
Copyright © 2006 The Boeing Company. All rights reserved.

Job-Based Accounting for UNICOS/mp

Jim Glidewell, Boeing Information Technology

ABSTRACT: With the absence of CSA (Cray System Accounting) from UNICOS/mp, the
ability of sites to provide job-based accounting is limited. We have developed tools for
utilizing UNICOS process accounting to provide both end-of-job and end-of-day
reporting based on jobid. We will provide a look at our strategies for doing so, and a
detailed look at the contents of the UNICOS/mp process record and some suggestions for
how sites might make use of this data.

Introduction

Our organization provides HPC (High Performance Computing) services to a wide
variety of customers within the Boeing Company. Using organizations are charged back
for use of our services, which requires that we collect and report accounting data to the
Finance organization for internal billing purposes. Over the years, we have used a variety
of tools and techniques for gathering and reporting this data. This paper will detail how
we created a local job-based accounting system for UNICOS/mp.

Why Accounting?

The most obvious reason for gathering accounting related information is for billing
purposes, but even organizations that do not do charge-backs may find that taking
advantage of the data provided by the system accounting processes is useful. Machine
accounting data can also be used for trend analysis, both of overall demand and of
detailed application usage. This can lead to improved load projections, and better
hardware upgrade and acquisition planning.

Accounting data can be used in conjunction with other security tools and procedures,
both to monitor for unusual events as they occur and to do detailed post-mortem analysis
in the case of a suspected incident.

Using accounting data to supplement the standard system-wide performance tools can
sometimes isolate troublesome application behavior, and help detect bottlenecks.

Users and developers can make use of end-of-job accounting reports to tune application
parameters to maximize performance. At our site, we have ensured that job cost reflects
the actual cost of delivering that particular service, so that our users can compare job
costs on different HPC platforms and, by choosing the lowest cost option which meets
their turnaround needs, they are in turn choosing the platform which offers the best price-
performance for their particular application and datasets.

Copyright © 2006 The Boeing Company. All rights reserved.

Accounting Resources

There are a number of accounting resources available on UNICOS/mp. The primary
resource is the set of process accounting files, which consist of a series of records, one for
each completed process. The two most critical additions for our site, above the standard
System V process accounting records are 1) the concept of a “job” or “session”, with the
job-id included in the process accounting record, and 2) support for multiple projects for
a given user, and reporting of the project-id in the accounting record as well. These fields
are included in the expanded standard process accounting record. In addition to the
process records, the process accounting file also includes application records, which
record additional information about resources and placement for applications only.

PBS Professional, which is the batch subsystem in use at this site, provides its own
accounting log, which may be sufficient in itself for sites that choose to bill entirely based
on batch usage. In our case, it provides supplemental information that we use in addition
to process accounting data.

Finally, for the purposes of job accounting, it is essential to know when a job has actually
completed. Previous Cray systems included a special “end-of-job” record in the process
accounting stream to denote a job’s termination. In the absence of such a record, we
chose to examine the UNICOS/mp job table to determine whether a job still existed.

We based our job-based accounting system on the above three resources: the process
accounting records, the PBS Pro accounting file, and job-status from the UNICOS job
table.

Goals

Our goals in developing a job-based accounting methodology were fairly simple. We
needed a job-based accounting system that was accurate and repeatable, that would
provide our users the sort of visibility that they had had on previous HPC systems, and
would provide the necessary records for the downstream billing processes. We wanted a
system that was reliable, consumed minimal system resources, and would be easily
recoverable in the event of system interruption or accounting process failure.

Initial Implementation

When the Cray X1 first arrived on our site, we had an immediate requirement to track
usage for billing purposes. At that time, there was no concept of “job” or “session” in
UNICOS/mp. It did, however, have process record support for project accounting. We
created a C-based program, which reads the binary process accounting records, totals the
resource counters into structures based on UID and ACID (the integer ID associated with
a project), and generates a report to be used for downstream billing. We ran this program
once a day, on the previous day’s process accounting files. This resulted in a downstream
accounting feed that contained one record for each active (user, project) pair, containing

Copyright © 2006 The Boeing Company. All rights reserved.

the total of all resources associated with processes that completed during that twenty-four
hour period.

While this version met the minimal requirements for charge-back billing, it did not offer
the user any visibility of the cost of an individual job, either in the job log or when
viewing the accounting reports.

Job-based Accounting

With the addition of the job container structure in UNICOS, and the addition of a
job/session ID in the process accounting records, we had the raw data needed to build a
more robust and user-friendly accounting system. We used our existing accounting
program as a starting point, and modified the sorting of processes to accumulate
resources based on user, project, and job_id. This provided a basic job accounting report
for downstream billing, but there were additional issues that needed to be addressed.

First, we only wanted to send accounting to downstream processes for completed jobs.
To check the status of the job, we use the “ps –jleaf” command to report on all processes
and their respective job_ids. From this output, we internally built a list of currently
running jobs. Any job_id not in this list is assumed to be complete.

Active jobs need to have their data preserved for subsequent accounting runs, and this
leads to one of the Achilles’ heels of job accounting – the recycle file. In previous
systems, every process record associated with an incomplete job was copied to the
recycle file, which often grew without bounds as certain jobs (such as the console
session, and various daemon-related jobs) never terminated. In our case, the recycle file is
almost trivial in size, as it consists of a single record per (user, project, job_id) tuple.

Finally, there is job related data stored in the PBS accounting log. Fortunately, the job_id
is recorded in this file, which allows easy correlation between the process-accounting-
based records and the PBS accounting logs. For simplicity, we process the PBS
accounting log with a Perl script that extracts the interesting data (including the PBS job
ID, and the name assigned to the job by the user) and generates a tab-delimited file for
easy processing by the main end-of-day program.

After all data from all sources is read in, the records marked as “job complete” are
written to the downstream feed file, while the remaining records are written to the recycle
file. PBS entries not associated with completed jobs are written out in the same tab-
delimited format as when they were read in. To insure that jobs don’t recycle indefinitely
(which could occur if a job_id gets reused after a reboot), jobs are automatically treated
as complete after a fixed period of ten days.

User Job Reporting

The other major function of job accounting is to provide a report at the end of the job,
summarizing the resources used and the job cost. We named this utility “jobcost”. Again,

Copyright © 2006 The Boeing Company. All rights reserved.

a large percentage of the code was reused, as we decided to use the same internal C
structures for resource accumulation, therefore the code for reading the process records
and accumulating process data to those records was essentially identical. At the start of
the jobcost command, a query is made to the OS to determine the job_id. Next the recycle
file is inspected to check whether any records matching that job_id are found – if so, they
are imported. Next, all the process records from all the current pacct files are read and
those that match the job_id are added to the in-memory structures. In the case of a batch
job, PBS information is queried direct from pbs_server using the PBS Pro API, rather
than extracting the data from the PBS accounting log. As before, when all data has been
read, a pass over the in-memory structures is made, and output is generated. But in this
case, the output is in a more human-friendly form.

Besides the basic command, the only options are those that allow the user to get a report
on a subset of a job. By default, jobcost reports all usage since the beginning of the job.
Adding the “-i” option makes the jobcost incremental – only processes since the last
jobcost are reported upon. “jobcost –t” allows a user to set the start point for the next
“jobcost –i” without generating any output or processing any process accounting data.
Both these options rely on a hidden file created in the user’s $TMPDIR directory which
contains a timestamp of when jobcost was last executed.

One concern with this method of end-of-job reporting is that every user job that uses it
reads up all of the process accounting data since the last end-of-day run. This means that
a trivial “jobcost” near the end of the accounting day will read and examine all process
records for all users for the entire day. CSA (Cray System Accounting) avoided this issue
by creating a separate process accounting file containing only records associated with the
job in $TMPDIR. We did not have that luxury. But as it turns out, the processing required
is still small enough that its cost is a small fraction of one cent on our system. And for
user benchmarking activities, they can use the “jobcost –t” option to essentially eliminate
the overhead from their jobcost reports.

Experiences

Overall, users have been pleased with the return of the end-of-job cost reporting that they
had come to know and expect. The benefits of having a more complete job history is only
beginning to become clear to many of the data center folks, but already we have used our
local archives of the downstream job accounting feed to resolve a few minor system
anomalies and user errors. But job-based billing and reporting seems so natural that it is
quickly becomes taken for granted.

The system has been reliable and robust. In the case of a “missed day”, the calling scripts
allow a single integer parameter of “days ago” that allows an admin to specify which day
he wants to run. Running days out-of-order is designed to work without impact to total
downstream charging, though it may result in splitting a single job or session into two or
more parts. Maintaining the system requires very little system administrator intervention.

Copyright © 2006 The Boeing Company. All rights reserved.

Other Accounting Options

Writing C-based programs to read the process accounting files is not particularly
difficult, but it is time consuming, and other sites might want to look at other techniques
for gathering this data. The pacct (process accounting) files on the Cray X1 actually
contain a mix of two different types of records: one type contains data associated with
each process, while a second record type contains data pertaining to application use.
Commands (non-applications) have only a process record, while applications have both a
process record and an application record. One way to get easy access to the data in both
of these record types is via the Cray-supplied “acctcom” command.

Process Accounting and “acctcom”

The acctcom command has effectively two major modes – one that reports on processes
(the default), and a second mode, invoked by the “acctcom –A” parameter that reports
solely on application records. The following table summarizes the fields available in the
process records, the meaning of that field, and the acctcom parameter that is used to
display that value on the acctcom output:

Accounting field

“acctcom” option Definition

ah_flag -f Process flags
acc_uid * User

acc_status -f Exit status
acc_btime * Start time
acc_etime * Elapsed time
acc_comm * Command name

ac_gid Group
ac_acid -p Account ID (project)
ac_tty * Terminal
ac_pid -p Process ID
ac_apid -p Application ID
ac_sid -p Session ID

ac_utime -t User CPU time
ac_stime -t System CPU time
ac_mem -k Memory integral

ac_himem * Memory hi-water
ac_io -i Characters transferred

Table 1. Process accounting fields and acctcom options

An asterisk denotes that the field is provided by the default acctcom output.

Copyright © 2006 The Boeing Company. All rights reserved.

As can be seen by the table above, every process accounting field except ac_gid (group)
is available with the right set of option flags (“acctcom –fikpt”, for example). In some
cases, there is more than a single display option (such as average memory vs. memory
integral), but the above table reflects the most direct relationship between process
account file fields and acctcom output.

Application Accounting and “acctcom –A”

“acctcom –A” reports only on application records. The following table illustrates the
relationship between application accounting record fields and “acctcom -A” output:

Accounting field “acctcom –A” option Definition

acc_uid * User
acc_status Exit status
acc_btime * Start time
acc_etime * Elapsed time
acc_comm * Command name
acap_apid * Application ID
acap_sid Session ID

acap_ltime * Launch time
acap_flags * Application flags
acap_width * Application width
acap_depth * Application depth
acap_ctime * Connect time
acap_acid Account ID

acap_txt_pgsiz -L Text page size
acap_oth_pgsiz -L Non-text page size
acap_place_cnt -L Placement count

Table 2. Application record fields and acctcom options

In general, most fields are included by default. The “-L” option adds information about
memory usage and placement count. No other options are allowed. For the application
records, however, there are a few fields that are unavailable via acctcom: exit status,
session (job) ID, and account ID. All of these fields are available in the corresponding
process records, and the acctcom output for those records, but the lack of a direct output
option using “acctcom –A” means that a site that wants to bill or track application usage
cannot use the “acctcom -A” output alone for such processing if either job-based or
project based reporting is desired.

Sites that need job or project based accounting, wish to use “acctcom” as their tool for
data extraction, and require data from the “acctcom –A” output may wish to use the

Copyright © 2006 The Boeing Company. All rights reserved.

application ID (apid) which is common to both reports to tie the two report types
together.

Conclusion

We have created a local job-based accounting system, which generates output which is
useful to users, administrators, and downstream processes. Cray’s inclusion of both a job
and a project ID in each process record made this possible, and allowed us to tie together
data from a variety of sources including process accounting records, the PBS accounting
logs, and the UNICOS job table.

Building programs that process pact data is not difficult, and offers maximum
completeness and flexibility in data collection. For sites that wish to avoid such coding,
the acctcom command offers the vast majority of the process and application record data
in an easy-to-process text form.

Job-based accounting offers a number of benefits, including relatively modest data size,
natural fit for user perceptions, and far more options for workload analysis and
forecasting. It has been well received by our users, and we expect to make increasing use
of this data in the future.

About the Author

Jim Glidewell has been a member of Boeing’s HPC group for over twenty years,
working on a variety of systems from Cray, SGI, CDC, and others. He is currently
serving as the CUG X1/E Systems SIG Chair. He can be reached at The Boeing
Company, P.O. Box 3707 MC 7J-04, Seattle WA 98124-2207; E-mail:
james.glidewell@boeing.com

