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Using Unified Parallel C to Enable New Types of CFD 
Applications on the Cray X1/E 
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ABSTRACT:  We are using parallel global address-space (PGAS) programming 
models, supported at the hardware-level on the Cray X1/E, that allow for the 
development of more complex parallel algorithms and methods and are enabling us to 
create new types of computational fluid dynamics codes that have advanced capabilities.  
These capabilities are the ability to solve complex fluid-structure interaction applications 
and those involving moving mechanical components or changing domain shapes, and this 
is a result of coupling automatic mesh generation tools and techniques with parallel flow 
solver technology.  Several complex CFD applications are currently being simulated and 
studied using this method on the Cray X1E and will be presented in this paper. 
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1.  Introduction 
We are currently involved in a project to develop new 

types of computational fluid dynamics (CFD) codes and 
methods in order to solve a class of scientific and 
engineering applications that have traditionally been 
difficult to solve using numerical methods.  These are 
fluid-structure interaction applications that have moving 
mechanical components and/or changing domain shapes.  
Such applications could include flapping-wing vehicles, 
rotorcraft, engines, turbines, pumps, airdrop systems, 
free-surface flow, fluid-particle flow [1-3], energy/nuclear 
systems, and many bio-medical applications.  In some 
cases, the motion of the mechanical components or 
surfaces is know (prescribed), and in others, the motion of 
the components is part of the solution and coupled to the 
fluid dynamics results.  In either case, the changes in the 
domain shape cause complications to the underlying mesh 
being used in the discretization of the fluid. 

We are concerned with conforming-mesh methods 
where the geometry of the mesh matches the geometry of 
the problem.  This represents a Lagrangian or Arbitrary 
Lagrange-Eulerian (ALE) framework as opposed to a 
pure Eulerian framework which assumes the grid remains 
fixed throughout the entire time-integration of the 
simulation.  In an ALE simulation, like those being 
discussed in this paper, the 3D mesh must move and/or 
deform in order to take-up the motion of any mechanical 
components (surfaces) involved in the application.  Using 
special mesh moving methods involving formulations 
based on linear-elasticity theory [1,4], the mesh can be 

moved to a small extent, but soon, the mesh quality can 
degrade significantly and eventually tangles and/or 
becomes “invalid” when any mesh-element’s volume 
becomes zero or negative.  Traditionally, one would then 
re-mesh and project the solution onto the new mesh [1,5], 
but that procedure is very complicated, time consuming, 
and introduces significant projection errors, especially for 
incompressible flow [5]. 

Our new parallel CFD method for solving these types 
of applications in an ALE framework is called “Dynamic-
Mesh CFD” and is based on automatic mesh re-generation 
ideas discussed in [6].  At that time, work on dynamic-
mesh methods was limited to serial (single-processor) 
codes due to the complexity of the methods involved.  
Any practical 3D CFD simulation must run in parallel due 
to the large mesh sizes, memory requirements, and 
significant run-times of practical 3D applications.  
Limitations of the MPI parallel programming model 
prevented us to develop a parallel implementation of 
automatic mesh re-generation methods at that time due to 
its complexity.  Currently, we are using the more flexible 
and intuitive Unified Parallel C (UPC) parallel 
programming model [7] on the Cray X1/E architecture 
which is allowing us to develop a Dynamic-Mesh CFD 
code, called XFlow, and use it to solve several complex 
3D fluid-structure interaction applications. 

In Section 2, we will present some high-level details 
about the Dynamic-Mesh CFD method, and then in 
Section 3, we will give some information on three of the 
initial applications that have been solved using this 
methods and code.  All current work on Dynamic-Mesh 
CFD methods and codes, as well as all applications, have 
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been performed on the Cray X1E located at the Army 
High Performance Computing Research Center 
(AHPCRC).  This is a liquid-cooled system consisting of 
256 Multi-Streaming Processors (MSPs) and is shown in 
Figure 1. 

 

 
Figure 1.  The AHPCRC’s 256-processor Cray X1E at Network 

Computing Services, Inc. (Minneapolis, Minnesota). 
 
On Cray X1/E systems, the parallel global address-

space (PGAS) concepts of UPC are supported at the 
hardware level.  This leads to significant performance 
gains for applications using UPC over MPI, especially 
when message-latency time is important [8]. 

2. Technology Involved 
Dynamic-Mesh CFD, as embodied in the new XFlow 

simulation code, involves the coupling of several distinct 
methods and techniques.  These include “traditional” 
parallel finite-element based flow solvers [9], automatic 
mesh generation (AMG) techniques based on Delaunay 
methods [6,9], and the UPC parallel programming model.  
Although our parallel finite-element based flow solvers 
such as Aeolus and BenchC have been running in parallel 
since the early ‘90s [10,11], AMG methods have 
traditionally been difficult to parallelize, and impossible 
to do so in many cases.  This difficulty is due mainly to 
the complexity of the algorithms, sparse and complex 
nature of the calculations and searches involved, and the 
very dynamic and changing data structures. 

The UPC language greatly aids in allowing us to 
implement our AMG methods on a distributed-memory 
parallel architecture and integrating those methods with 
the flow-solver’s routines and methods.  UPC shared-data 
constructs allows us to make the entire mesh structure 
“visible” to all processors (threads in UPC-speak) so that 
computations and searches can easily span processor (i.e. 
mesh partition) boundaries which normally would be 
barriers to MPI-based algorithms and codes.  The low-
latency features of the Cray X1/E make sure that when 
these UPC-based algorithms and codes do span these 
processor boundaries, a prohibitively expensive cost is not 
incurred. 

By integrating AMG procedures directly with the 
flow solver, we can change the nature of performing a 
numerical simulation.  Typically, when performing a CFD 

simulation, a user would first generate a 3D mesh, and 
when that is done, use that mesh to carry-out the 
simulation.  The mesh is then, generally, static and 
doesn’t change its structure throughout the run, and thus, 
un-able to change due to either moving mechanical 
components or changing domain shapes.  By coupling the 
mesh generator directly with the simulation code, 
automatic mesh generation continues throughout the 
simulation and never stops, and therefore, isn’t a static 
process anymore.  In Dynamic-Mesh CFD, we still 
move/deform the mesh using our formulation based on 
linear-elasticity models, but after that happens, the 
automatic mesh generation routines are there to “clean-
up” the mesh structure where required.  The AMG 
procedures re-arrange the mesh-elements to improve their 
quality, add new mesh-nodes to locations where there 
may not be enough, and delete existing mesh-nodes from 
locations where there may be too many. 

Because we are using general-purpose mesh moving 
methods and “automatic” mesh generation/update 
techniques, this entire procedure to move and update the 
3D mesh throughout the simulation is automatic to a user 
of XFlow.  This feature makes the set-up and simulation 
of complex applications fairly easy, at least when 
compared to other methods and codes.  Because of this 
ease-of-use and generality of the method, many different 
types of complex 3D fluid-structure interaction 
applications can be simulated using the same XFlow 
code.  We highlight three of the initial test/demonstration 
applications in the next section. 

3. Applications 
We have been using the Dynamic-Mesh CFD 

method, as implemented in the XFlow code, on the 
AHPCRC’s Cray X1E to test and demonstrate its 
capability through the simulation of several different 
types of fluid-structure interaction application.  All of 
these 3D applications involve moving mechanical 
components with large, time varying displacements.  We 
present details on three of these early test applications. 

3.1 Micro-Unmanned Aerial Vehicle 
One of the first applications simulated using the new 

XFlow code was airflow past a cruising micro-unmanned 
aerial vehicle (MUAV), which could have use as a small 
reconnaissance vehicle.  These are autonomous vehicles 
with wingspans on the order of a few centimetres, on the 
scale of a large insect or small bird.  Although such 
mechanical systems can’t be built today, one can perform 
numerical simulations of such hypothetical vehicles to 
obtain information on the aerodynamic factors involved, 
test and develop control algorithms, and come up with 
power and weight estimates for possible future systems.  
Our goal for these simulations is to demonstrate the 
applicability of XFlow technology for studying these 
types of systems and vehicles. 

Our hypothetical MUAV being simulated here 
involves a long slender body with two flapping wings.  
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We envision thin wings made up of an Electro-Active 
Polymer material that would bend up-and-down based on 
the amount of electrical current fed to it.  We 
programmed a fast downward bending motion and slower 
upward motion, with a forward sweep to the downward 
motion in order to create thrust.  Based on the average 
wing chord length and cruising speed, a Reynolds number 
of around 400 was set for the simulation which is similar 
to the flight conditions of some insects. 

The 3D mesh used in the simulation contained, on 
average, around 5.2 million tetrahedral elements.  Due to 
the symmetry of the geometry, only half of the vehicle 
was modelled with symmetry conditions imposed at the 
center.  A total of 6,000 time steps were computed (15 
wing-beat cycles) using 32 multi-streaming processors 
(MSPs) of the Cray X1E.  

 

 

 

 
Figure 2.  Shown is the mesh (left) and velocity vectors at a 
cross-section at a location towards the tip of the micro-UAV 
wing at three time instances.  The colors in the vector field 
correspond to the speed of the airflow.  In this sequence of 

images, the wing is moving down during its thrusting-stroke. 
 
The simulation using XFlow ran very well, and a 

positive lift and thrust force, generated by the wings, was 
measured.  Based on the wing area, average lift and thrust 
coefficients of 0.16 and 0.10, respectively, were 
produced.  In Figure 2 is shown the mesh and velocity 
vector field at a cross-section towards the tip of the 
vehicle.  In Figure 3 is shown a volume-rendered image 
of vorticity magnitude, viewed from the top of the 
vehicle.  In this figure, the effects of the individual wing 
beats on the flow can easily be seen by the observed 
centers of strong vorticity. 

 

 
Figure 3.  Shown is a volume-rendering of vorticity magnitude 

at one instance of the flapping-wing micro-UAV simulation.  The 
generation of centers-of-vorticity from each wing beat cycle can 

clearly be seen. 

3.2 Aerodynamics of a Hovering Hummingbird 
To expand on the work and simulations involved in 

the micro-UAV demonstration of Section 3.1, we 
developed a model of the geometry and wing motion of a 
hovering hummingbird.  The idea here is to demonstrate 
the capabilities of XFlow for simulating the flapping-
wing flight of both birds and insects.  In this case, we are 
simulating a hovering hummingbird. 

The study of flapping-wing flight of animals has 
received a great amount of attention lately in the literature 
[12,13].  The goal in these studies is to learn from nature 
how those biological systems fly, perform manoeuvres, 
control, and hover, all with low weight and power.  By 
studying these animals, it is possible that future micro-
UAV designs and functionality could be modelled after 
actual biological systems. 

Our computational hummingbird has a very realistic 
geometry and wing motion.  The wing motion was 
designed to match real hummingbird wings and motions 
[13], and involves a forward and back sweeping motion 
with wing rotations and twists.  The simulation performed 
models a “hovering” condition where the bird is held 
fixed and the entire airflow around the bird is driven by 
the motion of the wings alone.  Based on the average 
chord length and velocity of the wing, a Reynolds 
Number of 2,000 was set and a total of 3,000 time steps 
were computed.  This corresponds to about 15 flapping 
cycles of the wing which is about ¼ second real-time.  
The 3D mesh started with around 4.5 million tetrahedral 
elements and ended with around 7.3 million elements (i.e. 
the mesh was growing throughout the simulation).  As in 
the micro-UAV simulation, only half of the geometry was 
modelled due to the symmetries involved.  The simulation 
was performed using 20 MSPs. 
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Figure 4.  Shown is the mesh (left) and velocity vectors at a 

cross-section through the center of the bird at three time 
instances.  In this sequence of images, the wing is moving 

forward, and the strong downward stream of air generated by 
this motion can clearly be seen. 

 
The simulation ran very well and produced a very 

realistic flow field around the bird and its flapping wings.  
The average lift force generated was around 4.5 grams 
which is larger than the average weight for such birds 
which is between 3 and 4 grams.  Discussions with 
biologists performing experimental measurements of 
airflow around a hovering hummingbird in a wind tunnel 
[13,14] have shown that our computational results 
compare very well with the actual flow features observed.  
Shown in Figure 4 is the mesh and velocity vectors at a 
cross-section at three instances during the bird’s wing-
beat cycle.  Shown in Figure 5 is a volume rendering of 
vorticity magnitude at an instant during the bird’s mid-
forward wing stroke. 

 

Figure 5.  Shown is a volume-rendering of vorticity magnitude 
at one instance of the hovering hummingbird simulation.  The 

strong downward streams of air, generated by the wing motion, 
can clearly be seen.  Also noted here is the complex nature of 
the airflow patterns generated by the bird during hovering. 

3.3 Pumping Artificial Heart 
Another application area that XFlow has great 

potential for is complex bio-medical applications.  These 
applications can be very challenging to simulate due to 
the changing domain shapes and moving geometries 
involved in many of these applications.  Such applications 
could include, for example, the blood-flow through 
arteries, airflow through moving and expanding lungs, 
flow through opening and closing heart valves, and 
simulations of the entire human heart. 

To demonstrate XFlow’s applicability in this area, we 
chose to model flow through a small pumping device, 
which could represent a total artificial heart.  In our 
hypothetical pump design, there is a cylindrical chamber 
about 8 cm in diameter, and on one side of the chamber 
there is a pulsating membrane which drives the flow.  
Attached to this chamber are two cylinders that have 
valves in them to allow flow to come into the pump from 
one side and leave through the other.  We don’t actually 
model the valves in these cylinders mechanically, but we 
have developed a special boundary conditions that only 
allow flow in one direction through these “virtual” valves.  
It is this combination of the pulsating membrane, along 
with the inflow and outflow cylinders and valves, which 
causes the blood to flow through the chamber in an 
efficient manner.  The parameters of the simulation are set 
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to very realistic conditions for actual blood-flow and 
pumping rates of the human circulatory system. 

 

 

 

 
Figure 6.  Shown is the mesh (left) and velocity vectors at a 
cross-section down the center of the pump geometry at three 

time instances.  The fluid is pulled into the chamber at the first 
time instance, the pumping membrane is “at-rest” in the second 
time and both valves are closed, and the fluid is pushed out of 

the chamber at the third time instance. 
 
Since this is an “internal” flow system, the tetrahedral 

element mesh used was smaller than the others, on the 
order of about 1 million elements.  Many beat cycles of 
the pump were simulated, and the computed results are 
very realistic and provide a large amount of details of the 
blood-flow through the system.  Shown in Figure 6 are 
velocity vectors and the mesh at a vertical cross-section 
through the geometry at three time instances.  Shown in 
Figure 7 are the velocity vectors and the mesh at a 
horizontal cross section.  The movement and deformation 
of the mesh caused by the pulsating membrane can be 
clearly seen in this figure. 

 

 

 
Figure 7.  Shown is the mesh and velocity vectors at a horizontal 

cross-section at two time instances.  The deformation of the 
mesh due to the motion of the pump’s membrane can be seen, as 

well as its effect on the flow. 

4. Conclusion 
We have developed a novel and unique numerical 

method for simulating some of the most challenging fluid-
structure interaction applications.  These applications 
involve moving mechanical components or changing 
domain shapes, which have always been difficult to solve 
numerically due to the requirement that the underlying 3D 
mesh used in the computation must move and change to 
conform to the changing geometry.  These new methods 
are enabled by the capabilities of the Unified Parallel C 
programming model, as implemented on the Cray X1/E. 

Our approach involves a dynamic-mesh technique 
that changes and modifies the mesh throughout the 
simulation to account for these, sometimes drastic, 
geometric changes.  We have implemented these methods 
within the new XFlow CFD code and have demonstrated 
its functionality and potential through a series of complex 
engineering and scientific applications, some of which 
have not been solved before at this level of detail.  Initial 
results of these applications look very promising and 
points to great potential to use XFlow and Dynamic-Mesh 
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CFD methods for a wide variety of complex 3D fluid-
structure interaction applications. 
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