

CFD Technology (Formulation)
 Time-Accurate Incompressible Navier-Stokes Equations Have compressible formulations also LES-based turbulence models (when needed) Experimenting with others (RANS, DES) Velocity and pressure are "prime" variables Stabilized Finite-Element Formulation Unstructured meshes (usually tetrahedral elements) Linear basis functions for all variables Variables are stored at the mesh nodes SUPG and PSPG stabilization ALE Methods Modify fluid advection velocity with mesh velocity
12

Dynamic-Mesh CFD (details)

At each time step...

- 1. Test if re-partitioning is required
- 2. Set-up inter processor communication
- Required at each time step, if the mesh has changed
- 3. Block (color) elements into vectorizable groups
- Due to the node-scatter operation in the Finite Element routines
- 4. Calculate the refinement value at each mesh node by solving the Laplace equation with known values on the boundaries
 - · May be replaced by relating mesh refinement values to an error measure
- 5. Move the mesh by solving a modified form of the Linear Elasticity equations
- 6. Solve the coupled fluid-flow equation system
- 7. Apply the "Dynamic-Mesh Update" routines
 - 1. Swap element faces in order to obtain a "Delaunay" mesh
 - 2. Add new nodes (based on element measures) at locations where there are not enough
 - 3. Delete existing nodes from locations where there are too many
 - 4. Swap element faces to improve mesh quality

1 NETWORK COMPUTING SERVICES, INC. 25 © 2006 Dynamic-Mesh CFD (example) /* CONSTRUCT NEW ELEMENTS */ /* ELEMENT BACKUP */ elemA = elementsSH[epA][eA]; neplus = 0: neplus = 0; nel = eA; nepl = epA; ne2 = eB; nep2 = epB; ne3 = new_elem(&neplus); nep3 = MYTHREAD; elemB = elementsSH[epB][eB]; /* PRELIMINARYS */ ifc = elementsSH[epA][eA].f [iA]; ifcP = elementsSH[epA][eA].fp[iA]; if (facesSH[ifcP][ifc].fix) return NOT_OK; hn[0] = elementsSH[nep2][ne2].hn; hn[1] = elementsSH[nep3][ne3].hn; elementsSH[nep2][ne3] = elementsSH[epA][eA]; elementsSH[nep2][ne3] = elementsSH[epA][eA]; elementsSH[nep3][ne3] = hm = hm[0]; elementsSH[nep3][ne3].hm = hm[1]; nA = elementsSH[epA][eA].n [iA] nA = elementsSn[epA][eA].n [1A]; nB = elementsSn[epB][eB].n [iB]; npB = elementsSn[epA][eA].np[iA]; npB = elementsSn[epB][eB].np[iB]; for (i = 0; i < NEC; i++){ fB[i] = elementsSn[epB][eB].f [i]; fpB[i] = elementsSn[epB][eB].fp[i]; elementsSH[nep1][ne1].n [iminA] = nB; elementsSH[nep1][ne1].np[iminA] = npB; elementsSH[nep2][ne2].n [imidA] = nB; elementsSH[nep2][ne2].np[imidA] = npB; elementsSH[nep3][ne3].np[imaxA] = nB; }
if (fqc == AR) {
 q1 = elementsSH[epA][eA].qu;
 if (elementsSH[epB][eB].qu > q1)
 q1 = elementsSH[epB][eB].qu; /* CHECK NEW ELEMENT STATUS */ ier1 = elem_state(ne1, nep1); } ier2 = elem_state(ne2, nep2); ier3 = elem_state(ne3, nep3); if (ier1 != OK || ier2 != OK || ier3 != OK) nmin = elementsSH[epA][eA].n [iminA]; pmin = elementsSH[epA][eA].np[iminA]; nmid = elementsSH[epA][eA].n [imidA]; pmid = elementsSH[epA][eA].np[imidA]; nmax = elementsSH[epA][eA].np[imaxA]; pmax = elementsSH[epA][eA].np[imaxA]; return NOT_OK;

26

NETWORK COMPUTING SERVICES, INC.

© 2006

Future Plans

- · Many methods and details yet to be worked out
 - Performance and scalability
 - Larger meshes, shorter run-times
- Behavior and performance on cluster systems (Berkley-UPC)
 - Interested in UPC on the Cray XT3
- Better fluid-structure coupling
 - Development (inclusion) of structures models
 - Membranes and shells
- Dynamics
 - Some exist (particles and parachute)
 - Full 6 degrees-of-freedom (3 with symmetry)
 - Basic control algorithms may be required
- Applications

AHPCRC

41

NETWORK COMPUTING SERVICES, INC. © 2006