
Performance Characteristics of Cache Oblivious Implementation
Strategies for Hyperbolic Equations on Opteron Based Super

Computers

David Hensinger, Sandia National Laboratories;
Chris Luchini, Sci Tac LLC;
Matteo Frigo, IBM Austin Research Laboratory;
Volker Strumpen, IBM Austin Research Laboratory.

ABSTRACT: For scientific  computations,  moving data  from main memory into  the
processor  cache  incurs  significant  latency  and  comes  at  the  expense  of  useful
calculation.  Cache oblivious strategies attempt to amortize the costs  of  movement of
high latency data by carrying out as many operations as possible using in-cache data.
For  explicit  methods  applied  to  hyperbolic  equations,  cache  oblivious  algorithms
advance regions of the solution domain through multiple time steps. Success of these
strategies hinges on whether the performance advantage associated with computing on
in-cache data offsets the overhead associated with managing multiple solution states.
The performance characteristics  of  several computational  kernels  implemented using
cache oblivious strategies were tested.

KEYWORDS: Cache oblivious stencil computations, Performance analysis

1. Introduction

Since  scientific  data  sets  tend  to  consume  a
significant fraction of main memory (DRAM, Gigabytes in
size), calculation performance is frequently limited by the
processor  cycles expended moving data from DRAM to
caches  (Megabytes  in  size)  and  thence  to  registers
(Kilobytes  in  size).   For  this  reason  taking  into
consideration the locality of reference of memory access
and the efficiency of caching can be a very important part
of  application  performance.   Cache  oblivious  strategies
seek  to  improve  processing  performance  by  arranging
operations on spatially coherent problem sub-domains to
allow re-use of cached data.  The re-use of in-cache data in
these  sub-domains  is  achieved  by  performing  multiple
iterations  on each sub-domain during each visit.   In the
case of the transient solution of hyperbolic equations, this
amounts to moving a sub-domain several steps forward in
time  during  each  visit.   This  approach  is  significantly
different  from using  worksets  in  which  data  is  copied
explicitly into and out of a contiguous buffer area in main

memory on the assumption that the copying overhead will
be amortized by subsequent cache efficiency. 

Cache  oblivious  strategies  for  stencil  computations
will  be  outlined,  next  the  computational  kernels  and
implementation  strategies  used  will  be  introduced,  and
finally  performance  results  will  be  presented  and
discussed.

2.  Cache Oblivious Strategy

Kernels
The  cache  oblivious  approach  for  stencil

computations  requires  that  the  calculation  can  move
forward by repeated application of a computational kernel
to a subset of the computational domain.  The effect that
cache oblivious strategies have on application performance
is  dependent  upon  the  efficiency of  the  kernel.   If the
kernel  is  inefficient,  then  the  application  of  cache
oblivious algorithms will have little effect.

CUG 2006 Proceedings 1 of 5



Recursive Partitioning
The  cache  oblivious  strategies  tested  here  were

developed by Frigo and Strumpen [2], based on the work
of Frigo et  al.  [1].   The cache oblivious strategy has  a
parameter K representing the maximum number of steps
for which a sub-domain may be evolved independently in
time, and another parameter SIGMA that characterizes the
stencil of dependency between time steps. For example, if
in moving a computational cell forward from time step t to
time  step  t+1the  cell  depends  on  its  left  and  right
neighbors, then SIGMA would be 1. 

In the  context  of  a  cache  oblivious  strategy an  n-
dimensional  solution  domain for  a  transient  problem is
considered  as  n+1  dimensional,  with  time as  additional
dimension.  This  n+1-dimensional  solution  space  is
recursively bisected,  observing the data dependencies of
the stencil characterized by SIGMA.  The spatial domain
is  bisected  as  long as it  is  larger than that  required to
support K forward iterations.  If the spatial domain is not
divided,  then  the  temporal  domain  is  divided.   The
recursion terminates when the size of the temporal domain
is 1.  The recursion is structured such that the kernel will
then be called on the resulting spatial domain for K steps.
An implementation of this recursive function  walk in the
C language appears in Appendix A.  

Putting it Together
A  cache  oblivious  implementation  consists  of

repeated  top  level  calls  to  the  recursive  partitioning
function  walk.   Each of these top level calls  moves the
entire domain forward by K time steps.  The leaves of the
recursive decomposition call the computational kernel at
each point of the spatial domain and for each time step.

The choice of the number of time steps K in the top
level calls to walk affects the performance, because larger
values  of  K  increase  the  temporal  locality  created  by
procedure  walk.   It is  implied that the size of each time
step is pre-determined for each of the K steps.  Should the
size of the time step be adapted as the problem evolves
during  those  K  steps,  then  the  solution  may  become
unstable due to violation of Courant or other limits.  In the
extreme case,  when K is  reduced  to  1,  the  benefits  of
cache oblivious strategies are negated because each cell is
advanced one  step  during each sweep across  the  entire
domain.

Accommodating Multiple Time States
The cache oblivious implementation requires different

subdomains of a solution exist at different time states at
the same stage of a simulation. Since all but the simplest
stencils  require information from the previous time step,
care  must  be  taken  to  provide  access  to  the  proper
temporal and spatial data to evolve the solution. 

Two  data  structures,  toggle  arrays  and  boundary
passing variables, are often used to store the state of the

computational domain.  Here, toggle arrays were used in
all programs. This approach duplicates the time dependent
data for the entire domain so there is always a copy of the
appropriate data available. It has the significant advantage
of being simple to  implement, although it  increases the
storage requirements for temporally dependent quantities
by a factor  of  two compared to  using a  few temporary
variables to pass values across spatial boundaries.

3. Kernel Tuning

Leaf Coarsening
 The spatial and temporal decomposition produced by

procedure  walk is  independent  of  both  the  data  layout
chosen  for  the  simulation  and  work  carried  out  in  the
kernel.  In some applications, where the kernel produces
only a handful  of floating point  operations (flops),   the
amount of computation can be dominated by the overhead
due to the recursive function calls of procedure walk.   In
this case the cache oblivious algorithm can be refined by
“leaf coarsening.”   To that end the time cut of procedure
walk  is  modified  by  introducing  a  parameter  V  (for
Voodoo) such that the kernel is called if delt = 1 or if the
size of the spatial domain is less than the V parameter, see
Appendix  A.   The  kernel  is  modified  accordingly  to
handle multiple time steps.

If the V parameter increases beyond the size of the
entire problem, the strategy is  no longer cache oblivious
and reduces to the ordinary iterative algorithm.

Loop Unrolling
A leaf  coarsened  kernel  should  contain  sufficiently

many flops to amortize the overhead of the recursion.  In
particular,  the  leaf  coarsened  kernel  traverses  a  convex
subdomain of the problem.  Floating point performance of
these  kernels  can  be  significantly  enhanced  by  loop
unrolling.  We  found  that  manual  loop  unrolling  is
generally  superior  to  automatic  compiler  optimizations,
which rarely produce  efficient  instruction  schedules  for
the processors under investigation.

4.  Test Kernels

3D Arbitrary Work Kernel
This  kernel  was  concocted  to  execute  48  flops,

including  one  division,  during  each  evaluation.  The
calculation  consists  of  a  summation  of   “P”  from all
adjacent  cells,  an  accumulation  of  “RT”  from  face
neighbours, and a calculation of “T” from the result.

This kernel uses only a single centering of quantities.
Toggle  arrays  were  used  to  manage  quantities  from
alternating time steps.   The original kernel program was
programmed carefully with high-performance in mind.

CUG 2006 Proceedings 2 of 5



3D Arbitrary Work Kernel the “Wrong Way”
This  kernel  was  identical  to  that  above,  but  the

calculation  progressed over the  three dimensional  (i,j,k)
data  array in  the  “wrong” order  so  that  stride-one data
access  was never performed.  This  orchestrated mistake
illustrates the resilience of cache oblivious strategies when
data are poorly arranged.

2D Lagrangian Hydrodynamics
A two dimensional Lagrangian hydrodynamics kernel

was  produced  by  consolidating  the  ALEGRA
hydrodynamics advance time function call sequence into a
single file and then greatly simplifying it.   The resulting
kernel supports a single ideal  gas material  and artificial
viscosity but no longer supports hourglass control.   The
kernel  contains  three  main  loops.  First  a  loop  over
elements to accumulate forces to nodes.  Next a loop over
nodes  to  calculate  new  accelerations,  velocities,  and
positions,  and  finally  a  second  loop  over  elements  to
update material properties prior to the next time step. 

 The kernel  contains  more than  1,000  flops.   As a
consequence,  the  recursion  overhead  due  to  procedure
walk is negligible compared to the kernel compuation, and
leaf coarsening is not necessary. 

The ALEGRA code uses variables centered at nodes
(acceleration,  velocity, force) as well  as at  the elements
(internal  energy, pressure).  The stencil  for  ALEGRA is
such that an element at time t+1 depends on all adjacent
elements and their nodes at time t.   For the purposes of
cache oblivious implementation this requires a SIGMA of
2.  The storage of multiple state  values is  organized in
toggle arrays with two time steps for all time dependent
element and nodal quantities.

2D Lax-Wendroff
A Lax-Wendroff kernel  was programmed to solve a

simple advection equation on a rectilinear grid with cell
centered quantities.  This kernel contains only 9 flops, and
was  extensively tuned   using  leaf  coarsening  and  loop
unrolling.   Multiple  time step  quantities  were managed
using toggle arrays.

5.  Results

We report  millions  of  floating point  operations  per
second (mflop/s) for all kernels described in the previous
section.  Measurements were performed on an Intel Xeon
processor running at 2.8Ghz, an AMD Opteron Processor
running  at  2.1Ghz,  and  an  IBM  Power5  running  at
1.66GHz. The Xeon and Power5 programs were compiled
with gcc -O3 and on the Opteron we used the pgi compiler
with -O3.  The results tabulated below illustrate the range
of performance improvements that  can be expected from
cache  oblivious  formulations.   Performance  varies
significantly  depending  on  the  compiler/processor  pair.

The results also help to explain the causes of the variation
in the performance of cache oblivious  traversals.  In short,
if the kernel performance is too low, the program is not
memory  bound,  and  cache  oblivious  traversals  cannot
improve  performance.   In  contrast,  if  the  program is
memory bound (which implies that the kernel performance
is  high),  then  we  observe  significant  performance
improvements with cache oblivious traversals.

3D Arbitrary Work Kernel
The  performance of  the  arbitrary  work  kernel  was

examined by reducing the problem size until it would fit
within  the  L1-cache.   On  the  Opteron  this  in-cache
problem producs 920 mflop/s, on the Xeon 801 mflop/s,
and  on  the  Power5  1188  mflop/s.   Given  the  data
dependencies  of  the  kernel  computation,  these
performance numbers  are  reasonable,  although  they are
only in the range of 50% or less of processor peak.  These
performance numbers constitute an upper bound for larger
problem sizes that do not fit into cache.  

Table  1  reports  mflop/s  for  measurments  with  an
iterative traversal of the domain, and two cache oblivious
versions,  one  without  leaf  coarsening  (V=1)  and  the
second with leaf coarsening (V=100).  The fact that  the
performance of the iterative version drops by about 40%
compared  to  the  small  kernel  that  fits  into  L1-cache
indicates that  the problem is  memory bound rather than
processor bound.  Although the performance of the cache
oblivious algorithm on large problems is somewhat lower
than  the  in-cache  performance,  the  cache  oblivious
algorithm  is  an  improvement  over  the  iterative
implementation.

3D Arbitrary Work Kernel the “Wrong Way”
When the arbitrary work kernel problem was modified

by requiring the memory access to abandon stride one, the
performance of the non cache oblivious formulation was
significantly  degraded  on  all  three  processors.   When
cache  oblivious  traversal  was  turned  on  for  this  poor
memory layout,  performance on the Opteron returned to
close to its best. This suggests that an application that has
poor  memory  layout  (perhaps  allocated  in  an  ad-hoc
manner),  but  exhibits  spatial  data  coherence  can
substantially benefit from cache oblivious strategies.

CUG 2006 Proceedings 3 of 5



Table 1. Mflop/s for 3D Arbitrary Work Kernel, K= 8. 

Xeon Opteron Power5

Iterative/fits in L1 800 920 1188

Iterative 480 650 650

cache  oblivious
V=1 660 568 690

cache  oblivious
V=100 590 690 800

Wrong  Way
iterative 130 151 90

Wrong  Way  cache
oblivious V=1 590 740 570

Wrong  Way  cache
oblivious V=100 650 800 590

2D Lagrangian Hydrodynamics
The kernel  performance of  small  in-cache problems

on the Opteron is 810 mflop/s, on the Xeon 538 mflop/s,
and on the Power5 with a peak performance of 6.6 Gflops,
the  kernel  performance of  541  mflop/s  constitutes  only
8% of peak floating point performance.  Consequently, we
do  not  expect  a  performance gain  from using  a  cache
oblivious traversal for this application.

Mflop/s  results  comparing  iterative  with  cache
oblivious  versions  are  shown  in  Table  2.     The  best
performance on  the  Xeon was attained  with  the  simple
iterative  version,  without  application  of  the  cache
oblivious traversal.  On the Opteron and the Power5 the
best performance resulted from the cache oblivious version
with leaf coarsening (V=100).  It should be noted that this
kernel  duplicates  some  computational  effort  on  the
boundaries of the computational subdomain. The number
of floating point operations for the different traversals are
included in Table 2.

Despite  the  lack  of  improvement on  the  Xeon and
only modest gains on both the Opteron and the Power5, it
should be noted that in creating this  kernel the advance
time step  was  simplified  from several  dozen  cascading
function  calls  to  a  single  700+  line  kernel  function.
During this process, the performance of the advance time
function increased by more than a factor of two.

Table 2. Mflop/s for 1,000,000 element 2D Lagrangian
hydrodynamics problem with K=10.

Xeon Opteron Power5

Iter/fits L1 538 810 541

Iterative

6.0x109 flops 463 605 494

CO V=1

7.3x109flops 428 690 520

CO V=100

6.8x109flops 446 739 539

2D Lax-Wendroff
  Table  3  suggests  the  performance improvements

possible when the cache oblivious formulation is  paired
with a tuned kernel.  The Lax-Wendroff kernel exploits
leaf coarsening as well as loop  unrolling to  marginalize
the recursion overhead.  For this kernel, the unoptimized
performance  for  in-cache  problem  on  the  Xeon  was
extremely poor.  After  manual  code  tuning,  performance
improved significantly.  On a 16 Million  point  problem
the iterative traversal reduces performance to about 50%
of the in-cache performance on the Opteron and to about
70%  on  the  Xeon  and  Power5.   The  cache  oblivious
traversal  restores  the  Opteron  and  Power5  performance
surprisingly  close  to  that  of  the  in-cache  performance.
Thus, the cache oblivious version turns the program from
being memory bound into one that is nearly independent
of the memory.  

Table 3. Mflop/s for 2D Lax-Wendroff solutions with
K=100.

Xeon Opteron Power5

Unoptimized Iterative
fits in L1 Cache 70 520 420

Optimized  Iterative
fits in L1 Cache 1050 1470 1774

Optimized Iterative 758 747 1280

Optimized  Cache
Oblivious 559 1410 1621

CUG 2006 Proceedings 4 of 5



6. Conclusions

Successful  application  of  cache oblivious  strategies
for  performance  improvement  depends  on  whether  the
kernel  is  processor-bound  or  memory-bound.  If  the
floating  point  performance  of  the  kernel  is  poor,  the
potential benefit of a cache oblivious strategy  is reduced.
If  the  computational  kernel  is  efficient  per  se  but  its
performance is limited by memory accesses, then a cache
oblivious approach can significantly improve performance.
Independently  of  the  performance  impact  of  a  cache
oblivious  approach,  reducing  a  calculation  to  a  single
computational  kernel  may already  provide  performance
benefits.  The impact  cache oblivious  strategies  have on
application performance is sensitive to the performance of
the  kernel  computation,  which  depends  on  the  code
structure  (leaf  coarsened,  loop  unrolling,  etc.)  and  the
compiler/processor pair.

About the Authors

David  Hensinger  dmhensi@sandia.gov is  a  staff
member  at  Sandia  Nation  Laboratories  in  the
Computational Physics Research and Development group.
P.O. Box 5800, Albuquerque NM,  87185-0378

Chris  Luchini  (cbluchi@sandia.gov) is  the  CEO of
Sci  Tac  LLC  a  technology  consultancy  based  in  Los
Alamos  New  Mexico,  and  a  contractor  for  Sandia
National Laboratories.

Volker Strumpen and Matteo Frigo are Research Staff
Members  at  IBM's  Austin  Research  Laboratory,  11501
Burnet Road, Austin, TX 78758.

Appendix A: Cache Oblivious 2D Walk
Function “C” Code with Leaf Coarsening for
Toggle Arrays

void walk(int t0, int t1, cut * cuts, float *** tsa){
  const int SIGMA = 1;
  int delt = t1-t0;
  if((delt == 1) || (((cuts[0].x1 - cuts[0].x0) * (cuts[1].x1 - cuts[1].x0)) <
V)){
    basecase(t0,t1,cuts, tsa);
  }  else if (delt > 1){
    if  (2*(cuts[1].x1-cuts[1].x0)+(cuts[1].x1dot-cuts[1].x0dot)*delt  >=
4*SIGMA*delt){//dim1 cut
      cut save = cuts[1];
  int xm = (2*(save.x0+save.x1)+(2*SIGMA + save.x0dot + save.x1dot)
*delt)/4;
      cuts[1] = cut(save.x0,save.x0dot,xm,-SIGMA);walk(t0, t1, cuts, tsa);
      cuts[1] = cut(xm,-SIGMA,save.x1,save.x1dot);walk(t0, t1, cuts, tsa);
      cuts[1] = save;//restore configuration
    } else if(2*(cuts[0].x1-cuts[0].x0)+(cuts[0].x1dot-cuts[0].x0dot)*delt
>= 4*SIGMA*delt){//dim0 cut
      cut save = cuts[0];
      int  xm =  (2*(save.x0+save.x1)+(2*SIGMA  +  save.x0dot  +
save.x1dot)*delt)/4;
      cuts[0] = cut(save.x0,save.x0dot,xm,-SIGMA);walk(t0, t1, cuts, tsa);

      cuts[0] = cut(xm,-SIGMA,save.x1,save.x1dot);walk(t0, t1, cuts, tsa);
      cuts[0] = save;//restore configuration
    } else { //cut time
      int s = delt/2;
      cut new_cuts[2];
      walk(t0, t0+s, cuts, tsa);
      for( int i = 0; i < 2; i ++){
        new_cuts[i] = cut(cuts[i].x0 + cuts[i].x0dot*s, cuts[i].x0dot,
                          cuts[i].x1 + cuts[i].x1dot*s, cuts[i].x1dot);
      }
      walk(t0+s,t1,new_cuts,tsa);
    }
  }
}

References:
1. Matteo  Frigo,  Charles  E  Leiserson,  Harald  Prokop,

and  Sridhar  Ramachandran.  Cache  Oblivious
Algorithms. In Proc. 40th Ann. Symp. Foundations of
Computer  Science (FOCS'99),  New  York,  NY,
October 1999.

2. Matteo  Frigo,  Volker  Strumpen,  Cache  Oblivious
Stencil Computations, Proceedings of the 19th Annual
International  Conference  on  Supercomputing
(ICS'05), pp 361-366, Boston, MA, June 2005.

CUG 2006 Proceedings 5 of 5


