
CUG 2006 Proceedings 1 of 6

Using Unified Parallel C to Enable New Types of CFD
Applications on the Cray X1/E

Andrew A. Johnson
Army High Performance Computing Research Center,

Network Computing Services, Inc.

ABSTRACT: We are using parallel global address-space (PGAS) programming
models, supported at the hardware-level on the Cray X1/E, that allow for the
development of more complex parallel algorithms and methods and are enabling us to
create new types of computational fluid dynamics codes that have advanced capabilities.
These capabilities are the ability to solve complex fluid-structure interaction applications
and those involving moving mechanical components or changing domain shapes, and this
is a result of coupling automatic mesh generation tools and techniques with parallel flow
solver technology. Several complex CFD applications are currently being simulated and
studied using this method on the Cray X1E and will be presented in this paper.

KEYWORDS: Cray X1E, Unified Parallel C, CFD, Applications, Mesh Generation

1. Introduction
We are currently involved in a project to develop new

types of computational fluid dynamics (CFD) codes and
methods in order to solve a class of scientific and
engineering applications that have traditionally been
difficult to solve using numerical methods. These are
fluid-structure interaction applications that have moving
mechanical components and/or changing domain shapes.
Such applications could include flapping-wing vehicles,
rotorcraft, engines, turbines, pumps, airdrop systems,
free-surface flow, fluid-particle flow [1-3], energy/nuclear
systems, and many bio-medical applications. In some
cases, the motion of the mechanical components or
surfaces is know (prescribed), and in others, the motion of
the components is part of the solution and coupled to the
fluid dynamics results. In either case, the changes in the
domain shape cause complications to the underlying mesh
being used in the discretization of the fluid.

We are concerned with conforming-mesh methods
where the geometry of the mesh matches the geometry of
the problem. This represents a Lagrangian or Arbitrary
Lagrange-Eulerian (ALE) framework as opposed to a
pure Eulerian framework which assumes the grid remains
fixed throughout the entire time-integration of the
simulation. In an ALE simulation, like those being
discussed in this paper, the 3D mesh must move and/or
deform in order to take-up the motion of any mechanical
components (surfaces) involved in the application. Using
special mesh moving methods involving formulations
based on linear-elasticity theory [1,4], the mesh can be

moved to a small extent, but soon, the mesh quality can
degrade significantly and eventually tangles and/or
becomes “invalid” when any mesh-element’s volume
becomes zero or negative. Traditionally, one would then
re-mesh and project the solution onto the new mesh [1,5],
but that procedure is very complicated, time consuming,
and introduces significant projection errors, especially for
incompressible flow [5].

Our new parallel CFD method for solving these types
of applications in an ALE framework is called “Dynamic-
Mesh CFD” and is based on automatic mesh re-generation
ideas discussed in [6]. At that time, work on dynamic-
mesh methods was limited to serial (single-processor)
codes due to the complexity of the methods involved.
Any practical 3D CFD simulation must run in parallel due
to the large mesh sizes, memory requirements, and
significant run-times of practical 3D applications.
Limitations of the MPI parallel programming model
prevented us to develop a parallel implementation of
automatic mesh re-generation methods at that time due to
its complexity. Currently, we are using the more flexible
and intuitive Unified Parallel C (UPC) parallel
programming model [7] on the Cray X1/E architecture
which is allowing us to develop a Dynamic-Mesh CFD
code, called XFlow, and use it to solve several complex
3D fluid-structure interaction applications.

In Section 2, we will present some high-level details
about the Dynamic-Mesh CFD method, and then in
Section 3, we will give some information on three of the
initial applications that have been solved using this
methods and code. All current work on Dynamic-Mesh
CFD methods and codes, as well as all applications, have

CUG 2006 Proceedings 2 of 6

been performed on the Cray X1E located at the Army
High Performance Computing Research Center
(AHPCRC). This is a liquid-cooled system consisting of
256 Multi-Streaming Processors (MSPs) and is shown in
Figure 1.

Figure 1. The AHPCRC’s 256-processor Cray X1E at Network

Computing Services, Inc. (Minneapolis, Minnesota).

On Cray X1/E systems, the parallel global address-

space (PGAS) concepts of UPC are supported at the
hardware level. This leads to significant performance
gains for applications using UPC over MPI, especially
when message-latency time is important [8].

2. Technology Involved
Dynamic-Mesh CFD, as embodied in the new XFlow

simulation code, involves the coupling of several distinct
methods and techniques. These include “traditional”
parallel finite-element based flow solvers [9], automatic
mesh generation (AMG) techniques based on Delaunay
methods [6,9], and the UPC parallel programming model.
Although our parallel finite-element based flow solvers
such as Aeolus and BenchC have been running in parallel
since the early ‘90s [10,11], AMG methods have
traditionally been difficult to parallelize, and impossible
to do so in many cases. This difficulty is due mainly to
the complexity of the algorithms, sparse and complex
nature of the calculations and searches involved, and the
very dynamic and changing data structures.

The UPC language greatly aids in allowing us to
implement our AMG methods on a distributed-memory
parallel architecture and integrating those methods with
the flow-solver’s routines and methods. UPC shared-data
constructs allows us to make the entire mesh structure
“visible” to all processors (threads in UPC-speak) so that
computations and searches can easily span processor (i.e.
mesh partition) boundaries which normally would be
barriers to MPI-based algorithms and codes. The low-
latency features of the Cray X1/E make sure that when
these UPC-based algorithms and codes do span these
processor boundaries, a prohibitively expensive cost is not
incurred.

By integrating AMG procedures directly with the
flow solver, we can change the nature of performing a
numerical simulation. Typically, when performing a CFD

simulation, a user would first generate a 3D mesh, and
when that is done, use that mesh to carry-out the
simulation. The mesh is then, generally, static and
doesn’t change its structure throughout the run, and thus,
un-able to change due to either moving mechanical
components or changing domain shapes. By coupling the
mesh generator directly with the simulation code,
automatic mesh generation continues throughout the
simulation and never stops, and therefore, isn’t a static
process anymore. In Dynamic-Mesh CFD, we still
move/deform the mesh using our formulation based on
linear-elasticity models, but after that happens, the
automatic mesh generation routines are there to “clean-
up” the mesh structure where required. The AMG
procedures re-arrange the mesh-elements to improve their
quality, add new mesh-nodes to locations where there
may not be enough, and delete existing mesh-nodes from
locations where there may be too many.

Because we are using general-purpose mesh moving
methods and “automatic” mesh generation/update
techniques, this entire procedure to move and update the
3D mesh throughout the simulation is automatic to a user
of XFlow. This feature makes the set-up and simulation
of complex applications fairly easy, at least when
compared to other methods and codes. Because of this
ease-of-use and generality of the method, many different
types of complex 3D fluid-structure interaction
applications can be simulated using the same XFlow
code. We highlight three of the initial test/demonstration
applications in the next section.

3. Applications
We have been using the Dynamic-Mesh CFD

method, as implemented in the XFlow code, on the
AHPCRC’s Cray X1E to test and demonstrate its
capability through the simulation of several different
types of fluid-structure interaction application. All of
these 3D applications involve moving mechanical
components with large, time varying displacements. We
present details on three of these early test applications.

3.1 Micro-Unmanned Aerial Vehicle
One of the first applications simulated using the new

XFlow code was airflow past a cruising micro-unmanned
aerial vehicle (MUAV), which could have use as a small
reconnaissance vehicle. These are autonomous vehicles
with wingspans on the order of a few centimetres, on the
scale of a large insect or small bird. Although such
mechanical systems can’t be built today, one can perform
numerical simulations of such hypothetical vehicles to
obtain information on the aerodynamic factors involved,
test and develop control algorithms, and come up with
power and weight estimates for possible future systems.
Our goal for these simulations is to demonstrate the
applicability of XFlow technology for studying these
types of systems and vehicles.

Our hypothetical MUAV being simulated here
involves a long slender body with two flapping wings.

CUG 2006 Proceedings 3 of 6

We envision thin wings made up of an Electro-Active
Polymer material that would bend up-and-down based on
the amount of electrical current fed to it. We
programmed a fast downward bending motion and slower
upward motion, with a forward sweep to the downward
motion in order to create thrust. Based on the average
wing chord length and cruising speed, a Reynolds number
of around 400 was set for the simulation which is similar
to the flight conditions of some insects.

The 3D mesh used in the simulation contained, on
average, around 5.2 million tetrahedral elements. Due to
the symmetry of the geometry, only half of the vehicle
was modelled with symmetry conditions imposed at the
center. A total of 6,000 time steps were computed (15
wing-beat cycles) using 32 multi-streaming processors
(MSPs) of the Cray X1E.

Figure 2. Shown is the mesh (left) and velocity vectors at a
cross-section at a location towards the tip of the micro-UAV
wing at three time instances. The colors in the vector field
correspond to the speed of the airflow. In this sequence of

images, the wing is moving down during its thrusting-stroke.

The simulation using XFlow ran very well, and a

positive lift and thrust force, generated by the wings, was
measured. Based on the wing area, average lift and thrust
coefficients of 0.16 and 0.10, respectively, were
produced. In Figure 2 is shown the mesh and velocity
vector field at a cross-section towards the tip of the
vehicle. In Figure 3 is shown a volume-rendered image
of vorticity magnitude, viewed from the top of the
vehicle. In this figure, the effects of the individual wing
beats on the flow can easily be seen by the observed
centers of strong vorticity.

Figure 3. Shown is a volume-rendering of vorticity magnitude

at one instance of the flapping-wing micro-UAV simulation. The
generation of centers-of-vorticity from each wing beat cycle can

clearly be seen.

3.2 Aerodynamics of a Hovering Hummingbird
To expand on the work and simulations involved in

the micro-UAV demonstration of Section 3.1, we
developed a model of the geometry and wing motion of a
hovering hummingbird. The idea here is to demonstrate
the capabilities of XFlow for simulating the flapping-
wing flight of both birds and insects. In this case, we are
simulating a hovering hummingbird.

The study of flapping-wing flight of animals has
received a great amount of attention lately in the literature
[12,13]. The goal in these studies is to learn from nature
how those biological systems fly, perform manoeuvres,
control, and hover, all with low weight and power. By
studying these animals, it is possible that future micro-
UAV designs and functionality could be modelled after
actual biological systems.

Our computational hummingbird has a very realistic
geometry and wing motion. The wing motion was
designed to match real hummingbird wings and motions
[13], and involves a forward and back sweeping motion
with wing rotations and twists. The simulation performed
models a “hovering” condition where the bird is held
fixed and the entire airflow around the bird is driven by
the motion of the wings alone. Based on the average
chord length and velocity of the wing, a Reynolds
Number of 2,000 was set and a total of 3,000 time steps
were computed. This corresponds to about 15 flapping
cycles of the wing which is about ¼ second real-time.
The 3D mesh started with around 4.5 million tetrahedral
elements and ended with around 7.3 million elements (i.e.
the mesh was growing throughout the simulation). As in
the micro-UAV simulation, only half of the geometry was
modelled due to the symmetries involved. The simulation
was performed using 20 MSPs.

CUG 2006 Proceedings 4 of 6

Figure 4. Shown is the mesh (left) and velocity vectors at a

cross-section through the center of the bird at three time
instances. In this sequence of images, the wing is moving

forward, and the strong downward stream of air generated by
this motion can clearly be seen.

The simulation ran very well and produced a very

realistic flow field around the bird and its flapping wings.
The average lift force generated was around 4.5 grams
which is larger than the average weight for such birds
which is between 3 and 4 grams. Discussions with
biologists performing experimental measurements of
airflow around a hovering hummingbird in a wind tunnel
[13,14] have shown that our computational results
compare very well with the actual flow features observed.
Shown in Figure 4 is the mesh and velocity vectors at a
cross-section at three instances during the bird’s wing-
beat cycle. Shown in Figure 5 is a volume rendering of
vorticity magnitude at an instant during the bird’s mid-
forward wing stroke.

Figure 5. Shown is a volume-rendering of vorticity magnitude
at one instance of the hovering hummingbird simulation. The

strong downward streams of air, generated by the wing motion,
can clearly be seen. Also noted here is the complex nature of
the airflow patterns generated by the bird during hovering.

3.3 Pumping Artificial Heart
Another application area that XFlow has great

potential for is complex bio-medical applications. These
applications can be very challenging to simulate due to
the changing domain shapes and moving geometries
involved in many of these applications. Such applications
could include, for example, the blood-flow through
arteries, airflow through moving and expanding lungs,
flow through opening and closing heart valves, and
simulations of the entire human heart.

To demonstrate XFlow’s applicability in this area, we
chose to model flow through a small pumping device,
which could represent a total artificial heart. In our
hypothetical pump design, there is a cylindrical chamber
about 8 cm in diameter, and on one side of the chamber
there is a pulsating membrane which drives the flow.
Attached to this chamber are two cylinders that have
valves in them to allow flow to come into the pump from
one side and leave through the other. We don’t actually
model the valves in these cylinders mechanically, but we
have developed a special boundary conditions that only
allow flow in one direction through these “virtual” valves.
It is this combination of the pulsating membrane, along
with the inflow and outflow cylinders and valves, which
causes the blood to flow through the chamber in an
efficient manner. The parameters of the simulation are set

CUG 2006 Proceedings 5 of 6

to very realistic conditions for actual blood-flow and
pumping rates of the human circulatory system.

Figure 6. Shown is the mesh (left) and velocity vectors at a
cross-section down the center of the pump geometry at three

time instances. The fluid is pulled into the chamber at the first
time instance, the pumping membrane is “at-rest” in the second
time and both valves are closed, and the fluid is pushed out of

the chamber at the third time instance.

Since this is an “internal” flow system, the tetrahedral

element mesh used was smaller than the others, on the
order of about 1 million elements. Many beat cycles of
the pump were simulated, and the computed results are
very realistic and provide a large amount of details of the
blood-flow through the system. Shown in Figure 6 are
velocity vectors and the mesh at a vertical cross-section
through the geometry at three time instances. Shown in
Figure 7 are the velocity vectors and the mesh at a
horizontal cross section. The movement and deformation
of the mesh caused by the pulsating membrane can be
clearly seen in this figure.

Figure 7. Shown is the mesh and velocity vectors at a horizontal

cross-section at two time instances. The deformation of the
mesh due to the motion of the pump’s membrane can be seen, as

well as its effect on the flow.

4. Conclusion
We have developed a novel and unique numerical

method for simulating some of the most challenging fluid-
structure interaction applications. These applications
involve moving mechanical components or changing
domain shapes, which have always been difficult to solve
numerically due to the requirement that the underlying 3D
mesh used in the computation must move and change to
conform to the changing geometry. These new methods
are enabled by the capabilities of the Unified Parallel C
programming model, as implemented on the Cray X1/E.

Our approach involves a dynamic-mesh technique
that changes and modifies the mesh throughout the
simulation to account for these, sometimes drastic,
geometric changes. We have implemented these methods
within the new XFlow CFD code and have demonstrated
its functionality and potential through a series of complex
engineering and scientific applications, some of which
have not been solved before at this level of detail. Initial
results of these applications look very promising and
points to great potential to use XFlow and Dynamic-Mesh

CUG 2006 Proceedings 6 of 6

CFD methods for a wide variety of complex 3D fluid-
structure interaction applications.

References
1. A. Johnson and T. Tezduyar, “Simulation of multiple

spheres falling in a liquid-filled tube”, Computer Methods in
Applied Mechanics and Engineering, No. 134 (1996), 351-373.

2. A. Johnson and T. Tezduyar, “3D Simulation of fluid-
particle interactions with the number of particles reaching 100”,
Computer Methods in Applied Mechanics and Engineering, No.
145 (1997), 301-321.

3. A. Johnson and T. Tezduyar, “Methods for 3D
computation of fluid-object interactions in spatially-periodic
flows”, Computer Methods in Applied Mechanics and
Engineering, No. 190 (2001), 3201-3221.

4. A. Johnson and T. Tezduyar, “Mesh update strategies in
parallel finite element computations of flow problems with
moving boundaries and interfaces”, Computer Methods in
Applied Mechanics and Engineering, No. 119 (1994), 73-94.

5. A. Johnson, “Mesh generation and update strategies for
parallel computation of flow problems with moving boundaries
and interfaces”, Ph.D. thesis, University of Minnesota, 1995.

6. A. Johnson and T. Tezduyar, “Advanced mesh
generation and update methods for 3D flow simulations”,
Computational Mechanics, No. 23 (1999), 130-143.

7. S. Chauvin, P. Saha, F. Cantonnet, S. Annareddy and T.
El-Ghazawi, “UPC Manual”, The George Washington
University High Performance Computing Laboratory, Version
1.2, available at http://upc.gwu.edu/

8. A. Johnson, “Unified Parallel C within computational
fluid dynamics applications on the Cray X1(E)”, Proceedings of
the Cray User’s Group Conference 2005, Albuquerque New
Mexico, May 2005.

9. A. Johnson and T. Tezduyar, “Parallel computation of
incompressible flows with complex geometries”, International
Journal for Numerical Methods in Fluids, No. 24 (1997), 1321-
1340.

10. M. Behr, A. Johnson, J. Kennedy, S. Mittal and T.
Tezduyar, “Computation of incompressible flows with implicit
finite element implementations on the Connection Machine”,
Computer Methods in Applied Mechanics and Engineering, No.
108 (1993), 99-118.

11. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson and S.
Mittal, “Parallel finite element computation of 3D flows”, IEEE
Computer, October (1993), 27-36.

12. M. Dickinson, F. Lehmann and S. Sane, “Wing
rotation and the aerodynamic basis of insect flight”, Science,
Vol. 284 (1999), 1954-1960.

13. D. Warrick, B. Tobalske and D. Powers,
“Aerodynamics of the hovering hummingbird”, Nature, Vol.
435/23 (2005), 1094-1096.

14. D. Warrick and B. Tobalske, personal
communications, April 2006.

Acknowledgments
This document was developed in connection with contract

DAAD19-03-D-0001 with the U.S. Army Research Laboratory.
The views and conclusions contained in this presentation are
those of the authors and should not be interpreted as presenting
the official policies or positions, either expressed or implied, of
the U.S. Army Research Laboratory or the U.S. Government
unless so designated by other authorized documents. Citation of

manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

About the Author
Dr. Andrew Johnson is a Senior Scientist at Network

Computing Services, Inc. working on the Army High
Performance Computing Research Center (AHPCRC) program.
He has been with that program since its inception in 1990. Dr.
Johnson performs research and development in the areas of
Computational Fluid Dynamics, High Performance and Parallel
Computing, Automatic Mesh Generation, Geometric Modelling,
and Large-Scale Scientific Visualization on parallel
architectures. Dr. Johnson holds a Ph.D. in Aerospace
Engineering from the University of Minnesota. He can be
reached at 1200 Washington Avenue South, Minneapolis, MN
55415 USA. E-mail ajohn@ahpcrc.org.

