

The Supercomputer Company

Cray and AMD Scientific Libraries

Mary Beth Hribar, Cray Inc. Chip Freitag, AMD

CUG 2006

Libraries for Cray Systems

- Cray LibSci (Mary Beth)
 - XT3 and beyond
 - BlackWidow
 - Current projects
- AMD Core Math Library (Chip)

Cray Contributors

- Mary Beth Hribar: Manager
- Adrian Tate: Sca/LAPACK, Sparse linear algebra
- Bracy Elton: FFTs
- Chao Yang: BLAS, LAPACK, Direct sparse solvers
- John Lewis: Sca/LAPACK, Sparse linear algebra
- Neal Gaarder: libm
- Catherine Knutson: Library builds and integration

Library Goals

- Extend performance and functionality for scalar systems
- Tune vector libraries for BlackWidow architecture
- Collaborate with
 - Researchers to obtain newest algorithms
 - AMD to provide best Opteron libraries

CRAY

Cray XT3 Libraries

- Cray XT LibSci
 - ScaLAPACK
 - SuperLU
 - Cray FFTs *

• AMD Core Math Library (ACML)

- BLAS
- LAPACK
- ACML FFTs
- Random number generators
- Goto BLAS
- FFTW 3.1.1

Available in software release 1.5

* Subset of Cray FFTs that map to ACML FFTs

FFTs on Cray XT3

FFTs in ACML

- Provide "plans"
- Contain OpenMP version
- Add FFTW 3.1.1 in 1.5
- Add Cray FFT interfaces to ACML FFTs in 1.5
- Pre-built plans for FFTW 3.1.1 by end of 2006
- Additional FFT optimizations in 2007

FFTW on Cray XT3

- Have license to distribute 3.x and 2.1.5 versions
- FFTW 3.1.1
 - Initial release in 1.5
 - Pre-built plans ("Wisdom") available end of 2006
- FFTW 2.1.5
 - Initial release at end of 2006
 - Included only for MPI FFTW
 - Tuned by demand
- Further optimizations of FFTW 3.x in 2007

Cray XT3 Sparse Support

- Provide tuned sparse BLAS routines for sparse iterative solvers (end of 2006)
 - PETSc
 - Trilinos
 - User-defined
- Direct sparse solvers
 - SuperLU
 - Pardiso in ACML in 2007

Libraries for Cray Systems

Cray LibSci

- XT3 and beyond
- BlackWidow
- Current projects
- AMD Core Math Library

BlackWidow LibSci

Extension of X1/X1E LibSci

- Additional OpenMP support
- Sparse BLAS
- Further optimizations
 - One-sided communication
 - BlackWidow memory model

X1/X1E LibSci

Provide four libraries to support streaming and data size options

BlackWidow Node

- 4 way SMP
- 2 L1 caches and L2 cache on each processor
- Shared L3 cache
- Faster processing speeds
- Lower memory latency

FFTs

- Cache Tuned
- Added OpenMP capability
- DM FFTs are hybrid
 - Tuned with one-sided communication across nodes
 - CAF and/or SHMEM
 - OpenMP within a node

Sca/LAPACK

- OpenMP versions of LAPACK routines:
 - LU
 - Symmetric Tridiagonalization
 - Cholesky
 - QR
- Collaboration with LBNL to vectorize new eigensolver
- Co-array Fortran PBLAS

CRAY

Sparse Computation Support

- Sparse BLAS routines to support iterative solvers in
 - PETSc
 - Trilinos
 - User-defined
- OpenMP direct sparse solvers

Libraries for Cray Systems

Cray LibSci

- XT3 and beyond
- BlackWidow
- Current projects
- AMD Core Math Library

Projects across all Cray systems

- Eigensolver assessment
- ScaLAPACK optimization
- Sparse BLAS strategy

Eigensolver Support

- Comparison of Sca/LAPACK eigensolvers
 - Divide and Conquer
 - Bisection
 - MRRR ("Holy Grail")
 - QR
- Provide Beta release of MRRR for XT3 late 2006
- Work done by Adrian Tate
 - Talk: Thursday at 9:25 am

XT3 Matrix 3 10% of spectrum

ScaLAPACK Optimizations

- Exploit fast one-sided communication in
 - BlackWidow
 - Baker
- Introduce more flexible block sizes
 - De-couple two types of blocking
 - Linear algebra block size
 - Distribution block size
 - User can tune two block sizes separately

Sparse BLAS Routines

- Sparse BLAS (single processor) to support iterative solvers :
 - PETSc
 - Trilinos
 - User-defined
- Investigating Epetra in Trilinos
 - Provides parallel sparse BLAS using
 - Single processor sparse BLAS
 - MPI
 - Able to tune communication
 - Possible interface to PETSc
 - One common parallel sparse BLAS implementation
 - Improve communication performance of PETSc solvers

Library Goals

- Extend performance and functionality for XT3
 - FFTW, Cray FFTs, Goto BLAS
 - Tuned sparse BLAS for better solver performance
- Tune vector libraries for BlackWidow architecture
 - More OpenMP support in LibSci
 - CAF PBLAS
 - Tuned sparse BLAS for better solver performance
- Collaborate with
 - Researchers to obtain newest algorithms
 - MRRR eigensolver
 - AMD to provide best Opteron libraries

Libraries for Cray Systems

Cray LibSci

- XT3 and beyond
- BlackWidow
- Current projects
- AMD Core Math Library