
Compiling Software Code to FPGA-based Application
Accelerator Processors

 David Gardner and Doug Johnson, Celoxica, Inc.

ABSTRACT: We present a programming environment that enables developers to
quickly map and implement compute-intensive software functions as hardware
accelerated components in an FPGA. As part of the application acceleration subsystem,
these reconfigurable FPGA devices provide parallel processing performance that can
deliver super linear speed up for targeted applications. This paper will illustrate how
supercomputer developers can quickly harness this potential using their familiar design
methodologies, languages and techniques.

KEYWORDS: Programming, Programming Tools, FPGA, Algorithm, C-Synthesis,
XD1, Accelerated Computing, Reconfigurable Computing

1. Introduction
Software engineers typically write code using C and

C++ and compile the code to general-purpose processors
(GPPs) or digital signal processors (DSPs) for execution.
These high-level languages provide a compact and
portable way for software engineers to develop high-
performance applications that run on processors.
However, the computational requirements of algorithms
are forcing application developers to look at new
paradigms to partition code that run on both processors
and dedicated hardware acting as co-processors. These
co-processors can be field-programmable gate array
devices (FPGAs) that accelerate the complex functions of
algorithms in reconfigurable hardware.

Traditionally, complex FPGA designs have been

architected and implemented using hardware description
languages (HDLs) such as VHDL and Verilog HDL. The
use of C and C++ for hardware design facilitates the
partitioning of resources between software (SW) and
hardware (HW), and fosters both hardware-software co-
design and code reuse. Celoxica’s C-based hardware

design language, Handel-C, and the GUI-based DK
Design Suite fuses system verification, HW/SW co-
design and Handel-C language synthesis into a single
flow targeting programmable logic implementations
allowing users to have an immediate access to efficient
hardware implementations of C-based functional
descriptions.

The C algorithm used as an example in this paper is a

search kernel whereby a stream of unsorted, 4-
dimensional points are checked for intersection against a
set of hypercubes with an equal number of dimensions.
This work demonstrates that by using a Cray XD1
Supercomputer augmented with FPGAs the search kernel
is capable of executing at a speed over 113 times greater
than the standard high-end processor. [1]

2. FPGA Programming Environment Using C

CUG 2006 Proceedings 1 of 7

To provide designers with the capability to program
the FPGAs, the DK Design Suite was developed by
Celoxica as a software-centric set of tools and a
methodology to develop applications for the FPGAs that
are based on C-algorithms rather than VHDL or Verilog

HDL. The design methodology enables designers to
quickly and efficiently accelerate software algorithms and
system bottlenecks in parallel hardware. The sequential C
algorithm is migrated to a parallel hardware
implementation using the DK Design Suite and accurate
high performance hardware code is automatically
generated. By using Celoxica’s implementation process,
coding remains at the C level throughout, providing a
common language and methodology for HW and SW
design. Using this high-level language implementation
flow the programmer also benefits of from fast simulation
for HW-SW co-verification.

 Figure 1: DK Design Suite Flow for FPGAs

Figure 1 shows the design flow used to develop the

search kernel application described in this paper. DK
supports a mixed abstraction level modelling and
simulation environment based on Handel-C, C and C++
source code are supported by DK. The C/C++ functions
are imported as externals, providing a clear separation
between parts of the design compiled to a processor and
those functions in Handel-C intended for direct
implementation on the FPGA.

After verifying the characteristics and functionality
of the system at a high level (C/C++), individual modules
are selected for hardware implementation using Handel-
C. The hardware descriptions in Handel-C can be

simulated within the completely specified system model
with the following advantages:

• During early architectural design space

exploration, functional verification with mixed language
descriptions enables the designer to consider many
different block-based partitioning possibilities.

• Successive refinement and interactive

transformation of relevant software algorithms within a
system module to functions for hardware
implementation allows simulation at differing levels of
detail with consequent speed implications through very
fast behavioral (C/C++) and fast cycle accurate
(Handel-C) simulations.

• A test environment can be written at a high level

of abstraction in C/C++ and developed into
sophisticated models, incorporating input from and
output to other modelling and simulation tools such as
Matlab.

• The same environment may be used throughout

the stages of a hardware module design. [2]

3. Handel-C Language
Handel-C is a subset of ISO-C (ANSI-C) with the

necessary constructs added for hardware design (see
Figure 2). Handel-C algorithms are coded in a sequential
software style with a ‘par’ construct to implement
parallelism. A channel ‘chan’ statement allows for
communication and synchronization between parallel
branches of the program and channels function across
multiple clock domains with semantics based on
unbuffered, synchronous send and receive.

 Figure 2: Extensions to ANSI-C for Hardware
Design

CUG 2006 Proceedings 2 of 7

Handel-C’s level of design abstraction is above

register transfer level (RTL) but below behavioral. In
Handel-C each assignment infers a register and takes one
clock cycle to complete, so it is not a fully behavioral
language in terms of timing. However, this simple
expression of scheduling in Handel-C gives the designer
full control over the clock cycle accuracy of the
implementation. This allows for fast and efficient
exploration of different design architectures.

4. Handel-C for High Level Design and Low
Level Control

Handel-C allows the designer to describe the
behavior of the intended hardware in the same sense as a
software programmer describes the intended behavior of a
processor executing a program. This is fundamentally
different from using a standard C/C++ syntax to describe
the structure of a hardware implementation.

A significant advantage of this approach is the
determinism of the result. The source code completely
describes the scheduling and the most complex
expression determines the clock period. This is in
contrast with HDL synthesis where tools make significant
use of constraint attributes.

Handel-C is used for clock cycle accurate modelling
and high-level design of hardware. If the system design
has been done in C then the translation to Handel-C is
greatly simplified because of the similar syntax, and most
importantly, the same level of abstraction. Moreover
developing parallel and pipelined behavior from a
sequential start point is intuitive and allows for rapid
design space exploration. Handel-C’s level of abstraction
also allows low-level control over designs. This means
that clock accurate timing is implicit in the language and
combinational logic may be implemented using data types
that represent ports, busses and signals.

Handel-C is intended for the design of synchronous

logic and is particularly suited to the implementation of
complex algorithms in FPGAs. Some of the advantages
of such an approach include:

• No requirements to describe an explicit state

machine. The state machine is automatically generated
from an algorithmic description of the circuit in terms of
parallel and sequential blocks of code. By allocating
one clock cycle per assignment and using par and seq
constructs nested in any way in combination with
software flow control statements, Handel-C can create
state machines of virtually limitless size.

5. Developing Applications on Cray’s XD1
using the DK Design Suite

For this research, the Cray XD1 supercomputer was
chosen as the platform to benchmark the search kernel
algorithm running on an AMD Opteron processor against
the algorithm running on an FPGA. Figure 3 shows the
architecture of the Cray XD1 supercomputer. The
FPGAs are a part of the application acceleration system
built into the XD1. [4]

• Automatic scheduling of parallel and sequential

blocks of code. The code following a group of parallel
blocks of code is scheduled only after that whole
parallel block has completed.

• Channels for communications and scheduling.

Channels provide communications between parallel
blocks of code, even if they are in different clock
domains. They also provide scheduling or
synchronization as the receiving and transmitting blocks
of code can only proceed after the communication has
completed.

 • Assignment and delay statements take one clock

cycle where combinatorial expressions are computed
between clock edges.

 • Automatic generation of clocks, clock enables

and resets for the synthesized logic. [3]

Figure 3: Architecture of the Cray XD1 Supercomputer

CUG 2006 Proceedings 3 of 7

DK 4.0 for Cray XD1:
Design/Verification/

Debugging

DK RTL/EDIF Compiler

RTL Simulators:
ModelSim/Riviera for

additional timing analysis
and verification

Xilinx XST PAR

User Applications written
in Handel-C

VHDL

EDIF

bitfiles

Handel-C

Program XD1 FPGA

The XD1 incorporates a design that directly connects
the AMD Opteron compute processors with Xilinx Virtex
FPGAs over high bandwidth, low latency links and
integrates the FPGAs through hardware, operating system
and communications management software. The Rapid
Array interconnect directly connects the FPGA to the
AMD Opteron processors through a bi-directional bus,
with 3.2 GB per second bandwidth (1.6 GB per second in
each direction). The application acceleration system
includes 16 MB of Quad-Data Rate (QDR) Static RAMs
directly connected to the FPGA through a 12.8 GB per
second interface. This large bandwidth enables the FPGA
to stay busy while the host Opteron processor
concurrently transfers data to and from the FPGA system
at 3.2 GB per second. Figure 4 depicts the architecture of
the FPGA, memory interfaces and the high-speed
interconnect.[5]

Figure 5:Handel-C Design Flow with DK4.0 for XD1

6. Search Kernel Algorithm Example
A search kernel algorithm was chosen to show the

benefits of accelerated computing using FPGA
technology. This algorithm has a set of p points and a set
of h hypercubes, both of which having d dimensions. The
system identifies each point-hypercube combination
where the point lies completely within the hypercube.
The points are effectively streamed into the search
algorithm and it is not practical to sort them.
Consequently, many well-known range search
optimizations cannot be used. For the purposes of this
research, the number of points will be limited to around
107. For this research, the number of hypercubes, h, was
set at 64 and the number of dimensions was set at 4. All
of the point and hypercube parameters are represented by
16-bit positive integers. The result of the search kernel
should be represented as bit-vectors where each bit
represents a hit/miss flag for every point-hypercube
combination. These resulting bit-vectors must be written
back into the processor’s main memory. [1]

Figure 4: XD1 Application Acceleration System

Figure 5 illustrates the Handel-C-based design flow

within DK for the Cray XD1 that was used to develop the
search kernel algorithm application. In this flow, user
applications are written directly in Handel-C or ported to
Handel-C from software ANSI C code or other high level
languages such as Matlab M-code. Each software
environment has predefined test benches and scripts to
allow the designer to concentrate on the algorithm
development in Handel-C. Design, debugging,
simulation, and verification can all be performed prior to
RTL and EDIF (Electronic Design Interchange Format)
netlist compilation and synthesis using Celoxica’s
Handel-C compiler and synthesis tool embedded in DK
Design Suite. Xilinx XST uses the EDIF netlist
generated from DK to place and route (PAR) the design.
Optionally, further verification can be done on the design
using RTL simulators such as Mentor Graphic’s
ModelSim or Aldec’s Riviera. [6]

The probability that a given point will intersect a

given hypercube can substantially skew the acceleration
in favor of the FPGA or processor depending on whether
the probability is high or low respectively. To understand
this characteristic, consider how the processor operates.
As the processor evaluates each point-hypercube
combination it does so by evaluating the dimensions
sequentially, one at a time. So if the first dimension of
the point does not intersect with the first dimension of the
hypercube then the processor can quickly move on to the
next point-hypercube combination. However, if there is a

CUG 2006 Proceedings 4 of 7

match on the first dimension then the processor must
evaluate the second dimension and so on. Consequently
the processor will achieve a higher throughput when the
probability of intersection is low. In contrast, the FPGA
is capable of checking each of the four dimensions of a
given point-hypercube combination in parallel and so the
time to evaluate each point-hypercube combination is
constant, regardless of the probability of intersection. To
balance the effect of this factor, sets of points &
hypercubes are chosen so that the probability of a given
point-hypercube combination is equally likely to miss as
it is to hit. That is, the probability that a point will
intersect a hypercube on all four dimensions is 50%.

8. Hypercube Range Search Implementation

Considering that the number of points is very large
compared to the number of hypercubes, the best
implementation for the kernel is one where the hypercube
information is loaded into the FPGA first, after which the
points are streamed into the FPGA, checked for
intersection against the hypercubes, and the results
streamed back to the processor memory.

8.1 Input data

7. Test Configuration Since it is known that the FPGA will receive data at
the rate of approximately 1.6GB/s, and that the data
structure for each point consists of four, 16-bit values, the
maximum rate at which points can be streamed is 200
Mega-points/s. Targeting an FPGA clock speed of 200
MHz implies a processing rate of one point per clock.

Both software and hardware implementations of the
search kernel were created. In both cases an effort was
made to write the code cleanly and efficiently. However,
no optimization “tricks” were employed that might result
in obfuscated code that would be difficult to maintain.
The processor code is written in C and compiled using the
gcc compiler with the –O3 switch. The FPGA code is
written in Handel-C and compiled with the DK Design
Suite compiler.

8.2 Output data

One bit is needed to indicate a hit/miss condition for

each point-hypercube pair. Because the HyperTransport
link is 1.6GB/s from the FPGA to the processor, it can be
shown that the bandwidth will support 64 (8 * 1.6 / 0.2)
bits of result data per clock cycle. Assuming that the
system is processing one point per clock cycle, we see
that the bandwidth supports checking a point against 64
hypercubes in each clock cycle.

The processor code is executed on a Cray XD1

Supercomputer equipped with an AMD 2.2GHz Opteron
and a Xilinx Virtex II/Pro FPGA that is connected to the
Opteron via the HyperTransport link. The
HyperTransport link is moving 16-bit words at 400MHz,
which yields an effective bandwidth between the
processor and FPGA of approximately 3.2GB/s bi-
directional. For each test run the test harness software
running on the host processor goes through five phases,
which are:

The result of the above analysis is that the search

kernel implemented in the FPGA is optimally sized at 64,
4-dimensional hypercubes and that it compares a single
point against each dimension of each hypercube
simultaneously to produce a 64-bit result set every clock
cycle. That is to say that on every clock cycle the FPGA
receives a single 4-dimensional point from the processor
and writes a 64-bit vector back to the processor.

1. Create a set of input data for the points and

hypercubes, selecting values such that there
is a 50% probability of point-hypercube
intersection. 2. Check for point-hypercube intersections
using the FPGA The kernel configuration described above yields an

optimum throughput of 200 million, 4-dimensional point–
hypercube intersection tests per second, assuming that the
FPGA clock speed is 200MHz. In this research, a
previous generation Xilinx Virtex-II FPGA is used and
the actual clock speed is 140MHz. This means that the
FPGA search kernel is capable of performing
(140,000,000 * 4 * 2 * 64 = 71,680,000,000)
approximately 72 billion, 16-bit integer comparison
operations per second.

3. Check for point-hypercube intersections
using the Opteron

4. Validate the FPGA & Opteron results
against one another

5. Report results

In order to determine acceleration the execution
times steps 2 & 3 are measured independently. Steps 2 &
3 both start execution with the same set of point &
hypercube data in the same memory space, and they each
write the results back into the processor’s main memory
as an array of bit-vectors.

Finally, we can calculate the theoretical time to

process a given set of points. Considering that the
number of points of much greater than the number of
hypercubes, the time it takes to load the hypercube

CUG 2006 Proceedings 5 of 7

information into the FPGA is omitted and assume that the
time to process the points is effectively the best-case time
of the hardware. In this research, a set of 128k points is
processed 500 times. From this information we can
calculate run time in hardware of at least (500 * 128 *
1024 / 140,000,000) or 0.47 seconds.

8.3 Performance Results

Using testing process outlined above, Table 1 shows

the performance metrics were captured for 5 runs.

Run
Number

FPGA
(ms)

Opteron
Time (ms)

FPGA
Acceleration
Factor

1 1,060 119,470 112.7
2 1,060 119,480 112.7
3 1,060 119,480 112.7
4 1,050 119,490 113.8
5 1,050 119,480 113.8

Average 1,056 119,480 113.1

Table 1: FPGA vs. Opteron

The conclusion is that by using the XD1 configured

with a Xilinx Virtex-II FPGA to execute the search kernel
algorithm, an acceleration of up to 113X over an AMD
2.2GHz Opteron is easily achievable (see Figure 6).

Acceleration vs Number of Hypercubes

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 79 15
7

23
5

31
3

39
1

46
9

54
7

62
5

70
3

78
1

85
9

93
7

10
15

Number of Hypercubes

A
cc

el
er

at
io

n

Figure 6: Acceleration of Search Kernel Algorithm
Versus Number of Hypercubes

8.4 Your Mileage May Vary

As with any benchmark, there are many ways to

skew the results, both positively and negatively. We have
tried to be fair in this research by using a point-hypercube
intersection probability of 50% and by using code that is
written in a way that is easy to maintain. However, there
are also other factors which one should keep in mind

when considering the possible acceleration in another
system:

• This design is running at 140 MHz in the

FPGA. Using this FPGA with additional pipelining
or perhaps using a current-generation FPGA such
as the Virtex-4, the clock frequency could be
increased to a maximum of 200MHz. At that rate
the peak acceleration factor would be increased
from 113 to 162.

• As the number of hypercubes increases the

acceleration factor will vary. On the processor
side, the additional processing time is directly
related to the number of hypercubes. If 100
hypercubes are used instead of 64 the average
runtime on the Opteron would likely be 1.56
(100/64) times longer. However, since the FPGA
uses a 64-hypercube kernel, for any number of
hypercubes from 65 to 128 the execution time
would effectively double. Again, assuming 100
hypercubes we would then expect the acceleration
factor to be 88 (113.1 * (100/64/2))

• As the number of dimensions increases, the
kernel will need to be called more times – once for
each set of 4 dimensions. Also, the results from
each call will need to be merged. More research is
needed to determine the best way to handle this
step - either in an FPGA or a processor. [1]

9. Conclusion
This research has demonstrated a kernel for

implementing a multi-dimension range search algorithm
in an FPGA that offers a peak acceleration of over 113X
compared to a high-end Opteron processor. The
implementation using Celoxica’s programming
environment produced an efficient hardware
implementation in a very rapid timeframe. The
implementation maintained a familiar software
development paradigm, while giving access to this
acceleration capability that can be leveraged by
reconfigurable hardware.

The search kernel algorithm described in this paper is

one possible high performance algorithm that can be
implemented using Celoxica’s programming
environment. There are a multitude of other applications
where Celoxica’s C-based compiler technology and
Cray’s FPGA-augmented supercomputers can be used to
accelerate today’s most challenging computational
algorithms.

CUG 2006 Proceedings 6 of 7

CUG 2006 Proceedings 7 of 7

References:
[1] David Gardner, “Hardware Acceleration of a Multi-
Dimensional Range Search”, Celoxica Inc., Austin,
Texas, USA
[2] Dr. Stephen Chappell, Chris Sullivan, “Using the
Handel-C High Level Language for Field Programmable
System on Chip (FPSoC) Design and Implementation”,
Celoxica Ltd., Oxford, UK
[3] Handel-C Users Manual, Celoxica, Ltd.
[4] Cray XD1 Datasheet, Cray Incorporated, Seattle, WA.
http://cray.com/downloads/Cray_XD1_Datasheet.pdf
[5] Presentation, “The Cray XD1,” Cray Incorporated
[6] Long Dai, David Gardner, Phil Keene, “White Paper:
Celoxica DK4.0 for Cray XD1 FPGA”, Celoxica, Inc.

About the Authors:
David Gardner is Senior System Architect, Celoxica

Inc., Austin TX. David can be reached by phone at (512)
795-8170 or by email at david.gardner@celoxica.com.
Doug Johnson is Business Development Manager,
Celoxica Inc., Redondo Beach, CA. Doug can be
reached by phone at (310) 543-2468 or by email at
doug.johnson@celoxica.com.

	1. Introduction
	2. FPGA Programming Environment Using C
	3. Handel-C Language
	4. Handel-C for High Level Design and Low Level Control
	5. Developing Applications on Cray’s XD1 using t

	6. Search Kernel Algorithm Example
	7. Test Configuration
	8. Hypercube Range Search Implementation
	
	
	8.1 Input data
	8.2 Output data
	8.3 Performance Results
	8.4 Your Mileage May Vary

	9. Conclusion
	References:
	About the Authors:

