X1 system.  CAF will 
initially conform to the original 1998 CAF specification 
plus extensions.  However, since, CAF will become an 
official part of the Fortran language in the next standard, 
the Cray BlackWidow CAF will evolve to conform with 
the Fortran standard as that is codified.  UPC will 
conform to the UPC 1.2 specification. 

4. BlackWidow Programming Languages  
C, C++ and Fortran are the languages supported by the 
Cray Programming Environment compilers on the 
BlackWidow system. They are based on the X1 
compilers. These compilers will carry forward most of the 
user interface and functionality of the Cray X1 compilers, 
including command-line options, pragmas, directives, 
listing, loopmark, and inlining capabilities. In addition, 
Cray will provide a gcc compiler that targets the 
BlackWidow architecture.  

4.1 C Language Support 
 
The Cray BlackWidow C compiler supports ISO/IEC 
9899:1999 commonly called C99. There are some minor, 
and little used features that are not fully supported. The 
Cray C compiler makes use of front-end technology from 
EDG and supports some common gcc language 
extensions.  

4.2 C++ Language Support 
 
The Cray BlackWidow C++ compiler supports ISO/IEC 
14882:1998 with some exceptions. It is based on the same 
EDG front-end technology. Cray plans to use the gnu g++ 
runtime library for BlackWidow.  

4.3 Gcc for BlackWidow 
 
Cray plans to release a gcc compiler that targets the 
BlackWidow architecture. It is intended for command 
builds or for codes that depend on complete gcc 
compliance. Cray will support dynamic linking of 
commands with this compiler. 
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4.4 Fortran Language Support and Fortran 
2003 Status 

 
The Cray BlackWidow Fortran compiler is based on the 
X1 compiler front end and is intended to be fully Fortran 
2003 compliant, ISO/IEC 1539:1-2004 by 2007. Good 
progress has been made toward that goal and a growing 
set of F2003 features are now available in our Cray X1 
compiler.  
 
As of the Cray programming environment release 5.5 the 
following F2003 features are supported: 
 

• Basic syntax enhancements 
• PROTECTED attribute 
• VOLATILE attribute 
• INTENT attribute for pointers 
• mixed PUBLIC and PRIVATE component 

attributes 
• allocatable components 
• allocatable dummy arguments 
• allocatable function results 
• allocatable array assignment 
• ASSOCIATE construct 
• intrinsic modules 
• ISO_FORTRAN_ENV module 
• ISO_C_BINDING module 
• C interoperability 
• IMPORT statement 
• PROCEDURE statement 
• procedure declaration and abstract interfaces 
• procedure pointers 
• pointer assignment lower bounds 
• pointer rank remapping 
• FLUSH statement 
• IOMSG keyword in I/O statements 
• MAX and MIN with character arguments 
• NEW_LINE intrinsic 
• GET_COMMAND intrinsic 
• COMMAND_ARGUMENT_COUNT intrinsic 
• GET_COMMAND_ARGUMENT intrinsic 
• GET_ENVIRONMENT_VARIABLE intrinsic 
• IS_IOSTAT_END intrinsic 
• IS_IOSTAT_EOR intrinsic 
• parameterized derived types 
• keywords in derived type constructors 
• type specifiers in array constructors 
• allocatable character scalars 
• allocatable character assignment 
• IEEE_FEATURES module 
• IEEE_ARITHMETIC module 
• IEEE_EXCEPTIONS module 

• Keywords in READ and WRITE statements 
• Result KIND specifiers in intrinsics 
• Array reallocation - MOVE_ALLOC intrinsic 

 
The following F2003 features are planned to be supported 
with the programming environment release 5.6, which is 
scheduled for the 4th quarter of 2006: 
 

• Assumed and deferred type parameters 
• Asynchronous I/O and WAIT statement 
• Stream I/O 
• DECIMAL mode in I/O statements 
• Rounding mode in I/O statements 
• Derived type extension 
• Type-bound procedures 
• Finalizers 
• polymorphic objects 
• SELECT TYPE construct 

 
The remaining features to be completed after the 
programming environment release 5.6 include: 
 

• enhanced initialization expressions 
• user derived type I/O control 
• ISO character set support 
• text encoding selection in I/O 

5. BlackWidow Compiler Optimization 
The optimizer for the Cray BlackWidow compiler is 
derived from the Cray X1 compiler.  With default 
compilation, aggressive automatic optimization is 
performed at both a scalar and vector level.  The primary 
optimization changes from the X1 implementation derive 
from the hardware differences between the architectures. 
 
The Cray BlackWidow architecture is based on the NV2 
ISA specification, which is an extension of the NV1 ISA 
specification used for the Cray X1.  Significant 
improvements over the X1 from a compiler standpoint 
include: 
 

• New inclusive-or bit matrix operation 
• Full-speed bit matrix multiplication 
• Full-speed vector compress 
• 32-bit vector compress and gather/scatter 
• A maximum vector length of 128 (versus 64) 
• Vector mask registers are 128 bits wide 
• 32 vector mask registers (versus 8) 
• 32 load buffers 
• Branch prediction hints 
• Vector atomic memory operations 
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The compiler uses all of these improvements to create 
higher performing applications.  Compiler directives for 
finer grain control of optimizations are supported, but are 
generally not needed. 
 
On the Cray X1, an exclusive-or version of bit matrix 
multiplication is supported.  On the Cray BlackWidow, a 
new variation that uses inclusive-or has been added.  This 
is available through new vector intrinsic operations, and 
is also being evaluated for automatic use by the compiler 
for some vector idioms. 
 
On the Cray X1, vector compress and bit matrix 
multiplication instructions run at half speed.  On the 
BlackWidow, they run at full speed.  This results in 
obvious speed-ups for bit matrix intrinsics, and speed-ups 
for complicated conditional code due to the vector 
compress improvements.  Vector reduction performance 
is also improved, as reductions use the vector compress 
instruction heavily.  This is especially noticeable for 
smaller trip counts, where the final collapse of a vector’s 
worth of data to a single scalar result relies heavily on the 
speed of vector compression. 
 
The maximum allowable vector length for the Cray 
BlackWidow has been increased. The compiler 
automatically takes advantage of this, effectively halving 
the number of strip-mined iterations it takes to complete a 
vector loop.   Also, by using constant trip count 
information and information derived by symbolic range 
analysis, many loops can be proven to have fewer 
iterations than the vector length.  When this is determined 
at compilation time, the vectorized loop is guaranteed to 
execute in one chunk, and all control flow associated with 
the looping structure is removed. 
 
Similarly, the number of vector mask registers has been 
increased, which allows the compiler to be much more 
aggressive in optimizing conditional vector code, 
allowing the pipelining of comparison operations, and 
improving other optimizations such as the common 
subexpression elimination of vector mask expressions.  
Vector mask registers are very expensive to spill, so the 
larger set allows for greater optimization opportunities. 
 
The BlackWidow architecture supports branch prediction 
hints.  The compiler automatically makes use of these; 
estimating branch probability based on internal 
knowledge of control flow, and on external data provided 
by the probability and loop_info compiler directives. 
 
Vector atomic memory operations have been added in the 
Cray BlackWidow architecture.  These provide a limited 
set of operation-in-memory capability for 64-bit integer 
operations.  For a select set of self-modifying operations 
on data, the actual work is done in the memory system.  
The compiler sends an address, a stride or vector of 

indirect indices, and a vector value to the memory system, 
and it does the rest. The compiler automatically uses 
vector atomic memory operations for update operations, 
and for other operations when they are known to be 
accessing remote data.  The supported operations are 64-
bit integer bitwise and, bitwise or, bitwise exclusive or, 
and integer addition. 
 
As an example, the following loop: 
 
  for ( i = 0; i < 128; i++ ) { 
      a[ix[i]] = a[ix[i]] ^ b[i]; 
  } 
 
Translates into the assembly code: 
     
  a04       a00|128 
  vl        a04 
  v02,L     [a03,1],m00   ; Load b[i] 
  v03,L     [a02,1],m00   ; Load ix[i] 
  [a01,v03] v02,m00,axor,con 
 
The b[i] and ix[i] operands are loaded into vector 
registers and sent to the vector atomic memory operation.  
Note that a[ix[i]] is never loaded into a register; the 
operation is performed in the memory system.  By using 
atomic updates, an exact answer is obtained, even if there 
are repeated values in array ix. 
 
On the Cray X1, stores to small data types inhibit 
vectorization, due to false sharing issues.  Vector atomic 
memory operations provide a hardware-based mechanism 
to address this.  The Cray BlackWidow compiler uses 
vector atomic memory operations to vectorize stores to 8- 
and 16-bit data, and supports full vectorization of small 
data types (char and short in C, integer (kind=1) and 
integer (kind=2) in Fortran), without any restrictions on 
data alignment.   

6. LibSci  
The Scientific libraries for Cray's vector systems are 
provided in LibSci, while the C and Fortran mathematical 
intrinsics are provided by Libm. 

 

6.1 Cray X1/X1E LibSci 
 
 The libraries for the Cray BlackWidow system are based 
on the Cray X1/X1E libraries, which provides Fortran 
interfaces for all routines, supporting 32- and 64-bit 
default data types.  
 
Libm contains single processor support for:  

• Scalar mathematical intrinsics, such as EXP, LOG, 
and SIN  
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• Vector mathematical intrinsics 
• 32-, 64-, and 128-bit real types 
• Random number generation 
• Other C and Fortran language features 

 
The latest LibSci release is 5.5. It contains single 
processor routines, distributed memory and parallel 
routines, as well as shared memory parallel routines. The 
LibSci single processor routines support:  

• Fast Fourier transform (FFT), convolution, and 
filtering routines 

• Basic Linear Algebra Subprograms (BLAS) 
• Linear Algebra Package (LAPACK) routines 
• Sparse direct solvers 

Multiprocessor in a distributed memory environment is 
supported on:  

• FFT routines 
• Scalable LAPACK (ScaLAPACK) routines 
• Basic Linear Algebra Communication Subprograms 

(BLACS) 
 

Finally, LibSci also contains four-way shared memory 
parallel support across a single node for all Level 3 BLAS 
routines and for the Level 2 BLAS routines sgemv, 
dgemv, cgemv, and zgemv. This library is implemented 
with OpenMP, and including the -lompsci option on the 
link line accesses it. 
 
There is a small set of LibSci routines that can be inlined 
with the -O inlinelib option. All Level 1 BLAS routines 
can be inlined as well as some Level 2 BLAS routines 
(sgemv, dgemv, cgemv, zgemv, sger, dger, cgerc, cgeru, 
zgerc, and zgeru). 

6.2 BlackWidow LibSci 
 
The LibSci for BlackWidow extends the functionality 
provided on the Cray X1/X1E systems with additional 
shared memory parallel routines, sparse computational 
support, and optimisations, as described next. 
 
The LibSci for BlackWidow will contain additional 
support for the four-way SMP nodes.  In addition to 
parallel BLAS, there will be parallel FFTs, some parallel 
LAPACK routines (sgetrf, dgetrf, cgetrf, zgetrf, spotrf, 
dpotrf, cpotrf, zpotrf, ssytrd, dsytrd, csytrd, zsytrd, ssytrd, 
dsytrd), and parallel sparse direct solvers. These parallel 
routines will be implemented with OpenMP and will be 
integrated into LibSci.  It will no long be necessary to 
specify the –lompsci option at link time.  At execution 
time, the shared memory parallel routines will be used if 
the application is launched to run on the SMP node using 
the –d option. 
 
There will be sparse BLAS-like routines included in 
LibSci to support sparse iterative solvers.  It is planned 

that these sparse routines will support the iterative solvers 
provided in the PETSc and Trilinos software packages.   
In addition, these sparse routines can be used in user 
defined iterative solvers.   
 
Finally, the LibSci will be tuned for the BlackWidow 
architecture.  This architecture contains different cache 
and memory sizes from the Cray X1/X1E architecture.  
Routines that are memory bandwidth bound will need to 
be evaluated and improved, if necessary. In addition, the 
communication in ScaLAPACK and the distributed 
memory parallel FFTs will be tuned to exploit the fast 
one-side communication that the BlackWidow 
architecture provides.   
 

7. Tools 
The Etnus TotalView debugger will be available on the 
Cray BlackWidow system. TotalView represents the state 
of the art in visual parallel debugger technology. It is a 
powerful, sophisticated, and programmable tool that lets 
users debug, analyze, and tune the performance of 
complex serial, multiprocessor, and multithreaded 
programs. TotalView will be available with both its 
command line interface (CLI) and its graphical interface, 
supporting threads, MPI, SHMEM, OpenMP, C/C++ and 
Fortran, as well as mixed-language codes. In addition, it 
provides some basic support for UPC and Co-Array 
Fortran.  
 
The Cray performance measurement, analysis, and 
visualization infrastructure will be available on the 
BlackWidow system. This framework for performance 
analysis, which consists of the CrayPat Performance 
Collector and the Cray Apprentice2 Performance 
Analyzer, provides an intuitive and easy to use interface 
for performance tuning of scientific applications on all 
Cray platforms. The CrayPat performance collector can 
gather a wide range of performance data by process and 
by thread, and can generate a variety of reports. 
Developers can use these capabilities to locate 
opportunities for improvements in both performance and 
system resource usage. The Cray Apprentice2 

Performance Analyzer is a graphical user interface for 
performance debugging that leverages the CrayPat 
instrumentation. Rather than trying to focus on 
performance debugging in a general sense, Cray 
Apprentice2 delves further into specific performance 
debugging domains like MPI, OpenMP, or I/O. Cray 
Apprentice2, however, attempts to share intuitive 
graphical components between the various domains to 
promote ease of use and it identical interface between the 
Cray product lines. 
 



 
CUG 2006 Proceedings 6 of 6 

 

8. Conclusions 
In this paper we presented the programming environment 
for the Cray BlackWidow vector system, which consists 
of state of the art compiler tools, and scientific libraries, 
supporting a wide range of programming models. The 
BlackWidow programming environment is being 
designed to help users achieve the highest possible 
performance from the hardware. Its design focus is on 
providing an easy to use and optimised follow on to the 
Cray X1/X1e software.  
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