
Compiling Software Code to FPGA-based Application 
Accelerator Processors 

         David Gardner and Doug Johnson, Celoxica, Inc. 

ABSTRACT: We present a programming environment that enables developers to 
quickly map and implement compute-intensive software functions as hardware 
accelerated components in an FPGA.  As part of the application acceleration subsystem, 
these reconfigurable FPGA devices provide parallel processing performance that can 
deliver super linear speed up for targeted applications.  This paper will illustrate how 
supercomputer developers can quickly harness this potential using their familiar design 
methodologies, languages and techniques. 
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1. Introduction 
Software engineers typically write code using C and 

C++ and compile the code to general-purpose processors 
(GPPs) or digital signal processors (DSPs) for execution.  
These high-level languages provide a compact and 
portable way for software engineers to develop high-
performance applications that run on processors.  
However, the computational requirements of algorithms 
are forcing application developers to look at new 
paradigms to partition code that run on both processors 
and dedicated hardware acting as co-processors.  These 
co-processors can be field-programmable gate array 
devices (FPGAs) that accelerate the complex functions of 
algorithms in reconfigurable hardware.  

 
Traditionally, complex FPGA designs have been 

architected and implemented using hardware description 
languages (HDLs) such as VHDL and Verilog HDL. The 
use of C and C++ for hardware design facilitates the 
partitioning of resources between software (SW) and 
hardware (HW), and fosters both hardware-software co-
design and code reuse.   Celoxica’s C-based hardware 

design language, Handel-C, and the GUI-based DK 
Design Suite fuses system verification, HW/SW co-
design and Handel-C language synthesis into a single 
flow targeting programmable logic implementations 
allowing users to have an immediate access to efficient 
hardware implementations of C-based functional 
descriptions.     

 
The C algorithm used as an example in this paper is a 

search kernel whereby a stream of unsorted, 4-
dimensional points are checked for intersection against a 
set of hypercubes with an equal number of dimensions.  
This work demonstrates that by using a Cray XD1 
Supercomputer augmented with FPGAs the search kernel 
is capable of executing at a speed over 113 times greater 
than the standard high-end processor. [1] 

2.  FPGA Programming Environment Using C 
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To provide designers with the capability to program 
the FPGAs, the DK Design Suite was developed by 
Celoxica as a software-centric set of tools and a 
methodology to develop applications for the FPGAs that 
are based on C-algorithms rather than VHDL or Verilog 



HDL. The design methodology enables designers to 
quickly and efficiently accelerate software algorithms and 
system bottlenecks in parallel hardware. The sequential C 
algorithm is migrated to a parallel hardware 
implementation using the DK Design Suite and accurate 
high performance hardware code is automatically 
generated.  By using Celoxica’s implementation process, 
coding remains at the C level throughout, providing a 
common language and methodology for HW and SW 
design. Using this high-level language implementation 
flow the programmer also benefits of from fast simulation 
for HW-SW co-verification. 

 
       Figure 1:  DK Design Suite Flow for FPGAs 

 
Figure 1 shows the design flow used to develop the 

search kernel application described in this paper.  DK 
supports a mixed abstraction level modelling and 
simulation environment based on Handel-C, C and C++ 
source code are supported by DK.  The C/C++ functions 
are imported as externals, providing a clear separation 
between parts of the design compiled to a processor and 
those functions in Handel-C intended for direct 
implementation on the FPGA. 
 

After verifying the characteristics and functionality 
of the system at a high level (C/C++), individual modules 
are selected for hardware implementation using Handel-
C.  The hardware descriptions in Handel-C can be 

simulated within the completely specified system model 
with the following advantages: 

 
• During early architectural design space 

exploration, functional verification with mixed language 
descriptions enables the designer to consider many 
different block-based partitioning possibilities.  

 
• Successive refinement and interactive 

transformation of relevant software algorithms within a 
system module to functions for hardware 
implementation allows simulation at differing levels of 
detail with consequent speed implications through very 
fast behavioral (C/C++) and fast cycle accurate 
(Handel-C) simulations. 

 
• A test environment can be written at a high level 

of abstraction in C/C++ and developed into 
sophisticated models, incorporating input from and 
output to other modelling and simulation tools such as 
Matlab.   

 
• The same environment may be used throughout 

the stages of a hardware module design. [2] 

3.  Handel-C Language 
Handel-C is a subset of ISO-C (ANSI-C) with the 

necessary constructs added for hardware design (see 
Figure 2).  Handel-C algorithms are coded in a sequential 
software style with a ‘par’ construct to implement 
parallelism.  A channel ‘chan’ statement allows for 
communication and synchronization between parallel 
branches of the program and channels function across 
multiple clock domains with semantics based on 
unbuffered, synchronous send and receive. 

 
       Figure 2: Extensions to ANSI-C for Hardware 
Design 
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Handel-C’s level of design abstraction is above 

register transfer level (RTL) but below behavioral.  In 
Handel-C each assignment infers a register and takes one 
clock cycle to complete, so it is not a fully behavioral 
language in terms of timing.  However, this simple 
expression of scheduling in Handel-C gives the designer 
full control over the clock cycle accuracy of the 
implementation.  This allows for fast and efficient 
exploration of different design architectures. 

4.  Handel-C for High Level Design and Low 
Level Control 
 

Handel-C allows the designer to describe the 
behavior of the intended hardware in the same sense as a 
software programmer describes the intended behavior of a 
processor executing a program.  This is fundamentally 
different from using a standard C/C++ syntax to describe 
the structure of a hardware implementation.    

A significant advantage of this approach is the 
determinism of the result.  The source code completely 
describes the scheduling and the most complex 
expression determines the clock period.  This is in 
contrast with HDL synthesis where tools make significant 
use of constraint attributes.  

Handel-C is used for clock cycle accurate modelling 
and high-level design of hardware.  If the system design 
has been done in C then the translation to Handel-C is 
greatly simplified because of the similar syntax, and most 
importantly, the same level of abstraction.  Moreover 
developing parallel and pipelined behavior from a 
sequential start point is intuitive and allows for rapid 
design space exploration.  Handel-C’s level of abstraction 
also allows low-level control over designs.  This means 
that clock accurate timing is implicit in the language and 
combinational logic may be implemented using data types 
that represent ports, busses and signals. 

 
Handel-C is intended for the design of synchronous 

logic and is particularly suited to the implementation of 
complex algorithms in FPGAs.  Some of the advantages 
of such an approach include: 

 
• No requirements to describe an explicit state 

machine.  The state machine is automatically generated 
from an algorithmic description of the circuit in terms of 
parallel and sequential blocks of code.  By allocating 
one clock cycle per assignment and using par and seq 
constructs nested in any way in combination with 
software flow control statements, Handel-C can create 
state machines of virtually limitless size. 

5.  Developing Applications on Cray’s XD1 
using the DK Design Suite 
 

For this research, the Cray XD1 supercomputer was 
chosen as the platform to benchmark the search kernel 
algorithm running on an AMD Opteron processor against 
the algorithm running on an FPGA.  Figure 3 shows the 
architecture of the Cray XD1 supercomputer.  The 
FPGAs are a part of the application acceleration system 
built into the XD1. [4] 

 
• Automatic scheduling of parallel and sequential 

blocks of code.  The code following a group of parallel 
blocks of code is scheduled only after that whole 
parallel block has completed. 

 
 

  
• Channels for communications and scheduling.  

Channels provide communications between parallel 
blocks of code, even if they are in different clock 
domains.  They also provide scheduling or 
synchronization as the receiving and transmitting blocks 
of code can only proceed after the communication has 
completed. 

 
 
 
 
 
 
  
 • Assignment and delay statements take one clock 

cycle where combinatorial expressions are computed 
between clock edges. 

 
 
  
 • Automatic generation of clocks, clock enables 

and resets for the synthesized logic. [3]  
  
Figure 3: Architecture of the Cray XD1 Supercomputer 
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The XD1 incorporates a design that directly connects 
the AMD Opteron compute processors with Xilinx Virtex 
FPGAs over high bandwidth, low latency links and 
integrates the FPGAs through hardware, operating system 
and communications management software.  The Rapid 
Array interconnect directly connects the FPGA to the 
AMD Opteron processors through a bi-directional bus, 
with 3.2 GB per second bandwidth (1.6 GB per second in 
each direction).  The application acceleration system 
includes 16 MB of Quad-Data Rate (QDR) Static RAMs 
directly connected to the FPGA through a 12.8 GB per 
second interface.  This large bandwidth enables the FPGA 
to stay busy while the host Opteron processor 
concurrently transfers data to and from the FPGA system 
at 3.2 GB per second.  Figure 4 depicts the architecture of 
the FPGA, memory interfaces and the high-speed 
interconnect.[5]

 

 
Figure 5:Handel-C Design Flow with DK4.0 for XD1 

6.  Search Kernel Algorithm Example 
A search kernel algorithm was chosen to show the 

benefits of accelerated computing using FPGA 
technology.  This algorithm has a set of p points and a set 
of h hypercubes, both of which having d dimensions.  The 
system identifies each point-hypercube combination 
where the point lies completely within the hypercube.  
The points are effectively streamed into the search 
algorithm and it is not practical to sort them.  
Consequently, many well-known range search 
optimizations cannot be used.  For the purposes of this 
research, the number of points will be limited to around 
107.  For this research, the number of hypercubes, h, was 
set at 64 and the number of dimensions was set at 4.  All 
of the point and hypercube parameters are represented by 
16-bit positive integers.  The result of the search kernel 
should be represented as bit-vectors where each bit 
represents a hit/miss flag for every point-hypercube 
combination.  These resulting bit-vectors must be written 
back into the processor’s main memory. [1] 

Figure 4: XD1 Application Acceleration System 
 
Figure 5 illustrates the Handel-C-based design flow 

within DK for the Cray XD1 that was used to develop the 
search kernel algorithm application. In this flow, user 
applications are written directly in Handel-C or ported to 
Handel-C from software ANSI C code or other high level 
languages such as Matlab M-code. Each software 
environment has predefined test benches and scripts to 
allow the designer to concentrate on the algorithm 
development in Handel-C. Design, debugging, 
simulation, and verification can all be performed prior to 
RTL and EDIF (Electronic Design Interchange Format) 
netlist compilation and synthesis using Celoxica’s 
Handel-C compiler and synthesis tool embedded in DK 
Design Suite.  Xilinx XST uses the EDIF netlist 
generated from DK to place and route (PAR) the design.  
Optionally, further verification can be done on the design 
using RTL simulators such as Mentor Graphic’s 
ModelSim or Aldec’s Riviera. [6] 

 
The probability that a given point will intersect a 

given hypercube can substantially skew the acceleration 
in favor of the FPGA or processor depending on whether 
the probability is high or low respectively.  To understand 
this characteristic, consider how the processor operates.  
As the processor evaluates each point-hypercube 
combination it does so by evaluating the dimensions 
sequentially, one at a time.  So if the first dimension of 
the point does not intersect with the first dimension of the 
hypercube then the processor can quickly move on to the 
next point-hypercube combination.  However, if there is a  
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match on the first dimension then the processor must 
evaluate the second dimension and so on.  Consequently 
the processor will achieve a higher throughput when the 
probability of intersection is low.  In contrast, the FPGA 
is capable of checking each of the four dimensions of a 
given point-hypercube combination in parallel and so the 
time to evaluate each point-hypercube combination is 
constant, regardless of the probability of intersection.  To 
balance the effect of this factor, sets of points & 
hypercubes are chosen so that the probability of a given 
point-hypercube combination is equally likely to miss as 
it is to hit.  That is, the probability that a point will 
intersect a hypercube on all four dimensions is 50%. 

8. Hypercube Range Search Implementation 
 

Considering that the number of points is very large 
compared to the number of hypercubes, the best 
implementation for the kernel is one where the hypercube 
information is loaded into the FPGA first, after which the 
points are streamed into the FPGA, checked for 
intersection against the hypercubes, and the results 
streamed back to the processor memory.   

 
8.1 Input data  
 

7.  Test Configuration Since it is known that the FPGA will receive data at 
the rate of approximately 1.6GB/s, and that the data 
structure for each point consists of four, 16-bit values, the 
maximum rate at which points can be streamed is 200 
Mega-points/s. Targeting an FPGA clock speed of 200 
MHz implies a processing rate of one point per clock.   

Both software and hardware implementations of the 
search kernel were created.  In both cases an effort was 
made to write the code cleanly and efficiently.  However, 
no optimization “tricks” were employed that might result 
in obfuscated code that would be difficult to maintain.  
The processor code is written in C and compiled using the 
gcc compiler with the –O3 switch.  The FPGA code is 
written in Handel-C and compiled with the DK Design 
Suite compiler. 

 
8.2 Output data 

 
One bit is needed to indicate a hit/miss condition for 

each point-hypercube pair. Because the HyperTransport 
link is 1.6GB/s from the FPGA to the processor, it can be 
shown that the bandwidth will support 64 (8 * 1.6 / 0.2) 
bits of result data per clock cycle. Assuming that the 
system is processing one point per clock cycle, we see 
that the bandwidth supports checking a point against 64 
hypercubes in each clock cycle. 

 
The processor code is executed on a Cray XD1 

Supercomputer equipped with an AMD 2.2GHz Opteron 
and a Xilinx Virtex II/Pro FPGA that is connected to the 
Opteron via the HyperTransport link.  The 
HyperTransport link is moving 16-bit words at 400MHz, 
which yields an effective bandwidth between the 
processor and FPGA of approximately 3.2GB/s bi-
directional.  For each test run the test harness software 
running on the host processor goes through five phases, 
which are: 

 
The result of the above analysis is that the search 

kernel implemented in the FPGA is optimally sized at 64, 
4-dimensional hypercubes and that it compares a single 
point against each dimension of each hypercube 
simultaneously to produce a 64-bit result set every clock 
cycle.  That is to say that on every clock cycle the FPGA 
receives a single 4-dimensional point from the processor 
and writes a 64-bit vector back to the processor. 

 
1. Create a set of input data for the points and 

hypercubes, selecting values such that there 
is a 50% probability of point-hypercube 
intersection.  2. Check for point-hypercube intersections 
using the FPGA The kernel configuration described above yields an 

optimum throughput of 200 million, 4-dimensional point–
hypercube intersection tests per second, assuming that the 
FPGA clock speed is 200MHz.  In this research, a 
previous generation Xilinx Virtex-II FPGA is used and 
the actual clock speed is 140MHz.  This means that the 
FPGA search kernel is capable of performing 
(140,000,000 * 4 * 2 * 64 = 71,680,000,000) 
approximately 72 billion, 16-bit integer comparison 
operations per second.  

3. Check for point-hypercube intersections 
using the Opteron 

4. Validate the FPGA & Opteron results 
against one another 

5. Report results 
 

In order to determine acceleration the execution 
times steps 2 & 3 are measured independently.  Steps 2 & 
3 both start execution with the same set of point & 
hypercube data in the same memory space, and they each 
write the results back into the processor’s main memory 
as an array of bit-vectors. 

 
Finally, we can calculate the theoretical time to 

process a given set of points.  Considering that the 
number of points of much greater than the number of 
hypercubes, the time it takes to load the hypercube 
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information into the FPGA is omitted and assume that the 
time to process the points is effectively the best-case time 
of the hardware.  In this research, a set of 128k points is 
processed 500 times.  From this information we can 
calculate run time in hardware of at least (500 * 128 * 
1024 / 140,000,000) or 0.47 seconds.   

 
8.3 Performance Results 

 
Using testing process outlined above, Table 1 shows 

the performance metrics were captured for 5 runs. 
 

Run 
Number 

FPGA 
(ms) 

Opteron 
Time (ms) 

FPGA 
Acceleration 
Factor 

1 1,060 119,470 112.7 
2 1,060 119,480 112.7 
3 1,060 119,480 112.7 
4 1,050 119,490 113.8 
5 1,050 119,480 113.8 

Average 1,056 119,480 113.1 
 
Table 1: FPGA vs. Opteron  
 
The conclusion is that by using the XD1 configured 

with a Xilinx Virtex-II FPGA to execute the search kernel 
algorithm, an acceleration of up to 113X over an AMD 
2.2GHz Opteron is easily achievable (see Figure 6).  

 

Acceleration vs Number of Hypercubes 
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Figure 6: Acceleration of Search Kernel Algorithm 
Versus Number of Hypercubes 

 
8.4 Your Mileage May Vary 

 
As with any benchmark, there are many ways to 

skew the results, both positively and negatively.  We have 
tried to be fair in this research by using a point-hypercube 
intersection probability of 50% and by using code that is 
written in a way that is easy to maintain.  However, there 
are also other factors which one should keep in mind 

when considering the possible acceleration in another 
system: 

 
• This design is running at 140 MHz in the 

FPGA.  Using this FPGA with additional pipelining 
or perhaps using a current-generation FPGA such 
as the Virtex-4, the clock frequency could be 
increased to a maximum of 200MHz. At that rate 
the peak acceleration factor would be increased 
from 113 to 162. 

 
• As the number of hypercubes increases the 

acceleration factor will vary.  On the processor 
side, the additional processing time is directly 
related to the number of hypercubes.  If 100 
hypercubes are used instead of 64 the average 
runtime on the Opteron would likely be 1.56 
(100/64) times longer.  However, since the FPGA 
uses a 64-hypercube kernel, for any number of 
hypercubes from 65 to 128 the execution time 
would effectively double.  Again, assuming 100 
hypercubes we would then expect the acceleration 
factor to be 88 (113.1 * (100/64/2)) 
 

• As the number of dimensions increases, the 
kernel will need to be called more times – once for 
each set of 4 dimensions.  Also, the results from 
each call will need to be merged. More research is 
needed to determine the best way to handle this 
step - either in an FPGA or a processor. [1] 

9. Conclusion 
This research has demonstrated a kernel for 

implementing a multi-dimension range search algorithm 
in an FPGA that offers a peak acceleration of over 113X 
compared to a high-end Opteron processor.  The 
implementation using Celoxica’s programming 
environment produced an efficient hardware 
implementation in a very rapid timeframe. The 
implementation maintained a familiar software 
development paradigm, while giving access to this 
acceleration capability that can be leveraged by 
reconfigurable hardware.  

 
The search kernel algorithm described in this paper is 

one possible high performance algorithm that can be 
implemented using Celoxica’s programming 
environment. There are a multitude of other applications 
where Celoxica’s C-based compiler technology and 
Cray’s FPGA-augmented supercomputers can be used to 
accelerate today’s most challenging computational 
algorithms. 
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