
Cray and AMD Scientific Libraries

Mary Beth Hribar, Cray Inc., Chip Freitag, AMD,
Adrian Tate, Cray Inc., and Bracy Elton, Cray Inc.

ABSTRACT: Cray provides optimized scientific libraries to support the fast
numerical computations that Cray's customers require. For the Cray X1 and X1E,
LibSci is the library package that has been tuned to make the best use of the
multistreamed vector processor based system. For the Cray XT3 and Cray XD1,
AMD's Core Math Library (ACML) and Cray XT3/XD1 LibSci together provide the
tuned scientific library routines for these Opteron based systems. This paper will
summarize the current and planned features and optimizations for these libraries.
And, we will present library plans for future Cray systems.

KEYWORDS: LibSci, ACML, Cray X1, Cray X1E, Cray XD1, Cray XT3,
BlackWidow, scientific libraries

1 Introduction
Scientific libraries are a component of Cray’s

programming environment software. For each Cray
system, these libraries provide basic numerical functions
that have been highly tuned for that architecture. To
access the best performance of Cray systems, use these
libraries.

For the Cray XD1™ and Cray XT3™ systems, the
AMD Core Math Library (ACML) provides most of the
scientific library support. For convenience, ACML is
included in Cray’s software distribution. On the Cray’s
vector platforms, the Cray X1/X1E™ series systems and
the planned BlackWidow system, LibSci® contains the
scientific library routines.

This paper states the features, release schedules and
plans for Cray’s scientific libraries and ACML.

2 Cray XT3 Libraries
The Cray XT3 is a massively parallel processing

(MPP) system designed to provide the scalability,
performance and reliability to solve the most demanding
high performance computing problems. The Cray XT3
contains processor nodes in a high-bandwidth, low-
latency 3-D torus interconnect. Each node includes an
AMD Opteron processor, a dedicated memory and a Cray
SeaStar™ communication chip. The Cray SeaStar chip
contains a HyperTransport™ link to the Opteron
processor, a Direct Memory Access (DMA) engine to
manage memory accesses, and a router that connects to
the system interconnection network. The Cray SeaStar
chip offloads the communications processing from the
Opteron processor, increasing the efficiency of the

computation and communication within an application
program.

There are two types of nodes in the system. Service
nodes perform the functions needed to support users,
administrators, and applications running on compute
nodes. These nodes run a full-featured version of SuSE
LINUX. Compute nodes currently run a microkernel
named Catamount, developed by Sandia National
Laboratories. Later this year, a lightweight LINUX
kernel will also be available for the compute nodes.
Programming environment software, including scientific
libraries, is provided on both types of nodes.

The Cray XT3 programming environment includes
versions of the 64-bit AMD Core Math Library (ACML)
to support the GNU and PGI compilers. The Cray XT3
programming environment also includes a scientific
libraries package, Cray XT3 LibSci. It contains a much
smaller set of library routines than LibSci for the Cray
X1/X1E. The Cray XT3 1.4 release of Cray XT3 LibSci
will include:

• ScaLAPACK
• BLACS
• SuperLU_DIST

2.1 FFTs for Cray XT3
In the Cray XT3 1.4 release, the only FFTs available

to users are those in ACML. Starting with the Cray XT3
1.5 release, there will be more options for FFTs.

2.1.1 FFTW
In the 1.5 release, FFTW will be distributed as part of

the Cray XT3 software. Version 3.1.1 of FFTW will be
provided first, followed by version 2.1.5 later in 2006.

The first release of FFTW will provide the
performance of library as-is. Later, pre-built plans,
known as “Wisdom”, will be included with the library.
The FFTW Wisdom repository provides near optimal

CUG 2006 Proceedings 1 of 5

plans for the problem sizes and types it spans. (It is near
optimal because some items, e.g., data alignment, are not
captured via this mechanism.)

Version 2.1.5 will be provided for its distributed
memory parallel FFTs. Support for distributed memory
parallel FFTs was dropped in the 3.0 release of FFTW
and is still not provided in the 3.1.1 release. Users are
directed to use the older release to access the parallel
FFTs.

2.1.2 Cray FFT interface
Support for the Cray FFT interface will be available

in the 1.5 release. The Cray FFT interface will be
provided for those routines that map to ACML FFTs.
Setting the input parameter ISYS=0 in the Cray FFT
interface will result in the corresponding tuned ACML
FFT to be used.

Note that not all cases of the single processor Cray
FFT interface are supported in ACML. So, only a subset
of the total Cray FFTs will be provided. Furthermore,
users will need to pay attention to the “table” and “work”
array requirements. ACML FFTs use only one auxiliary
array while the Cray FFTs typically use two.
Consequently, in the Cray FFTs for the Cray XT3 system,
the “table” argument will also contain what would
otherwise be the separate “work” array. Please consult
the man pages for instructions for using the Cray FFTs.

The distributed memory parallel Cray FFTs will be
available to users in a later release. These routines call
the single processor version of the ACML FFTs.

2.2 ScaLAPACK for Cray XT3
In future releases of XT3 LibSci, ScaLAPACK will

be designed to exploit the XT3 communications system
by increasing message size and decreasing message
count. Since the communications methodology in
ScaLAPACK is currently governed by the initial
distribution of data amongst processors, this will require a
de-coupling of the linear-algebra block size from the
distribution block size. When those block sizes are no
longer coupled, smaller block sizes can be used for the
single processor computations and much larger block
sizes can be used in communications. Having the
flexibility to control these block sizes separately provides
more options for performance tuning.

Cray has been actively supporting the development
of the MRRR algorithm, the first O(n2) eigensolver for
the reduced tridiagonal system. The ScaLAPACK version
of this algorithm has been developed by Christof Voemel
from LBNL. Cray has been supporting this project due to
demand from the electronic structures community for
better symmetric eigensolvers. XT3 Libsci will include a
beta release of the code by the end of 2006.

2.3 Support for Sparse Iterative Solvers
We presently support SuperLU, a direct sparse

solver, and are developing library support for iterative
solvers. Most sparse systems that use the full scale of the

Cray XT3 system will demand application-specific
iterative solvers. Recognizing the enormous variety of
iterative methods, we will focus on providing optimized
building blocks for iterative solvers.

We plan to provide a set of routines that provide the
core functionality of the 2002 sparse BLAS standard
(sparse matrix-vector and matrix–block product,
triangular sparse solution for one or several right-hand
sides). We will provide an interface to these routines that
is usable by both PETSc and Trilinos, and also from the
user interface defined in Algorithm 818 from the ACM
TOMS collection. We initially plan to support as sparse
matrix representations the common compressed sparse
row form, the fixed blocked generalization provided in
PETSc and the variable blocked generalization used in
Trilinos. As optimizations, we will investigate the
preprocessing capabilities from OSKI and its blocked
variant of the CSR representation.

2.4 Goto BLAS
Cray is currently in the process of licensing the right

to distribute Goto BLAS on the Cray XT3 systems.
Kazushige Goto at the Texas Advanced Computing
Center developed the Goto BLAS. He tuned them for
Translation Lookaside Buffer (TLB) misses, and they
have shown better performance than routines tuned for
reuse of data in the cache. The Goto BLAS contain
single processor and threaded (OpenMP) versions of the
BLAS.

Our preliminary tests show that Goto BLAS provide
better performance than the ACML BLAS for complex
data types. For double precision real data types, the
ACML BLAS perform faster. We plan to offer Goto
BLAS in addition to ACML so that Cray XT3 users have
access to the best performing BLAS routines for all data
types.

3 Cray XD1 Libraries
The Cray XD1 is also an MPP system comprised of

AMD Opteron processors. The Cray XD1 operating
system is based on the SuSE Linux Enterprise Server
(SLES) distribution. This operating system supports both
32- and 64-bit applications. The programming
environment software includes 32- and 64-bit ACML
libraries, with versions to support the GNU and PGI
compilers. The OpenMP ACML is available in 32- and
64- bit versions for use with the PGI compilers.
ScaLAPACK and BLACS are also provided.

The current software release for the Cray XD1 is 1.4,
which will be generally available in the summer of 2006.

4 Cray’s Vector Libraries
Scientific libraries for Cray's vector systems are

contained in LibSci. In addition, the Libm library
contains C and Fortran mathematical intrinsics.

CUG 2006 Proceedings 2 of 5

The libraries for Cray's next generation vector
system, BlackWidow are based on X1/X1E libraries.
BlackWidow will have a faster CPU, and more memory
bandwidth than the X1E, though it will not have
multistreaming processors (MSP). BlackWidow, like the
X1 and X1E, combine vector processors with both shared
and distributed memory.

The Cray X1 and X1E systems are constructed of
nodes within a node interconnection network, each of
which contains four multistreaming processors (MSPs)
and globally addressable shared memory. Each MSP
contains four single-streaming processors (SSPs).

4.1 LibSci for Cray X1/X1E
LibSci provides Fortran interfaces for all routines. It

supports32- and 64-bit default data types. On Cray X1
and X1E systems, LibSci also supports MSP mode and
SSP mode. The latest release is LibSci 5.5.

4.1.1 Single processor routines
LibSci contains single processor support for:

• Fast Fourier transform (FFT), convolution,
and filtering routines

• Basic Linear Algebra Subprograms (BLAS)
• Linear Algebra Package (LAPACK)

routines
• Sparse direct solvers

Libm contains single processor support for:
• scalar mathematical intrinsics, such as EXP,

LOG, and SIN
• Vector mathematical intrinsics
• 32-, 64-, and 128-bit real types
• Random number generation
• Other C and Fortran language features

4.1.2 Distributed memory parallel routines
LibSci contains multiprocessor support in a

distributed memory environment for:
• FFT routines
• Scalable LAPACK (ScaLAPACK) routines
• Basic Linear Algebra Communication

Subprograms (BLACS)

4.1.3 Shared memory parallel routines
LibSci also contains four-way shared memory

parallel support across a single node for all Level 3 BLAS
routines and for the Level 2 BLAS routines sgemv,
dgemv, cgemv, and zgemv. This library is implemented
with OpenMP, and including the -lompsci option on the
link line accesses it.

4.1.4 Inlining LibSci
There is a small set of LibSci routines that can be

inlined with the -O inlinelib option. All Level 1 BLAS
routines can be inlined as well as some Level 2 BLAS
routines (sgemv, dgemv, cgemv, zgemv, sger, dger, cgerc,
cgeru, zgerc, and zgeru).

4.2 LibSci for BlackWidow
LibSci for BlackWidow supports the same

functionality as for the Cray X1/X1E systems, with a few
additional features. Also, since BlackWidow’s
processors are not multistreaming processors, LibSci is
not needed to support MSP and SSP modes of execution.

4.2.1 Additional shared memory parallel routines
LibSci for BlackWidow will contain additional

support for the four-way SMP nodes. In addition to
parallel BLAS, there will be parallel FFTs, some parallel
LAPACK routines (sgetrf, dgetrf, cgetrf, zgetrf, spotrf,
dpotrf, cpotrf, zpotrf, ssytrd, dsytrd, csytrd, zsytrd, ssytrd,
dsytrd), and parallel sparse direct solvers.

These parallel routines will be implemented with
OpenMP and will be integrated into LibSci. It will no
long be necessary to specify the –lompsci option at link
time. At execution time, the shared memory parallel
routines will be used if the application is launched to run
on the SMP node using the –d option.

4.2.2 Support for Sparse Iterative Solvers
Most sparse systems require application-specific

iterative solvers. Recognizing the enormous variety of
iterative methods, we will focus on providing optimized
building blocks for iterative solvers.

As for the XT3, we plan to provide a set of routines
that provide the core functionality of the 2002 sparse
BLAS standard, with an interface usable by PETSc,
Trilinos and Algorithm 818. We initially plan to support
as sparse matrix representations the common compressed
sparse row form, the fixed blocked generalization
provided in PETSc and the variable blocked
generalization used in Trilinos. We will also provide two
representations optimized for the X1 and X2 vector
hardware, with preprocessing capabilities to convert the
other representations into either of the vectorizable
representations.

4.2.3 Optimizations
LibSci will be tuned for the BlackWidow

architecture. This architecture contains different cache
and memory sizes from the Cray X1/X1E architecture.
Routines that are memory bandwidth bound will need to
be evaluated and improved, if necessary.

The BlackWidow architecture contains support for
fast one-side communication as the Cray X1/X1E systems
do. Communication in ScaLAPACK and the distributed
memory parallel FFTs will be tuned to exploit this
feature.

5 ACML
The AMD Core Math Library (ACML) is a package

of numerical routines tuned specifically for the AMD64
platform processors, including the Opteron. This library
provides the basic numerical functions for the Cray XT3
and Cray XD1 systems. ACML contains:

CUG 2006 Proceedings 3 of 5

• BLAS
• Sparse Level 1 BLAS
• LAPACK
• ACML FFTs
• Random Number Generators

5.1 Improvements to BLAS and LAPACK
Several improvements were applied to ACML since

CUG 2005. Among these is the addition of large array
versions especially for the PGI compiler. This fixes an
issue when arrays larger than 4 GB are used. Also
improvements were applied to dgemm and dtrsmm to
improve performance on small (up to 360x360 elements)
problems. Also, efficiency improvements were made to
larger problems, allowing ACML to match the LINPACK
performance of the best available BLAS implementations.
Finally, an API for ILAENV was added to the LAPACK
to allow programs to dynamically modify various
parameters that affect LAPACK performance.

5.2 Random Number Generators
The ACML library now contains a suite of Random

Number generators. There are 5 base generators and the
option to add a user supplied base generator. The base
generators include the NAG Basic, L’Ecuyer’s Combined
Recursive, Wichman-Hill, Mersenne Twister, and Blum-
Blum-Schub. Multiple streams can be provided, as well
as generator state preservation and recall. The base
generators were tested using the Big Crush, Small Crush
and Pseudo Diehard test suites from the TestU01 software
library.

There are 26 distribution generators that can produce
either continuous or discrete random streams, and have
either univariate or multivariate interfaces.

5.3 ACML FFT routines
ACML provides a set of highly tuned FFT routines

with an interface to those routines that is unique to
ACML. Since there is no established standard for FFTs,
this interface is different from the Cray FFT interface. In
the Cray XT3 1.5 software release, most ACML FFTs can
be accessed through the Cray FFT interface by setting the
input parameter ISYS=0. For full documentation of the
ACML FFT routines, refer to the AMD Core Math
Library User’s Guide. A few highlights are given here.

There are routines to compute one-dimensional, two-
dimensional and three-dimensional complex-to-complex
FFTs. There is also a routine to compute multiple
complex-to-complex one-dimensional FFTs. The
standard versions compute in place with unit stride and
fixed scale. The expert versions of the routines (routine
names are appended with an “X”) allow for out-of-place
computation with selectable scales. The one-dimensional
and two-dimensional expert FFT interfaces also allow a
non-unit stride. The three-dimensional expert FFT
interface currently only allows a unit stride.

There are also routines to compute one-dimensional
real-to-complex and complex-to-real FFTs (single and

multiple). These routines compute in place with a unit
stride and fixed scale. Also, the complex data is stored in
an unusual manner that is documented in the user’s guide.
Make a note of this format when using complex results
from the real-to-complex routines or inputting complex
data into the complex-to-real routines.

There are OpenMP versions of the two-dimensional
and three-dimensional complex-to-complex FFT routines
in ACML, in the acml-mp version.

Plan builders were implemented for the ACML FFT
routines in the past year. These provide an API that will
automatically time how long various combinations of
radices take to transform a given problem size. The
combination that provided the best performance can then
be used for subsequent calls. Although this has an initial
up front time cost, FFT performance can be improved up
to 15% when large numbers of the same sized FFTs must
be computed.

5.4 Fast and vector math functions in ACML_MV
An AMD64 optimized libm is available in glibc in

the SuSE SLES9 and SL9.x distributions. Using the fast
math routines in ACML_MV can provide further
performance improvements. These fast routines may
sacrifice accuracy, so the user should determine if the
arguments are suitable to use the fast math routines.

The ACML_MV library also contains vector
intrinsics of some of the libm routines. These intrinsics
can be called in assembly language, or by C compilers
that support XMM register m128 data types (such as gcc).
The PGI and GCC 4.0 compilers do incorporate these
vector intrinsics when producing optimized code.
Finally, the ACML_MV library contains array versions of
the libm routines. These are callable from C or Fortran,
and provide an efficient way to perform the desired
transcendental function on an array of n input values.
The currently supported libm functions in ACML_MV
are log, log10, log2, logf, log10f, log2f, exp, expf, sin,
cos, sincos, sinf, cosf, sincosf, pow (scalar only), powf
and powxf (scalar and vector).

5.5 Upcoming features
A release of ACML is scheduled at the end of June to

coincide with ISC 2006. This release will feature
optimized level 1 BLAS routines for SSE3 capable
Opteron processors, improved performance for 2D
complex-complex FFTs, and new expert complex-
complex 3D routines that provide for non-unit strides in
the 3 dimensions. Other additions will include RNG
performance enhancements and new performance
measuring examples.

The year-end release of ACML will feature new
convolution and correlation routines. In 2007 work will
start on Sparse Level 2 and Level 3 BLAS routines.
Optimized direct and iterative sparse solvers are also
being considered.

CUG 2006 Proceedings 4 of 5

6 Summary
Cray offers a set of scientific library routines on each

Cray platform. AMD’s Core Math Library (ACML)
provides highly tuned scientific libraries for Opteron
processors, and it is included in the Cray XD1 and Cray
XT3 software distributions. Cray and AMD are working
together to ensure that ACML contains the performance
and features required by Cray’s customers.

Cray will add FFTW and Goto BLAS to their
software offering on the Cray XT3 systems. These third
party software packages provide more performance and
portability to users.

Cray continues to improve algorithms and
implementations for their scientific libraries.
Collaborations with universities and government labs
provide assistance with this work, and more joint projects
are encouraged.

7 Acknowledgments
The authors would like to acknowledge all of those

who contributed to this paper and to thank AMD for their
support in providing a presentation at CUG. We
acknowledge the following members of the Cray
Scientific Libraries Group: Chao Yang who optimizes
the BLAS, LAPACK, sparse solvers and the linpack
benchmark, Neal Gaarder who tunes libm, and John
Lewis who provides technical assistance in all areas of
linear algebra and who develops sparse routines.

8 About the Authors
Mary Beth Hribar is the manager of the Cray

Scientific Libraries Group. She can be reached at Cray
Inc., 411 First Ave S, Suite 600, Seattle WA 98104. Her
email address is marybeth@cray.com.

Chip Freitag is the project manager for the math
libraries at AMD. He can be reached at AMD, 5204 E.
Ben White Blvd, MS 649, Austin TX 78741. His email
address is chip.freitag@amd.com.

Adrian Tate is a member of the Cray Scientific
Libraries Group. He is the project lead for ScaLAPACK
tuning. He can be reached at Cray Inc., 411 First Ave S,
Suite 600, Seattle WA 98104. His email address is
adrian@cray.com.

Bracy Elton is a member of the Cray Scientific
Libraries Group. He is the project lead for FFT
development and tuning. He can be reached at Cray Inc.,
411 First Ave S, Suite 600, Seattle WA 98104. His email
address is elton@cray.com.

CUG 2006 Proceedings 5 of 5

mailto:marybeth@cray.com
mailto:chip.freitag@amd.com
mailto:adrian@cray.com

	Introduction
	Cray XT3 Libraries
	FFTs for Cray XT3
	FFTW
	Cray FFT interface

	ScaLAPACK for Cray XT3
	Support for Sparse Iterative Solvers
	Goto BLAS

	Cray XD1 Libraries
	Cray’s Vector Libraries
	LibSci for Cray X1/X1E
	Single processor routines
	Distributed memory parallel routines
	Shared memory parallel routines
	Inlining LibSci

	LibSci for BlackWidow
	Additional shared memory parallel routines
	Support for Sparse Iterative Solvers
	Optimizations

	ACML
	Improvements to BLAS and LAPACK
	Random Number Generators
	ACML FFT routines
	Fast and vector math functions in ACML_MV
	Upcoming features

	Summary
	Acknowledgments
	About the Authors

