The Supercomputer Company

Use of Common Technologies between XT and Black Widow

CUG 2006

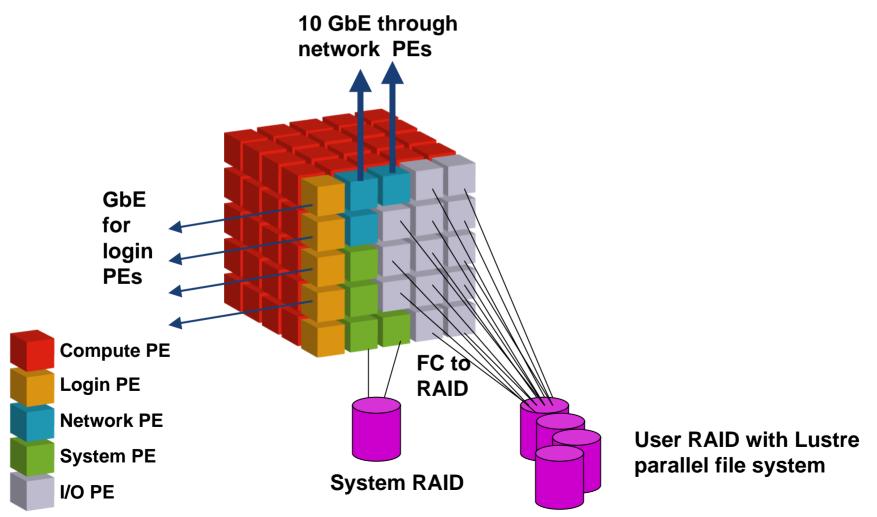
This Presentation May Contain Some Preliminary Information, Subject To Change

Agenda

- System Architecture Directions
- Software Development and Customer Rationales
- Software Stack
- Status

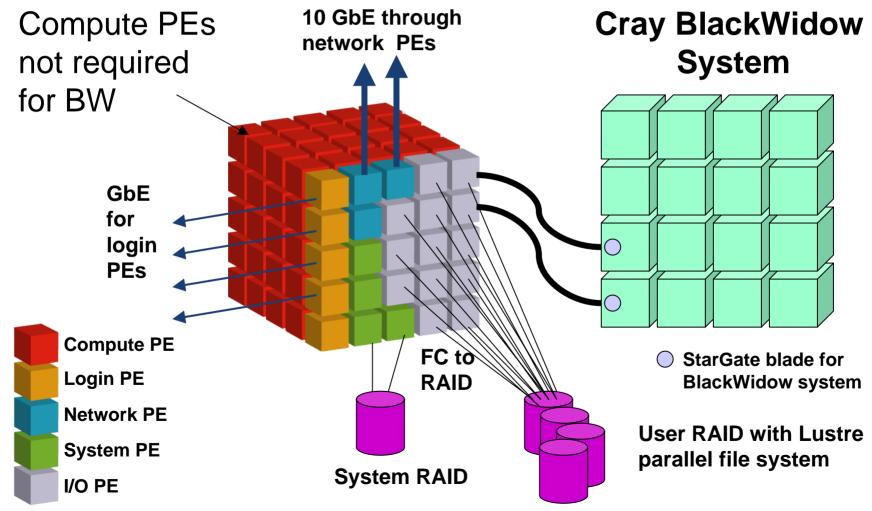
Hardware Commonality

2000						
Component	X1E	XD1	XT3	Eldorado		
Processor	MSP	Opteron	Opteron	Threadstorm		
Interconnect	2-D Torus	RapidArray Direct or Fat Tree	SeaStar 2D-Mesh or 3D-Torus	SeaStar 3D-Torus		
External Disk	FC RAID	FC RAID	FC RAID	FC RAID		
Memory	RDRAM(custom)	SDRAM	SDRAM	SDRAM		
I/O Subsystem	Custom	HT to PCI-x	HT to PCI-x	Same as XT3		
System Mgmt	Custom	AM	CRMS	CRMS		


2007

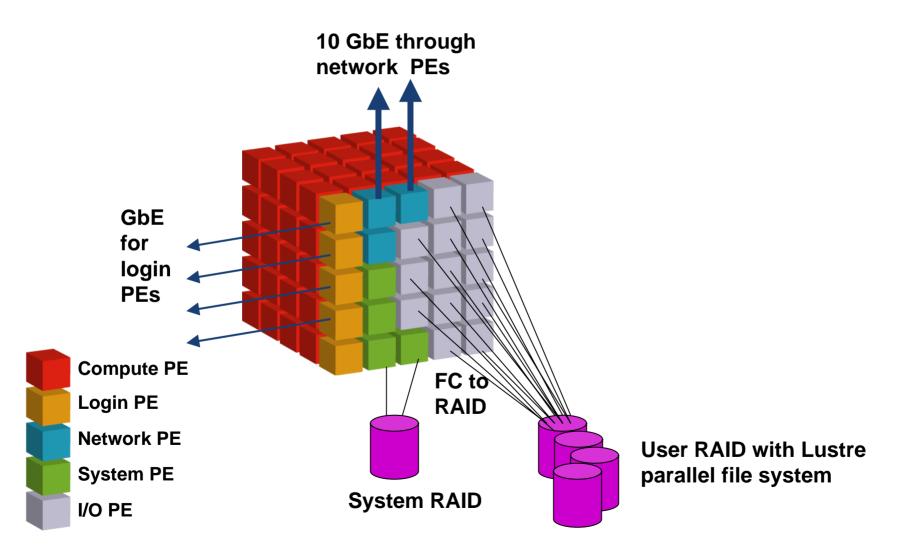
Component	BlackWidow	Hood	Eldorado
Processor	SSP VCPU	Opteron	Threadstorm
Interconnect	Fat Tree	SeaStar 2D-Mesh or 3D-Torus	SeaStar 3D-Torus
Disk	FC RAID	FC RAID	FC RAID
Memory	DDRII (custom)	SDRAM	SDRAM
I/O SubSystem	Hood	HT to PCI-x/e	Hood
System Mgmt	HSS	HSS/CRMS	HSS/CRMS

5/10/2006

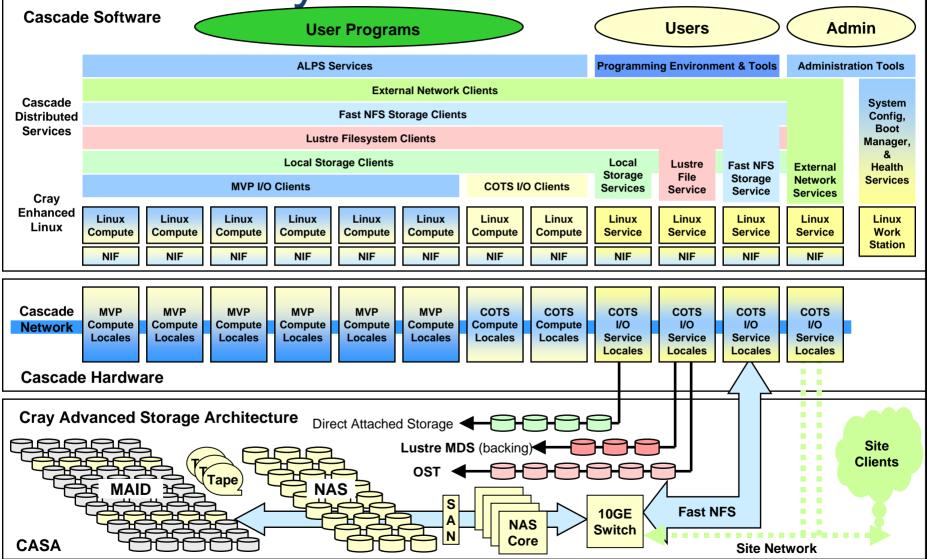

Rainer – XT3 Architecture

This Presentation May Contain Some Preliminary Information, Subject To Change

6


Rainer and Black Widow

This Presentation May Contain Some Preliminary Information, Subject To Change



Rainer – Eldorado Architecture

The Supercomputer Company

Cascade System Architecture

Software Development and Customer Rationales

CRAY

Software Development Rationale

- Inside Software Development Common Software for any active development is a big goal -
 - A common base will allow more developers to work on the code and more runtime on the code at more sites
 - Common processes and tools will allow development to be more agile
 - Efforts underway to set up common repositories and make development processes common
- Heterogeneous Systems will require a higher level of integration and sharing of technologies
- Common base is required to integrate future Scalar products with Cascade's vector and threaded capabilities

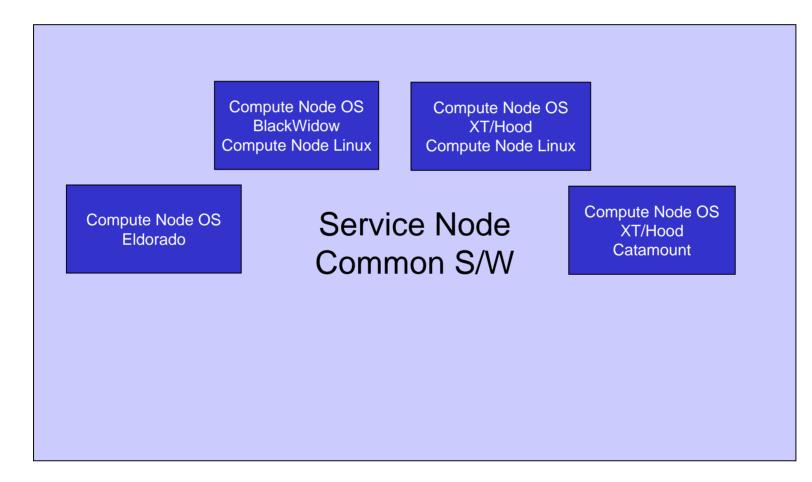
Goal is to leverage all program efforts into a superior integrated whole

Customer Rationale

- For the User and Administrator fewer and more common interfaces
- More confidence from the testing and usage of software
- Easier to add and support mixed Cray environments
- Leads to the future heterogeneous systems

Used Software is a positive

The Supercomputer Company


Software Stack

Software Commonality

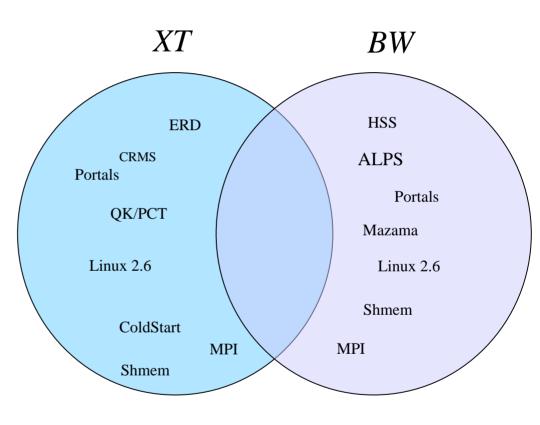
	Component	X1E	XD1	XT3	Eldorado
2 0 5	OS	UNICOS/mp IRIX-based	Linux	UNICOS/lc Catamount (compute) Linux (SIO)	UNICOS/mt MTX OS-based (compute) Linux (SIO)
	System Mgmt	SSI; IRIX Sys Mgmt	Active Manager	CRMS + Linux mgmt	CRMS with Eldo extensions
	File Systems	XFS; ADIC StorNext	Lustre, NFS	Lustre	Lustre
	Workload Manager	PBS Pro; LSF	PBS Pro; LSF	PBS Pro	MTA2 tools; MTX schedulers
	Compilers	Cray Fortran, C/C++, UPC, Co-Array Fortran	Fortan, C/C++ (PGI, Pathscale, Absoft) Java	Fortran, C/C++ (PGI)	Eldo Compiler - C/C++
	Programming Env	MPI 1.2, SHMEM, OpenMP, CrayPAT, Cray Apprentice2	MPI 1.2, MPI-IO, SHMEM, OpenMP, CrayPAT, Apprentice2	MPI 2.0, SHMEM, CrayPAT, Cray Apprentice2	MTA-2 Tools
	Component	BlackWidow	Hood		Eldorado
	OS	Linux	Linux	Catamount	UNICOS/mt MTX OS-based (compute) Linux (SIO)
2 0	System Mgmt	Mazama	Mazama	Mazama/CPA	Mazama with Eldo extensions
0	File Systems	Lustre	Lustre		Lustre
7	Workload Manager	PBS Pro; LSF	PBS Pro; LSF		MTA2 tools; MTX schedulers
	Compilers	Cray Fortran, C/C++, UPC, Co-Array Fortran	Fortran, C/C++ (PGI, PathScale)		Eldo Compiler - C/C++
5/10	Programming Env /2006	MPI 2.0, SHMEM, OpenMP, CrayPAT, Cray Apprentice2	MPI 2.0, OpenMP, SHMEM, CrayPAT, Cray Apprentice2		MTA Tools, Cray Apprentice2

Common Software Example

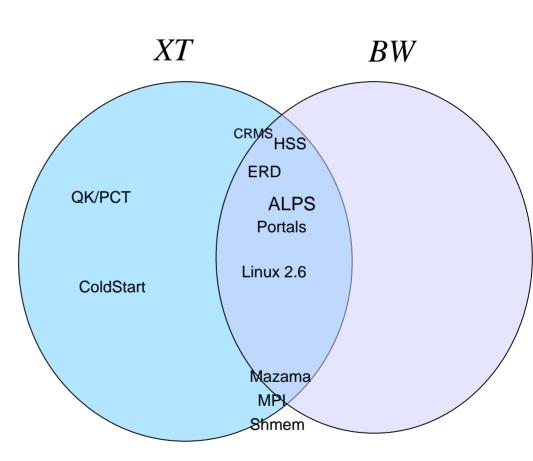
LRAy

Common Software Example

Compute Node OS Eldorado Service Node Common S/W Compute Node OS XT/Hood Catamount


Common Software - differences

- Common Node SW
 - Common services/code aka distribution
 - Kernel common source
- Architecture specific OS/Drivers/services
 - XT LWK node OS
 - BW LWK node OS
 - Eldorado LWK OS
 - Catamount OS
- Application architecture differences
 - Kernel drivers
 - SeaStar
 - StarGate
 - PE environments (Vector/Scalar)
 - Compilers
 - Libraries


Existing Software XT/BW

- XT has 140,000 C files
- XT proven at scale.
- XT proven software stack
- BW using newer components (kernel, libraries)
- BW not released yet, zero legacy support

Merging Software XT/BW

- Common software ported to both platforms
- Some differences because of machine dependent support

BW and XT3/Hood Commonality

Software

Hardware Dependencies

MPI/SHMEM				
СРА	ALPS			
Lustre				
SUSE Linux Environment	SUSE Linux Environment			
SDB	Mazama			
Portals	Portals			
Catamount	Compute Node Linux			
I/O Environment (architecture, device support)				
CRMS	Hardware Supervisory System			

BW and XT3/Hood Commonality

Common Software Hardware Dependencies MPI/SHMEM ALPS Lustre **SUSE Linux Environment** Mazama **Portals Compute Node Linux** I/O Environment (architecture, device support) Hardware Supervisory System

Status

- Work on Common Software Repositories is underway
- Common Development Processes are also underway (differences have been reduced in past year)
- Common tools and integrated work schedules are being discussed