Celoxica

Turning Software into Silicon

Compiling Software Code to FPGA-Based
Application Accelerator Processors for
the XD1

Doug Johnson
David Gardner

Celoxica, Inc.

doug.johnson@celoxica.com

+1-310-543-2468

“The Opportunity Celoxica

Turning Software into Silicon

- CeloxXica

HPC Leader Tools for Programming FPGA

from Software

XD1 FPGA systems

» Make FPGA programming transparent for
High-Performance Computing users

» Enable FPGA use to enhance compute
system performance and flexibility

v » Open new applications and new market
opportunities for Cray HPC solutions

Slide 2 CUG 2006

Wl ol f -

Ioithm lmbléhientation in FPGAs

==
Celoxica

Turning Software into Silicon

SW Compiled
for Processor

Celoxica’s Software
Compiled Silicon

Traditional HW
Methodologies

-

Algorithm Design (C code)

L Z

l :

HW/SW Partitioning

v

C Debug, Optimization, and Compilation]

yjed Buiwweibouid 10ssasoid MS

Microprocessor

Serial execution
High power, cost

Software
programmable

Celoxica
Software-to-Silicon
Programming Path

HW/SW Accelerated System

>
>
>

Optimized performance
Optimized power, cost
SW programming flexibility

_____Translation.to. RTL. ____

EDIF/GDSII

yjed ubisag MH [euoizuaAuo)

Application-Specific Hardware

Parallel performance
Low power, cost
Long, expensive design

cycle

Slide 3

CUG 2006

Celoxica

Turning Software into Silicon

l@orithmic C-CD

| ¥
Hardware-Software Partitioning

C-Debug, Optimization and Compilation

Direct synthesis from algorithmic
C-code to XD1 FPGA

Software - ¢ Enables software engineers to
Compiler design slle program FPGAs without HDLs

Py
Celoxica’s Area and performance optimization

Softwar e-tc_>-SiIi con by exploiting parallelism in FPGA
Programming Path architecture

|

Side 4 b Cray XD1 Compute Blade

Celox'ca

Designing FPGA Hardware from C
using the DK Design Suite

Celoxica DK Algorithm Acceleration Flow Celoxica

Turning Software into Silicon

Alg?”thm . __ C-Synthesis
design 8 »C to RTL
: MATTAB 4\,

»Co-design SIMULINK ~ R Generate human-
Provide rapid Baset readable VHDL
iteration of ‘ L and Verilog for
partitioning P " a ASIC RTL hand-
decisions c J / off
throughout flow g RTL Simulator BARE Software 1SS |

- ,\ (»C to FPGA

» Co-verification g Direct
Drive continuous o implementation to
system verification - device optimized
from concept to = - programmable
hardware 5

N FPGA Vendor) ogIC
.

To ASIC

Slide 6 CUG 2006

Celoxica

nthesizable ANSI-C for Hardware Design

» Handel-C adds constructs to ANSI-C to enable DK to directly
implement hardware
m fully synthesizable and based upon standard ANSI-C
m Implements C algorithm direct to optimized FPGA or outputs RTL from C

Handel-C
Additions for hardware

Majority of ANSI-C
Software-only constructs supported by DK

Parallelism

ANSI-C constructs Control statements Timing
(if, switch, case, etc.) Interfaces
Integer Arithmetic Clocks
Functions Macro pre-processor
Pointers RAM/ROM
Basic types Shared expression
(Structures, Arrays etc.) Communications
#define Handel-C libraries
#include Fixed-point library

Bit manipulation
Single/Double
floating point library |-

Slide 7 CUG 2006

P -

I-';na.r;rw-ehtél Challenge for C-based Synthesis Celoxica

Turning Software into Silicon

Behavioral Synthesis is:
the automated transformation from a higher level of abstraction
(C/SystemC-based Algorithm or TLM implementation)
to a hardware implementation
(RTL description or gate netlist)

To do this ALL Behavioral Synthesis tools using ANY C/C++-based language must
address the following:

m Concurrency

Timing

Data Types

Communication

Resource Sharing and Implementation

Celoxica Philosophy: Put control in the user’s hands!

Slide 8 CUG 2006

Defining Concurrency — Handel-C Celoxica

Turning Software into Silicon

» Course and fine grain parallelism in Handel-C

void main(void) I 1 Clock Cycle Il 3 Clock Cycles
{ par{ 1
par{ a=1; af ’
processA(...); ::g’ :;: ;
processB(...); } ’ ’

Slide 9 CUG 2006

Timing Model Celoxica

Turning Software into Silicon

» Assignments and delay statements take 1 clock cycle

» Combinatorial expressions computed between clock
edges
m Most complex expression determines clock period
m Example: takes 1+n cycles (n is number of iterations)

index = 0; Il 1 Cycle
while (index < length){
if(table[index] = key)
found=index; // 1 Cycle
else
index = index+1; // 1 Cycle

}

Slide 10 CUG 2006

Data Types Celoxica

Turning Software into Silicon

Handel-C has one basic type - integer
May be signed or unsigned

Can be any width, not limited to 8, 16, 32 etc.

Fixed-point data types also supported for fractional

representation
Variables are mapped to hardware registers.

vV v v Vv

void main (void)

{

unsigned 6 a;
a=45;

a=11/0]1]1/0]1]=0x2d

MSB LSB

Slide 11 CUG 2006

Communications Celoxica

Turning Software into Silicon

» Allow communication and synchronization between two
parallel branches

m Semantics based on CSP: unbuffered (synchronous) send and
receive

» Declaration
m Specifies data type to be communicated

v c v
a » b
¥ ¥

Chan unsigned 6 c;

{ {

clat+l; //write a+l to c¢ c?b; //read c to b

Slide 12 CUG 2006

Interfaces Celoxica

Turning Software into Silicon

» Interfaces allow Handel-C designs to connect to external hardware and
logic.

» Three types of interfaces

m Buses — used for connecting to external pins

m Ports — used for creating connection points for external logic.

O e.g. Creating the ports for a VHDL entity

m User Defined — used for including external logic blocks inside a Handel-C
design.

o e.g. Including an EDIF black box inside a design.

Slide 13 CUG 2006

Celoxica

Turning Software into Silicon

DK Design Suite IDE

Celoxica

Turning Software into Silicon

Mix C/C++ & HC (for the description of parallel algorithms)

C/C++ code used in simulation, functional test benches & HW-SW co-

design

HC simulated cycle accurately and implemented as EDIF & RTL

(et EILN'R BN
]

Feksie T T » Project management
Vet v S e e » Symbolic source browsers
I chan (cosplex) cDataln. cDataOut. Areomaunical jon > Syntax highlighting
Clock/Theead [sparalle
R e O | B eeueny, B Rais
" multithreaded symboli
T : muititnreaded symbpolic

i— vaid Transiors{chan <complex: *pcDataln. chen :conplex: * .
j h“rl H! ¢ conplex Datal3}; s/complex data regizters debugger-
‘ %::i: ? DAALS]: /road secon mmm = single step execution

G P e l:y\Elu lli-l-'liPlJ.l.‘-l-Lil:ﬂl EE': H .

' e = break points;
P Voo -mmuj R e s = variable watch
| iy 1 £l 9 0 enn. 0wy indows

Data[0] an F = wi w

Tﬁ;iu_,[l_] =~ HAND pates aite complaton - 10053 275 FFy, ey bis]

1 = A Deors.) manngs | thread fOCUS.
[[1SL4Yp [RIF LRy Locah | AT TS0 st g T s P 1 ok s 2 .

» Mix C/C++ & HC code
Slide 15 CUG 2006

Mixed C/ C++/ HC Simulation

Celoxica

Turning Software into Silicon

» Supports TLM, mixed abstraction modeling & simulation
» HC, C & C++ native support

= G hardware_bubble Wlir Virten-E Chip
25 hissdwsrs ol hoo Hardel-L source He
ff) manice Handel-C souce fig
[schwes smicpp ARSI Coe yonree fily
& Estaind Dependencie:
R e s T

Slide 16

E i Bee

Nvanne

=||Detug

et clock = external

?tm Ot
woad sv_init dataiunsignsd chad
void swv print_datalunsigned chf

My hardware_sort hee E—.ﬁ

void =v_sort_data{unsigned chs

extern "C" ant prantfichar =fmt.
extern wotd he sort_data{unsign
E=pvodd nainiwoad)

unsign=d char data[&],
sw_init_dataidata. &)

= hy_sort_data| data. (unsigned

sv_print_data(data. @)

VO1d h¥_sort_data|unsigned char
1
unsigned int 1. 3

unsigned int tamp:

forti=0: 3im=1: i++)

el

= for{i=i+l. 7im. A4+)
B - Eh:k.-'Thmd |1:,-u|= =
= = (Iﬁ 0 (ma. - 2
i 1 k.
el
2/ Name | Wk B
g - &datalD]
datalD] | 58 &
» ||| datafi] | 247
|
DEIC Ubstehd f vickd B ieehd B i

CUG 2006

Source-level parallel debug

Single stepping & break
points

HW simulated within the
system model

Fast simulation

Functional verification with
mixed languages

Architectural exploration
Refine & transform to HW

C/C++ testbenches
developed into models &
used throughout code

uaqe Simulation Celoxica

- - Turning Software into Silicon

» Connects with 3rd party simulators
» VHDL/ Verilog/ SystemC/ Simulink/ Software ISS models

Interface declaration
interface TTL7446 (unsigned 7 segrents. unsigned 1 rbon)
D] Dby e B = ELEEE S decode{unsigned 1 lta=ltaVal, unsigned 1 rbin=rhinVal.

T B DR Moy ot Debug ook Winder Heb R : unsigned 4 digit=digit¥al. unsigned 1 bin=bin¥al)}:
RE=Y - §- 3 s BE | = Jtaeng|lapen
- ¥ BL BN ﬁ#ﬂl'lli!lmm Bewe |
J- =-r s mawnivosd Ei
- s v Lo " igead 1 lan¥al
- e TPA8E few o Lo TR [1 gmer] 0
ignad | hin¥s]
- (e O jul 28 Delu . . .
Rty e e » Static timing
:I_Eg m:’" w10 |M|L::I IP"I: LT=H] I..'lﬂu I "
'.-‘ _" —. 2 ExtimEt e decode Em ana ysls
Alw
' - L)
» Libraries for HW-
SW simulation,

system modeling
» Libraries for

TV T T T

[Re— | ot f Lo
T;r@,ﬂ,,_ TR — ; & virtual peripherals
o (G 2 & platform
abstraction

Slide 17 CUG 2006

Celoxica

y REETY Y
Turning Software into Silicon

»

Auto Generation of EDIF netlist and IEEE RTL

Static timing related directly to areas of source code for optimization
Detailed time/area estimations supports experimentation

Output nets names relate directly to source code.

v v v VY

» Set timing constraints for I/O
signals

» Technology mapped (to LUTSs)
EDIF output

| = Longest paths | > Use Of embedded ALU
= - : . ags .
s o e] Pl e . priiias (g or Statc DSP
- : Ewpand netistior [opeed (Mespeed] =)
Fermibe [4F | Akera Stiate B4 [BlleraStaind] =
*"mgmﬂsmﬁmmﬂl M » Automatic pipelining of RAM
- [ﬂ,__.mhq%&mﬂmﬁ‘: B - '“""“‘I e dtls 4 e accesses: (e.g. Actel BlockRAM,
; 9‘“"‘“"' Limt ALUs of type: | STRATES_DSF = io; : T
Dkt Mo i B Bl P - Altera EAB and Xilinx
BockoaebieViter 4 limted] - e ¥ TRt ety o 1 s fom) BlockRAM)
Gener. ahove widihe [0 3: . .
Speediade [<] e e » Retiming Synthesis
W Enable memonp poalinng lianslomations
Pat [eplsoxifel6raes - e
[T Disable st caiiy chan oolimestons

W Enahls technalogy mappes

Longest paths summary M Ensble jstimng
I lgroe gzndad ibpal gy, Grade B Grade 7 Grade &
™ Sava beowen iilo Wacarmains logec dalay o Fp Moo Fig np & 40ns 4 GIRE 5 37005
Mamimirs 10gic deley Trom Pl Mo o Pin 0@z OA2RG (3R
Wagmum logic delsy fom Pmis flpfop 1400 1.aTns 1 B

Slide 18 CUG 2006

Celox'ca

Implementing a Search Kernel
Algorithm on Cray’s XD1 Using DK

Application Acceleration on the XD1 Celoxica

Turning Software into Silicon

Application Acceleration
» Reconfigurable Computing
» Tightly coupled to Opteron

» FPGA acts like a programmable
co-processor

» Performs vector operations

» Well-suited for:

m Searching, sorting, signal
processing, audio/video/image
manipulation, encryption, error
correction, coding/decoding,
packet processing, random
number generation.

XD1 Application Accelerator

Slide Courtesy of Cray Inc.

Slide 20 CUG 2006

Search Kernel Algorithm Example Celoxica

Turning Software into Silicon

» Hypercube Range Search Implementation

m Algorithm has a set of p points and a set of h hypercubes, both of which having
d dimensions.

m System identifies each point-hypercube combination where the point lies
completely within the hypercube

m All of the point and hypercube parameters are represented by 16-bit positive
integers

m Result of the search kernel should be represented as bit-vectors where each bit
represents a hit/miss flag for every point-hypercube combination

m Resulting bit-vectors must be written back into the processor’s main memory

m Parameters
o Number of points will be limited to around 107
o Number of hypercubes, h, was set at 64
o0 Number of dimensions was set to 4

Slide 21 CUG 2006

Handel-C Design Flow with DK4.0 for XD1 Celoxica

Turning Software into Silicon

User Applications written
in Handel-C

DK 4.0 for Cray XD1:
Design/Verification/
Debugging

* Handel-C

DK RTL/EDIF Compiler

* EDIF

Xilinx XST PAR

* bitfiles

Program XD1 FPGA

RTL Simulators:
V"'D.'- ModelSim/Riviera for
additional timing analysis
and verification

Slide 22 CUG 2006

XD1 Application Acceleration System Celoxica

Turning Software into Silicon

2.2 GHz Opteron

AMD Opteran FPGA processing 64 hypercubes/cycle

HyperTrapapurt 140million/sec * 4 dimensions * 2 * 64 =~ 72 billion comparisons/sec

__

) 32GB/s _
—_—

AP _3.2GE’s

QDR SEAM

Application Acceleration FRPGA
Allinx Yirtex || Pro

2GB/s| | 2 GB/s

Cray Rapidarray Interconnect
128,000 points processed 500 times

Calculation takes about 0.47 seconds

Slide Courtesy of Cray Inc.

Slide 23 CUG 2006

Seérch Kernel Algorithm Acceleration on the FPGA Ce’o j('i'ca‘

Turning Software into Silicon

Acceleration vs Number of
Hypercubes

120.0

100.0 -
80.0 -

60.0 -

40.0
20.0 /

0.0 e ———————————-

Acceleration

Number of Hypercubes

Slide 24 CUG 2006

Celoxica

Turning Software into Silicon

Celoxica

Copyright © 2005 Celoxica Ltd. All rights reserved. Celoxica and the Celoxica logo and Handel-C are trademarks of Celoxica Limited. All other
trademarks acknowledged. The information contained herein is subject to change without notice and is for general guidance only.

Slide 25 CUG 2006

	Compiling Software Code to FPGA-Based Application Accelerator Processors for the XD1
	The Opportunity
	Algorithm Implementation in FPGAs
	Designing FPGA Hardware from C using the DK Design Suite
	Celoxica DK Algorithm Acceleration Flow
	Synthesizable ANSI-C for Hardware Design
	Fundamental Challenge for C-based Synthesis
	Defining Concurrency – Handel-C
	Timing Model
	Data Types
	Communications
	Interfaces
	DK Design Suite IDE
	Integrated Development Environment (IDE)
	Mixed C/ C++/ HC Simulation
	Mixed Language Simulation
	C Synthesis to FPGA Gates & RTL
	Implementing a Search Kernel Algorithm on Cray’s XD1 Using DK
	Search Kernel Algorithm Example
	Handel-C Design Flow with DK4.0 for XD1
	XD1 Application Acceleration System
	Search Kernel Algorithm Acceleration on the FPGA

