
Chapel: Cascade High-Productivity Language

An Overview of the Chapel Parallel Programming Model∗

Steven J. Deitz Bradford L. Chamberlain Mary Beth Hribar

Cray Inc.
Seattle, WA 98104

{deitz,bradc}@cray.com

Abstract

Chapel, which stands for Cascade High-Productivity Language, is a new parallel programming language
being developed at Cray Inc. as part of Cascade, a project at Cray funded by the DARPA High-Productivity
Computing Systems (HPCS) program. This paper will overview Chapel’s parallel programming model,
discuss its data- and task-parallel language abstractions, and show how the abstractions can be composed,
allowing the programmer to write simple programs that, if written with today’s most popular parallel
programming facilities, would be complex, difficult-to-maintain codes.

1 Introduction

Chapel, Cascade High-Productivity Language, is a
new parallel programming language designed with
productivity in mind. It is being developed at Cray
Inc. as part of Cascade, a project at Cray funded by
the DARPA High-Productivity Computing Systems
(HPCS) program. The goal of this program is to pro-
duce an advanced high-performance computing sys-
tem that is highly productive for its users. The moti-
vation behind this program is simple. It has become
too difficult to program today’s supercomputers.

To cope with this difficulty, Chapel targets both
algorithm experimentation/development and produc-
tion deployment, and it tries to bridge the gap be-
tween the two kinds of programs. To this end, Chapel
borrows many language aspects from modern pro-
gramming practice, and integrates them with high-
performance parallel language abstractions.

The target machine for Chapel is a parallel comput-
ing system with an arbitrary number of homogeneous
processors. Chapel is an explicitly parallel program-
ming language so the programmer is responsible for
identifying the available concurrency in code. How-
ever, the system manages the details of implemen-

∗This work was funded in part by the Defense Advanced Re-

search Projects Agency under its Contract No. NBCH3039003.

tation, such as communication and data allocation,
thus making programmers more productive.

This paper provides the following information:

• An overview of the Chapel parallel programming
model.

• An enumeration of the language’s abstractions
for data- and task-parallelism.

• A discussion of how the data- and task-parallel
abstractions can be composed, thus allowing the
programmer to write simple programs that, if
written with today’s most popular parallel pro-
gramming facilities, would be complex, difficult-
to-maintain codes.

For more information on Chapel, refer to the spec-
ification [2].

2 Parallel Execution

Chapel supports an advanced parallel programming
model that generalizes the programming model of
CSP-like languages and libraries, e.g., MPI [3], frag-
mented global address space languages, e.g., Co-
Array Fortran [4] and UPC [1], and global-view lan-
guages, e.g., HPF [4] and ZPL [5].

1



Chapel abstracts a parallel machine into units of
locality, called locales, and units of execution, called
threads. By distinguishing between threads and lo-
cales, Chapel is able to support and compose both
data- and task-parallel programming abstractions.

On most large-scale systems, it is faster to access
local memory than it is to access remote memory.
Chapel’s concept of locales allow programmers to op-
timize accordingly. A locale is a notion that has both
associated data and computation, i.e., both data and
threads can be associated with a given locale.

The locale is mapped to some aspect of the ma-
chine in an implementation-dependent manner. For
a cluster, for example, the locale may refer to a sin-
gle processor or chip. For a cluster of shared memory
nodes each with multiple processors, the locale may
refer to the nodes, but could also refer to each pro-
cessor within the nodes.

When a program is executed in Chapel, there is ini-
tially one thread running on one locale. Task-parallel
abstractions can be used to spawn additional threads
running on different locales or the same locale. Data-
parallel abstractions can be used to compute across
multiple locales with one conceptual thread.

3 Data-Parallel Abstractions

Chapel derives its data-parallel abstractions from
ZPL and HPF. Its main data object from which data-
parallelism is derived is the array, although arrays in
Chapel are more general than in the most program-
ming languages.

3.1 Arithmetic arrays

Chapel supports arithmetic arrays that are similar to
arrays in languages such as Fortran but that provide
enhanced functionality. As will be seen, a generalized
array is Chapel’s key data-parallel abstraction.

3.1.1 Domains

Like ZPL before it, Chapel distinguishes between the
indices over which an array is defined and the data
within that array by allowing the programmer to ab-
stract them separately. A domain is an index set
with no associated data. An array is declared over
such a domain. For example, the following code de-
clares a 2D domain over an n × n index set, another
2D domain over the interior indices, and an array of
floating-point values over all the indices:

var D : domain (2) = [1..n, 1.. n],

InD : domain (2) = [2..n-1, 2..n-1],

A, B : [D] float;

Domains benefit the programmer by abstracting
the indices into a named set. This generally results
in clearer, more concise code and often decreases the
likelihood of tedious indexing and resultant errors. In
the parallel context, domains provide the further ben-
efit of allowing a distribution to be associated with
an index set rather than a particular array of data.

Domains support iteration over their index set. For
example, the following code assigns the interior ele-
ments of B to the interior elements of A:

for i, j in InD do

A(i, j) = B(i, j);

3.1.2 Array indexing

Chapel provides a general means of accessing ele-
ments within arithmetic arrays. As seen in the exam-
ple above, arrays can be indexed by integers where
the number of integers is equal to the rank of the
array. This is equivalent to basic array indexing in
Fortran 77.

Arrays can also be indexed by tuples of integers
where the size of the tuple is equal to the rank of the
array. For example, the assignment of the interior
elements of B to the interior elements of A can also be
written as follows:

for i in InD do

A(i) = B(i);

Chapel allows arrays to be indexed by domains as
well. For example, we can also write the above com-
putation as follows:

A(InD) = B(InD );

Chapel also allows an array to be indexed by arith-
metic sequences. An arithmetic sequence is simply a
sequence of integers given by a lower bound, an upper
bound, and a stride. We already saw an arithmetic
sequence in our definition of the domains above. As
an example, we can assign the last column of B to the
first column of A as follows:

A(1..n, 1) = B(1..n, n);

Parentheses are used for zipper products whereas
square brackets are used for cross products. So the
major diagonal of A is accessed by indexing into A as
in A(1..n, 1..n) whereas all of the elements of A
are accessed via A[1..n, 1..n], or of course, simply
by A. As will be seen, this is a general mechanism in
Chapel that applies to function invocation as well.



3.1.3 Whole array operations

Arrays can be assigned to one another without in-
dexing into the arrays to access their elements. For
example, we can assign the elements in B to the ele-
ments in A by writing A = B. Whole array operations
are implemented with sequence semantics and the se-
quences must conform to one another in shape, i.e.,
must have the same rank and extent in each dimen-
sion. Thus a 1D array cannot be assigned to a 2D
array even if the number of elements in each of the
arrays are the same.

Scalar functions and operators can be applied to
whole arrays as well. In this case, the scalar function
is applied to each of the elements in the array. So for
example A + B evaluates to an array containing the
sums of the elements in A and B. Again, A and B must
conform to one another in shape.

Whole array operations are data-parallel opera-
tions by definition. Conceptually there is one thread
of execution and the operations are executed in par-
allel. Distributions allow the arrays to be stored on
multiple locales, much like in HPF and ZPL.

3.1.4 Other types of arrays

In addition to arithmetic arrays, Chapel also provides
sparse arithmetic arrays, associative arrays (which
support hash tables), opaque arrays (which support
arbitrary graphs), and product arrays (which sup-
port multidimensional arrays that are composed of
any combination of Chapel arrays). In addition, ar-
rays are extensible and can be defined by the Chapel
programmer, discussed in Section 3.4.

3.2 Distributions

A distribution maps the indices of a domain to lo-
cales. Arrays declared over domains that are not dis-
tributed are stored on a single locale as is any other
variable. For domains that are distributed, the array
is stored on the locales specified by the distribution.

Iteration over a distributed domain executes the
computation over the domain in the associated locale.
For example in the code

for i in D do

-- computation

the computation is executed on the locale that i is
mapped to by the distribution of D. This affinity can
be overridden by using the on statement as in the
code

for i in D do on D.locale (i+1)

-- computation

Here the computation is executed on the locale to
which i+1 is mapped. Note that i+1 must be in
the domain. The method locale defined on domains
returns the locale that an index in that domain is
mapped to.

Programmers can write their own distributions. In-
deed, there are no standard distributions in Chapel
although there is a provided library of distributions.
Thus user-defined distributions will be able to achieve
similar performance to provided distributions.

3.3 The forall statement

The forall statement is similar to the for statement
except that it can be executed in parallel. It thus ex-
tends data-parallel semantics to arbitrary statements.
For example,

f o ra l l i, j in InD do

A(i, j) = B(i, j-1) + B(i, j+1);

assigns the sum of the neighboring elements in the
rows of B to the elements in the interior of A.

3.4 Extensible Arrays

This subsection assumes elementary familiarity with
object-oriented programming concepts. Chapel sup-
ports classes that are similar to classes in Java and
C++, supporting an advanced notion of inheritance
and dispatch.

As mentioned previously, Chapel augments its
standard arrays by allowing programmers to create
their own implementations of Chapel’s generalized
notion of array. These extensions are enabled by
Chapel’s object-oriented programming abstractions.
Arrays are, with syntactic sugar, simply classes that
Chapel programmers can define.

3.4.1 The value class or record

Most classes in Chapel are reference classes so vari-
ables of a class type store a reference to an instance of
that class or a subclass. Chapel also supports value
classes or records. Variables of a record type do not
store references; instead, they store values from the
time they are declared. When two such variables are
assigned, the value is assigned, and the variables do
not alias.



For example, the arithmetic array, declared with
the syntactic sugar discussed in Section 3.1, is im-
plemented as a record. Its declarations is written as
follows:

record ArithmeticArray : Array {

...

}

3.4.2 The this function

Classes that implement arrays must specify an index-
ing function. The this function tells how the object
should be treated when it is used as a function, i.e.,
when the object is used as a function. It is equivalent
to overloading parentheses in C++.

For example, to implement a square arithmetic ar-
ray record, a programmer could define the this func-
tion in a record as follows:

record SquareArray {

var n : int;

...

function this(i : int , j : int ) {

return data(i + j * n);

}

}

In the code above, it is assumed that the elements
are stored in a one-dimensional vector. The indexing
function simply computes a position in that vector
for each element.

Tuples and variable-length argument lists allow the
programmer to create a rank-independent indexing
function. A mechanism for setter functions lets the
indexing function be used on the left hand side of an
assignment.

3.4.3 Scalar function promotion

Scalar function promotion, used as a mechanism to
enable whole array operations in Section 3.1.3, is gen-
eralized to classes that implement a this iterator. It
is similar to the this function in that it is used when
iterating over “this” array. For example, we can add
a this iterator to our square array above allowing it
to be used in whole array operations:

i terator this {

for i, j in [0..n-1, 0..n-1] do

yield this(i, j);

}

4 Task-Parallel Abstractions

Chapel provides a rich set of high-level task-parallel
abstractions. These concepts enable the user to con-
trol which portions of the code are executed concur-
rently and which portions are executed serially. Syn-
chronization is abstracted through reading and writ-
ing to special types of shared variables.

4.1 The cobegin statement

A cobegin statement contains a list of statements
that are executed concurrently. Each statement is
executed by its own thread. For example, in the code

cobegin {

x = analyze ();

y = evolve ();

}

the functions analyze and evolve are executed con-
currently.

Control continues after all of the statements in the
cobegin block have been executed.

4.2 The begin statement

The begin statement executes a statement in a new
thread. For example, in the code

begin x = analyze ();

...

a new thread is used to execute the analyze func-
tion. The main thread continues immediately, i.e.,
the analyze function is executed in parallel with the
balance of the code.

4.3 The serial statement

The serial statement is used to control whether a
parallel statement should be executed concurrently
or should be serialized. For example, the following
recursive sort function would be called in parallel un-
til the size of the data is small, in which case it would
be called serially:

function sort(A, low , high) {

ser ia l (high -low < 100) cobegin {

sort(A, low , low +(high -low )/2);

sort(A, low +(high -low )/2+1 , high );

}

merge (A, low , high);

}

The expression following the serial keyword is
evaluated and then the statement is evaluated regard-
less of the expression’s value. If the value evaluates to



true, however, any dynamically encountered forall

or cobegin statement is executed serially.

4.4 The single variable

Single assignment variables are declared by adding
the keyword single at the beginning of a variable
declaration. For example,

single var x : int;

declares a single assignment variable of type integer.
Such variables may only be assigned once dynami-
cally. Any read of the variable before it is assigned
causes the thread to suspend execution and wait for
the variable to be assigned.

For example, in the code

single var x : int;

begin x = analyze ();

y = evolve ();

... x, y ...

the analyze function is executed by its own thread
while the main thread executes the evolve function.
In the last statement, the main thread waits until
the analyze function has finished executing and x

has been written. Note that this particular example
could also be written with a cobegin statement.

4.5 The sync variable

Synchronization variables generalize the single as-
signment variable to permit multiple writes. A syn-
chronization variable is declared using the sync key-
word instead of the single keyword.

Conceptually a sync variable is in one of two states.
It is either empty or full. Before it is assigned, it is
considered empty. When it is empty, threads that at-
tempt to read it are suspended until it is full. When
a thread does read it, it transitions to empty. When
it is full, threads that attempt to assign to it are sus-
pended until it is empty. When a thread does assign
to it, it transitions to full. When multiple threads are
suspended, one is chosen non-deterministically.

Synchronization variables allow a sequence of val-
ues to be communicated between threads using a sin-
gle shared variable. They also can be used as building
blocks for more traditional synchronization primitives
such as semaphores and monitors.

Synchronization variables support a read and write
method that allow a thread to read the variable but
not transition to an empty state and assign to the
variable but not transition to a full state.

5 Nested Parallelism

The data- and task-parallel abstractions of Chapel
can be arbitrarily composed. For example, in the
code

cobegin {

f o ra l l ij in D do

analyze (A(ij), B(ij));

f o ra l l ij in D do

C(ij) = evolve (A(ij), B(ij));

}

two conceptual threads are spawned to perform two
data-parallel computations that may each involve all
of the locales. This is a fairly common idiom for a
program that a scientist may want to write, but it
is very difficult to write it in today’s parallel pro-
gramming languages. Work on integrating task- and
data-parallel abstractions is not new, and the desire
to write codes like the above is the driving motiva-
tion.

In Chapel, task-parallel abstractions can be used
within the data-parallel context as well. The follow-
ing code illustrates how this might be done:

f o ra l l ij in D do

cobegin {

compute_produce(A(ij));

compute_consume(A(ij));

}

Chapel provides the ability to write complicated
parallel implementations of an algorithm easily, i.e.,
without managing all the details of communication,
etc. Moreover, constructs are supplied to control lo-
cality and degree of concurrency for deep control of
performance.

6 Conclusion

Chapel is a highly general parallel programming lan-
guage that unifies abstractions for data and task par-
allelism, allowing these abstractions to be arbitrarily
composed. By distinguishing between threads and
locales, Chapel is more flexible than previously pro-
posed parallel programming facilities.

References

[1] W. W. Carlson, J. M. Draper, D. E. Culler,
K. Yelick, E. Brooks, and K. Warren. Introduc-
tion to UPC and language specification. Techni-
cal Report CCS-TR-99-157, Center for Comput-
ing Sciences, Bowie, MD, May 1999.



[2] Cray Inc. Chapel Specification (Version 0.4),
February 2005.

[3] Message Passing Interface Forum. MPI: A
message passing interface standard. Interna-
tional Journal of Supercomputing Applications,
8(3/4):169–416, 1994.

[4] R. W. Numrich and J. K. Reid. Co-Array For-
tran for parallel programming. Technical Report
RAL-TR-1998-060, Rutherford Appleton Labora-
tory, Oxon, UK, August 1998.

[5] L. Snyder. Programming Guide to ZPL. MIT
Press, Cambridge, MA, 1999.


