
1

Moab Workload Manager on Cray XT3

Michael Jackson, Cluster Resources, Inc., Scott
Jackson, Cluster Resources, Inc. and Don Maxwell,

ORNL

ABSTRACT: Cluster Resources Inc.
TM
 has ported their Moab Workload

Manager® to work with Cray XT3 systems (on PBS Pro, runtime, and other
resource manager environments) and the National Center for Computational
Sciences (NCCS) is now using Moab

TM
 to schedule production work on their

Cray XT3 system. We will discuss the process of porting Moab to the XT3, how
NCCS currently uses Moab on its XT3, and how Moab provides added control
over XT3 systems in terms of advanced policies, fine-grained scheduling,
diagnostics, visualization of resources and improved resource utilization. We will
also review uses of Moab technologies on other Cray products.

KEYWORDS: Moab, XT3, batch, scheduling, ORNL, NCCS, workload
management, Cluster Resources

1. Introduction

This paper provides a case study of the roll-out
and use of Moab Workload Manager® on Oak Ridge
National Laboratory’s (ORNL) 5,294 processor Cray
XT3 (#10 on Top500) and will briefly mention how
Moab usage provided improvements to ORNL’s
1,024 processor Cray X1E, SGI Altix system and
SLURM based Linux Cluster. ORNL’s compute and
workload environment will be presented along with a
compelling case of why using Moab technology
significantly enhanced the overall experience and
manageability of ORNL’s systems. Coverage will be
given of the high-level architecture of Moab and how
this design was able to quickly accommodate each
of these needs and allow ORNL to move forward
with both a more efficient and more flexible system,
as well as improved up time and decreased
administrative overhead.

Cluster Resources, Inc.

Cluster Resources, Inc. is a leading provider of
workload and resource management software and
services for cluster, grid and utility-based computing

environments. Cluster Resources is recognized as a
leader in innovation and as an organization that
delivers a high return on investment through its
popular Moab

TM
 product lines. With more than 2,500

sites worldwide using Cluster Resources’ developed
and/or maintained software and more than a decade
of industry experience, Cluster Resources delivers
the services and software products that enable
organizations to understand, control and fully
optimize their compute resources.

ORNL NCCS

The National Center for Computational Sciences

(NCCS) was founded in 1992 to advance the state
of the art in high-performance computing (HPC) by
bringing a new generation of parallel computers out
of the laboratory and into the hands of the scientists
who could most use them. In 2004, the National
Leadership Computing Facility (NLCF) was formed
to provide the nation's most powerful open resource
for capability computing, with a sustainable path that
will maintain and extend national leadership for the
Department of Energy's Office of Science (SC).
Platforms of the NLCF are being housed in the
NCCS at Oak Ridge National Laboratory.

2

With project allocations from SC for both the
NLCF program and D.O.E.’s Innovative and Novel
Computational Impact on Theory and Experiment
(INCITE) program, resource allocation and
management became a critical need for the NLCF.
The NLCF currently houses a 1024 MSP Cray X1E,
a 5294—processor Cray XT3, a 256—processor
SGI Altix, and a 64—processor Opteron-based
visualization cluster. The NCCS also continues to
operate a 864—processor IBM Power 4 cluster.

Experience with batch schedulers prior to Moab

consisted of IBM’s LoadLeveler and Altair’s PBS
Pro. There are pros and cons to any scheduler, but
after experience with PBS Pro on the Cray X1E,
Cray XT3 and the SGI Altix, it was determined that a
more flexible scheduler would be needed to
accommodate the needs of the NLCF.

2. XT3 Experience and Needs

While the XT3 has many compelling advantages
that make it a platform of choice such as scalability,
effective performance analysis, high efficiency and
performance, ORNL found a number of areas that
can be further improved with use of an intelligent
workload management system. The limitations that
can be resolved include the following:

Resource management capabilities were
inflexible forcing NCCS to choose between
policies and performance.

Policies were too limited causing NCCS to not
be able to apply specific policies, rather only
select from a limited set of options to head in a
general direction.

Policies were too static resulting in restarts
being required, policies not being interconnected
or having insufficient context sensitivity –
policies could not say “do this if a specific
condition occurs”.

Prioritization was not tunable as current
solutions only allowed a very simplistic
prioritization and it could not meet the truly multi-
factor decision model needed.

Administrators lacked “run-this-job-next”
abilities as certain resource managers do not
provide this function. This causes organizations
to not be able to ensure critical jobs can run
when desired.

Evaluation of new policies caused disruption
due to the lack of effective simulation or
monitoring modes. This can result in causing
policy changes to negatively impact a production
environment due to insufficient evaluation of the
consequences of the change prior to
implementation.

SSH X11 had forwarding issues as
experienced when taking advantage of SSH
sessions for interactive jobs that required either
additional manual configuration per session or
caused session display problems.

Information was too limited since system
information is abstracted too far, thus blocking
access to details about what was really
occurring in the system. True system state
could not be observed and thus not properly
managed.

Failures were not effectively mitigated as
failures at various levels cause unwanted down
time and there was a lack of means to mitigate
these failures, workaround these failures, or
automatically recover from these failures.

Administration load was too high due to
limited policy and optimization control. This
means administrators were performing many of
the scheduling and resource management tasks
manually, which caused the diagnosis of issues
to be difficult and time consuming.

Problem resolution time was too high since,
the resource management solution was a black
box without access to or control over internal
behavior. It therefore caused organizations to be
at the mercy of external support teams for
resolution of virtually every problem. Resolution
times on occasion were measured in weeks or
months with significant system down time as the
issues were being resolved.

Distributed resource management could be
awkward and time consuming because there
is no mechanism for centralized policies to flow
from an organization’s management to the
behaviors of individual clusters and
supercomputers.

Reporting was limited preventing site
managers from truly visualizing use and
performance of compute resources as well as
comparing and contrasting performance over
time or across supercomputers.

3

3. Moab Roll-out Experience

In November 2005, ORNL staff discussed these
issues and decided to evaluate the use of Moab
Cluster Suite. In December, a proof of concept
project was begun in which Moab would interface
with the existing resource management solution, as
well as import additional state information from Cray
system utilities. See Appendix A for an integration
overview.

3.1 Moab Overview

Moab abstracts resource management from

policy management layers allowing it to intelligently
optimize and manage almost any type of resource
and any type of workload. It provides advanced
optimization and quality of service features together
with highly flexible resource ownership and resource
management policies. It is designed to interact with
a large array of services orchestrating their activity
according to a high-level set of mission objectives. It
is designed to detect and react to a wide variety of
failure events, performance events, workload
events, and administrator driven events and
intelligently adjust its behavior accordingly. With its
flexibility, Moab can dynamically adjust policies,
dynamically adjust workload, or even dynamically
adjust resources in accordance with its objectives,
allowing a highly optimized compute solution.

Moab is a policy engine with support for

simultaneous interfaces to multiple information
sources and can tie new middleware with legacy
applications and tie together heterogeneous
environments of varying hardware architectures,
operating systems, and resource management tools.

For example, Moab can utilize specific resource

management APIs such as those found in
LoadLeveler, SLURM, LSF, PBS Pro, TORQUE,
and others, and can also simultaneously interface
with node monitors, management tools, databases,
information services, etc. This is valuable in
establishing the foundation for creating a unified
view or resource information and management.

As a further example, Moab can be used to

create a grid with Cray systems mixed with non-Cray
systems. In fact this heterogeneous support allows
Moab to be selected for some of the most complex
environments, as it supports virtually every hardware
architecture (including Cray XT3, Cray X1E, Intel
Xeon, Intel Pentium, Intel Itanium, AMD Athlon, AMD
Opteron, SUN Sparc and UltraSparc, HP Alpha, IBM
PowerPC, SGI MIPS, and others), a broad array of

operating system environments (including Unicos, all
Linux flavours, Mac OS X, AIX, IRIX, SGI ProPac,
HP-UX, TRU64, Solaris, BProc, Scyld, BSD and
Windows), all popular interconnects (including XT3
Interconnect, Crossbar, Fast Ethernet, Gigabit
Ethernet, Infiniband, Quadrics, IBM HPS, Myrinet,
etc.) and all major message passing tools (including
Cray MPI, MPI, OpenMPI, MPICH, MPICH2,
MPICH-GX, MPICH-GM, LAM, Scali MPI, MPI Pro,
PVM, VMI, Open MP, SHMEM, MLP and others).

Moab's architecture allows easy integration with

external services though the use of generic C, Java,
and JSP API's as well as script, database, web
service and file based interfaces using XML and flat
text semantics. These integration methods can be
used to coordinate interaction with system services
(e.g. identity managers, databases, hardware
monitors, resource managers, network managers,
switches, security systems, allocation managers and
many others.)

As an integration platform Cluster Resources’

products act much like a hub for workload
management and service level centric processes.
The more that the work being accomplished is
connected up to additional software and
informational services, the more intelligently and
streamlined the processes can be. For example, if
Moab is integrated with a hardware monitor it can
make intelligent decisions as to how to apply the
workload around problems. If integrated with a
license manager, Moab can optimize workload
submission around availability of licenses and report
back the cost of time wasted due to waiting for
licenses or the over-purchase of licenses due to a
lack of requests.

Moab also allows flexible integration of

command and control services from multiple
sources. For example, job information within a
supercomputer may be imported from one source,
while resource information may be merged from two
different sources. Job execution may be assigned to
one interface, while network scheduling and
resource provisioning may be assigned to other
services. This multi-sourcing of information was a
critical capability used to integrate Moab with the
Cray XT3 and X1E environments.

Both Web-based and desktop graphical tools

are included with the base package and are
specifically designed for end-users as well as for
administrators and managers.

3.2 Moab Evaluation Modes

4

Because Moab is often utilized in environments
with mission critical production requirements and
aggressive project roll-out needs, it has been
designed with a large array of advanced evaluation
features. These features allow Moab to be installed
and executed on production resources transparently
and safely evaluated in a risk-free manner. These
modes include the following:

Monitor Mode – In Monitor Mode, Moab imports
all information, processes all policies, makes all
decisions, and reports back on actions it would
have taken, any issues it uncovers,
discrepancies in environmental information, and
other factors. However, in this mode it does not
directly impact workload in any way.

Simulation Mode – In Simulation Mode, Moab
uses real-world workload traces it has collected
from the supercomputer environment to create a
full simulation environment where Moab
schedules and tests policies while taking into
account actual resource and workload
configurations, timings, failures, policies, admin
interactions, and other factors to predict
scheduling behaviors and system performance
based on historic information. In this mode
Moab does not directly impact workload in any
way.

Interactive Mode – In Interactive Mode, Moab
fully schedules, but asks administrators for
explicit permission before taking each action.

Partition Mode – In Partition Mode, Moab is
able to only view a subset of resources, users,
queues, and jobs. All other information is
completely masked away. Inside of this
sandbox partition, Moab fully schedules as if in
full production. This lets sites test on the actual
environment while controlling the scope of what
workload and resources are under its direction.

Normal Mode – In Normal Mode, Moab acts in
a full production manner.

3.3 Proof of Concept Plan

Due to the constraints of the existing

environment and looming production roll-out
deadlines, ORNL opted for an aggressive evaluation
and shortened proof of concept period. To
accommodate this timeframe, Cluster Resources
selected to use a dual pronged approach in which
an added virtualization interface would be rapidly

developed and then Moab would simultaneously be
evaluated in normal production mode on a
development resources and in Monitor mode on the
production resources. Accommodating this was not
a problem for Moab because it is designed with what
is likely the most advanced set of internal
diagnostics in the industry.

3.4 Initial Architecture

Moab would import basic job information from

the existing resource manager (PBS Pro) using a
native resource manager interface. Although Moab
can use the native API provided, it was chosen to
use a native interface to provide more flexibility in
job monitoring and job control and to avoid some
errors and/or limitations in the way jobs were being
reported. The XT3’s state database was also
loaded in via a native resource manager interface.
With Moab, multiple native interfaces can be
specified via a URL attribute where these URLs can
point to executables, web services, databases, peer
services, or even flat files.

Information about compute nodes, service

nodes, login nodes, and yod nodes was loaded and
the real-time configuration, load and health of each
were tracked. A virtualization layer based upon Perl
scripts was created to translate the raw information
available via system commands into one of the
generic Moab description languages, and within
days, Moab was executing on the Cray XT3
platform.

Once data import was achieved, the next step

was analysis of the larger environment. Taking
advantage of the advanced Moab diagnostics
features, this process was exceptionally fast. With
Moab, issues are most commonly found, not by
reviewing logs, but rather by running any of a
number of diagnostic commands using the ‘mdiag’
routine. This command will execute a detailed
analysis of the current and historical state and will
report any unexpected conditions, such as
unexpected values, misconfigurations, internal table
overflows or corruption, externally detected failures,
network issues, peer service failures, policy
conflicts, etc.

Site administrators commonly use these

facilities to analyze job health, node health, job
priority settings, reservation status, fairshare
configuration, and overall scheduler health. These
diagnostics also tunnel messages from underlying
systems and attach them directly to affected jobs,
nodes, and other objects, making root-cause

5

diagnosis a painless procedure. Using this ability, a
number of job and resource conflicts were detected
and quickly addressed.

With all diagnostic feedback addressed, Moab

was allowed to execute in normal production mode
and was evaluated for a few more days.
Performance was surprisingly good and exceeded
even optimistic expectations. Shortly thereafter the
already very short evaluation period was cut by an
additional 10 days, and with that, the evaluation
came to an end. Moab entered production
operation, after a design, development, proof-of-
concept, and testing cycle of only a little over 3
weeks.

4. Limitation Resolution

After properly ported and deployed Moab was
able to provide resolutions to the limitations ORNL
experienced.

4.1 Resource management capabilities were
inflexible forcing NCCS to choose between
policies and performance.

All Moab policies are fully integrated and can be
used in any combination, allowing aggressive
optimizations which are concurrent with service
guarantees, deadlines, job policies, fairshare,
preemption, reservations, resource ownership,
and resource utilization limit polices.

4.2 Policies were too limited causing NCCS to
not be able to apply specific policies, rather only
select from a limited set of options to head in a
general direction.

Within Moab each policy has a high degree of
configurability and can be enabled on a per
user, group, queue, account or QoS basis.
ORNL was able to fully obtain desired workload
management with existing Moab policies. To
see a list of Moab capabilities visit the following
URL: http://www.clusterresources.com/moabdocs

4.3 Policies were too static resulting in restarts
being required, policies not being interconnected
or having insufficient context sensitivity –
policies could not say “do this if a specific
condition occurs”.

Moab allows dynamic modification of any policy
without restarting. Policies can be context
sensitive based on current or historical usage,

on failures, or other events. Triggers, which are
policy-based actions, can be used to detect
environmental changes in real-time and modify
any aspect of scheduling behavior or any aspect
of the external environment.

For example, using Moab ORNL benefits from
priorities that can be automatically increased
and utilization limits that can be automatically
adjusted if the historical usage of a key account
drops below a specific threshold. Alternatively,
detection of a network failure can result in a
collection or arbitrary actions including
automated admin notification, automatic
attempts to recover the network, changes in
resource ownership policies, and even
preemption of certain jobs.

Another example of policies being too static, is
the fact that the resource manager used only
provides what is termed a “static backfill
algorithm.” This means that it lacks the ability to
effectively adjust backfill based on changing
environmental information, as it simply gathers
backfillable resources until the next backfill job is
able to run. Consequently, this static approach
blocks resources for an extended period of time,
while these resources could have successfully
run multiple other jobs even before the initial
backfill job is able to start.

Moab resolved this problem as it has the ability
to provide a dynamic backfill capability. Through
the use of advance reservations, the highest
priority job is guaranteed to run at a certain time.
With this knowledge, the Moab scheduler can
then determine if other jobs can backfill and not
interfere with the time slot for the highest priority
job. This backfill policy could potentially
interfere with the scheduling priority of all other
jobs below the highest priority job, so Moab
provides the RESERVATIONDEPTH parameter
to allow sites to control the number of jobs
whose priority can be protected.

4.4 Prioritization was not tunable as current
solutions only allowed a very simplistic
prioritization and it could not meet the truly multi-
factor decision model needed.

Priorities are always a big issue with batch
schedulers. Typically, priorities within a
resource manager are implemented using
queues. This requires the user to do something
special in order to receive a priority boost.
Moab’s priorities are extremely versatile and can
be based on a weighted sum of many factors.

6

These factors can include user, project or
account, queuetime, queue, jobsize, quality of
service and optionally dozens of other factors.
Any one of these can be changed to implement
policy changes without requiring the user to
make changes to their batch scripts. NCCS has
implemented each of the factors mentioned
above in the job priority scheme being used on
the NLCF machines. A further discussion will be
provided on NLCF’s priority implementation in a
later section. (See section 6)

4.5 Administrators lacked “run-this-job-next”
abilities as certain resource managers do not
provide this function. This causes organizations
to not be able to ensure critical jobs can run
when desired.

Several features desirable for a batch system
were simply not available in the resource
manager layer running on both the Cray
machines and the SGI system. One example
feature that is commonly desirable is a “run-this-
job-next” capability. Political situations,
hardware and software failures, or other
circumstances can lead to the need to ensure
that a particular job runs next, no matter what
else is in the queue. This feature was available
on ORNL’s LoadLeveler based system, but was
not on the PBS Pro system. Moab is able to
supplement PBS Pro by providing this capability
through the use of the ‘setspri’ command which
sets a system priority. Any job with a system
priority has a higher priority than jobs without a
system priority.

4.6 Evaluation of new policies caused
disruption due to the lack of effective simulation
or monitoring modes. This can result in causing
policy changes to negatively impact a production
environment due to insufficient evaluation of the
consequences of the change prior to
implementation.

As mentioned in the Moab Evaluation Modes
section above, Moab provides a SIMULATION
mode to allow administrators to evaluate
potential performance based on changes to
priorities or other configuration parameters.
After applying and viewing the results of the
potential policy and configuration changes,
administrators can apply those changes which
improve the performance and achieve the
desired experience, while avoiding those which
create new bottlenecks or negatively impact
results. This same capability can be used to
evaluate the impact of adding hardware

resources, adjusting resources delivered to new
or changing projects, and many other
adjustments to see how the changes would
impact jobs, without actually scheduling any jobs
or impacting the production system.

4.7 SSH X11 had forwarding issues as
experienced when taking advantage of SSH
sessions for interactive jobs that required either
additional manual configuration per session or
caused session display problems.

The Moab integration strategy implemented on
the Cray XT3 provided NCCS a unique way to
solve a common problem. The Moab scheduler
runs as a native binary on the XT3 while the
virtualized interface layer routines are based on
scripts. These routines provide the unique
advantage of being able to take control of
placement of the job on a particular node of the
XT3. All interactive sessions currently run
through the batch system due to problems that
come with managing nodes outside of batch.
This presents unique problems for interactive
activities such as X11 session displays. SSH
provides a tunnel for X11 sessions if properly
configured, but taking advantage of that tunnel
proved to be problematic on a machine with
multiple nodes being used for login and yod
launch. Moab was used to capture the fact that
a job is interactive and information about the
host that submitted the job; then with a simple
modification to the Moab virtualization layer, it
allowed NCCS to push the interactive job back
to the submitting node where the original SSH
tunnel was created. This automated and
simplified the experience for end users.

4.8 Information was too limited since system
information is abstracted too far, thus blocking
access to details about what was really
occurring in the system. True system state
could not be observed and thus not properly
managed.

Where other systems represented the XT3 as a
single monolithic multi-processor entity, Moab
was able to provide much more detailed
information about the configuration, state, and
actual layout of the system, along with true per
job allocation of resources. This allowed
administrators to more fully identify undesired
utilization behaviors and identify resource
failures.

7

4.9 Failures were not effectively mitigated as
failures at various levels cause unwanted down
time and there was a lack of means to mitigate
these failures, workaround these failures, or
automatically recover from these failures.

Moab’s automated and manual diagnostics
helped to identify and clean-up corrupt jobs that
would plug the system and to identify and avoid
nodes stuck with file system failures.

When nodes with jobs running would crash,
insufficient information was available to the
resource manager to properly understand the
state of the job, so it would continue to believe
that the job was running once the crashed node
recovered and appeared available again. This
would result in nodes being blocked, since the
resource manager thought that the node was
busy and would not allow additional workload to
be run on those nodes, while the nodes were
really idle. Moab was able to work around this
issue by using policies to check to see that an
appropriate yod service was running on the
nodes that had experienced a failure. If the
nodes did not have the yod service running and
the resource manager believed there was a job
running, Moab would issue a hold on the job,
associate a message that there was a crash
event and associated job issue, and then notify
the administrator. This allowed jobs to begin to
be applied to the nodes and for the administrator
to be informed of the issue.

ORNL also experienced failures caused by a
lack of state information being used by the
resource manager when the underlying file
system, in this case Lustre, was in a clean up
status. Prior to Moab, the resource manager
would submit jobs, even when the file system
had not yet cleaned up after previous workload.
This would cause jobs to experience a traffic
jam as they continued to be pushed into the
system for use on the nodes that were being
cleaned up, even when they were not able to
run. Moab was able to leverage its multi-
resource manager capability to draw in
additional information that effectively gave Moab
a true picture of resource availability. Thus, jobs
when managed by Moab would not be placed on
the nodes that were not yet available for job
placement.

4.10 Administration load was too high due to
limited policy and optimization control. This
means administrators were performing many of
the scheduling and resource management tasks

manually, which caused the diagnosis of issues
to be difficult and time consuming.

Diagnostics made issue resolution much faster.
Running a quick command is much easier than
digging through logs that most often reside on
several different hosts. Previously, for instance,
diagnostics to determine why a job wasn't
running were simply not available. Moab not
only reports on reasons why it is not running a
job, but also reports job diagnostics that are
gathered from other information services and
management tools with which Moab integrates.

Moab's rich diagnostic suite also provides a very
quick overview of the health of the batch system
and provides the administrator with the
knowledge needed to alter the course of
behavior, if necessary, for upcoming jobs.
Previously, with no future knowledge of the
scheduler's view of jobs, it was very difficult to
make administrative decisions on a running
system.

4.11 Problem resolution time was too high
since, the resource management solution was a
black box without access to or control over
internal behavior. It therefore caused
organizations to be at the mercy of external
support teams for resolution of virtually every
problem. Resolution times on occasion were
measured in weeks or months with significant
system down time as the issues were being
resolved.

Moab’s rich set of policies allow many items to
be addressed directly via a configuration or
policy change. The use of the native interface
provides direct control over how job and
resource information is presented and can be
directly modified by sites to adjust the
representation. Moab’s ability to import from
multiple information sources means if there is
any way for an administrator to identify and work
around an issue, Moab can probably do it in an
automated manner. Resolution time reduced
from weeks and months to hours and days.

4.12 Distributed resource management could
be awkward and time consuming because
there is no mechanism for centralized policies to
flow from an organization’s management to the
behaviors of individual clusters and
supercomputers.

Moab helps simplify supercomputer
management and reduce administrative time

8

requirements through its ability to provide global
statistics and diagnostics. For example, ORNL
used Moab to interface with its Identity Manager
to directly import central policies, accounts,
priorities, and utilization targets. This improved
information and established a foundation to
control grids that could span all of ORNL’s
resources.

4.13 Reporting was limited preventing site
managers from truly visualizing use and
performance of compute resources as well as
comparing and contrasting performance over
time or across resources.

Moab statistics allowed detailed reporting of how
well the supercomputer is used. Moab is able to
monitor and report on utilization, queue loads,
backlog, planned and actual resource
consumption by groups, users or other factors.
Moab can also create reports that report on
service levels provided and other resource
usage for organizational units or specific to
projects. Other valuable reporting capabilities
include Moab’s ability to create bar charts, line
and pie graphs and printable reports displaying:
executed jobs, utilized processors, utilized
nodes, requested time, utilized time, queue time,
utilization, backlog, xfactor and other areas.

5. User Impact

Moab not only benefited administration by
increasing system utilization, decreasing downtime
and allowing more control over resources, it also
enhanced the end user experience without requiring
a change in submission habits.

Due to Moab’s integration and support with the

underlying resource manager, users have not
experienced any change in the interface to the
batch system on NLCF machines. This obviously
provides a significant advantage to users who have
developed scripts (e.g. PBS Pro scripts, LSF scripts,
etc.) over the years to run their codes, as they can
continue to use existing scripts.

Users now have the additional ability to query

the batch system for several pieces of helpful
information which was not possible with the
resource manager alone. For example, a user who
would like a quick turnaround time for code, due to
debugging or some other need, can query the Moab
scheduler using the ‘showbf’ command in order to
determine the resources and times available for
backfilling. This can dramatically increase
productivity since it is easy to determine the size and

length of a job that will backfill at any instance in
time.

The Moab scheduler can also provide a start

time estimate for a user’s job by using the
‘showstart’ command. This provides the user with
an estimated start and end time for jobs currently
sitting in the queue. This is valuable information for
the user, particularly when deadlines are looming or
turnaround becomes a priority.

The elusive question of “why is my job not

starting” can almost always be answered with
Moab’s ‘checkjob’ command. Moab has built-in
diagnostics to easily provide answers to many
questions about job status, why jobs are not
running and scheduler behavior. If the job has
already tried to run but got rejected due to a system
problem, or if it violates other policies such as a
maximum number of jobs per user, that information
will be displayed with ‘checkjob’. This feedback is
beneficial to both the user and the Moab
administrator in determining the current status of the
system.

6. NLCF Moab Job Priority
Implementation Example

Based on the fact that queuetime in Moab is
measured in minutes, a decision was made to
normalize each priority factor using minutes as the
unit of measure. Jobs are currently prioritized
based on quality of service, account or project
priority, queue priority, jobsize and queuetime. Each
of these factors is weighted based on a number of
minutes and then multiplied by a value either
provided by Moab or by the Moab administrator
through the configuration file. The following table
illustrates this configuration.

Factor Unit of
Weight

Actual
Weight
(Minutes)

Value

Quality of
Service

of
days

1440 High
(7)

Account
Priority

of
days

1440 Allocated Hours
(0)

 No Hours
(-365)

Queue # of
days

1440 Debug
(5)

 Batch
(0)

Job Size 1 day /
1000cpu

1 Provided by Moab

Queue
Time

1 minute 1 Provided by Moab

9

Each of these factors is used to implement
specific policy decisions for the NLCF. For instance,
the account priority is used to ensure that projects
with allocations always receive added priority. To
provide a priority based on allocations, Moab
imports a configuration file which is generated by the
NLCF Resource and Allocation Tracking System
(RATS). When the allocation has been exhausted,
the account will get a penalty in priority by reducing
the account priority value by one year (365 days).
This is to ensure that projects with remaining
allocations continue to run with a higher priority but
still allowing the violating job to run if cycles are
available.

Favoring large jobs is another policy the NLCF

chose to adopt. The jobsize factor provides the
means to implement this policy. For every 1,000
CPUs requested, the job will get a priority boost in
the jobsize factor of one day. This encourages large
jobs by providing faster turnaround time.

Taking each actual weight, multiplying by the

value, and generating the sum provides the final job
priority. Furthermore, this calculation is provided for
each job in a Moab diagnostic command which
allows the administrator to monitor job priorities and
make adjustments as needed. As an example, here
is the output for a job priority calculation from the
diagnostic:

Job PRIORITY* Cred(Accnt: QOS:Class) Serv(QTime) Res(Proc)
Weights 1(1440: 1440: 1440) 1(1) 1(1)
69099 7298 98.7(0.0: 0.0: 5.0) 0.0(2.1) 1.3(96.0)

The resulting priority is a simple calculation.

1440 * 5 + 2 + 96 = 7298

Conclusion

The rollout has gone well. The XT3 is stable
and productive. ORNL policies are now properly
represented and enforced. Admin staff time is
reduced, utilization is increased. Progress on future
projects has accelerated, users are happier, and
more science is being delivered. Moab is now
running in production or monitor mode on multiple
ORNL clusters and supercomputers of multiple
architectures, operating systems, resource
managers, and interconnects. Further, ORNL and

Cluster Resources have collaborated to port Moab
to the X1E environment and it is now operating
successfully in monitor mode.

Acknowledgments

This research used resources of the National
Center for Computational Sciences at Oak Ridge
National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

The design and technical review by Cluster

Resource’s Chief Technology Officer, David
Jackson was invaluable in creating this paper.

About the Authors

Michael Jackson is President of Cluster

Resources, Inc. and manages strategic customer
relations with leading sites and partners such as
ORNL and Cray. He is a co-founder of Cluster
Resources, Inc., which formed in 2001. Jackson
can be reached at michael@clusterresources.com
or +1 (801) 717-3722.

Don Maxwell is a Senior System Administrator

at Oak Ridge National Laboratory primarily focused
on the Cray XT3. He has been a key member of
past teams in bringing up new supercomputers for
the NCCS. He can be reached at Oak Ridge
National Laboratory, PO Box 2008 MS 6008, Oak
Ridge, TN 37831-6008 or maxwellde@ornl.gov.

Scott M. Jackson is the Director of Software

Engineering at Cluster Resources, Inc. He
previously worked at IBM as well as MHPCC (DOD)
& PNNL (DOE) computing facilities. Jackson is the
architect/developer of QBank & Gold (resource
allocation management software tools) & has
actively participated in the Global Grid Forum as a
chair for the Usage Record working Group.

Note: All third party marks are the property of their respective owners.

10

Appendix A:

The following figure displays a number of key integration points between Cluster Resource’ Moab Workload
Manager product and ORNL’s XT3 environment.

