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The Opportunity

Tools for Programming FPGA 
from Software

HPC Leader

XD1 FPGA systems

Make FPGA programming transparent for 
High-Performance Computing users

Enable FPGA use to enhance compute 
system performance and flexibility

Open new applications and new market 
opportunities for Cray HPC solutions
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Algorithm Implementation in FPGAs

Application-Specific Hardware

Parallel performance
Low power, cost
Long, expensive design 
cycle

HW/SW Accelerated System

Optimized performance
Optimized power, cost
SW programming flexibility

C Debug, Optimization, and Compilation

HW/SW Partitioning

Hand 
Translation to RTL

RTL Design Flow

Physical Design Flow
.obj EDIF

EDIF/GDSII

C
onventional H

W
 D

esign Path

Celoxica 
Software-to-Silicon 
Programming Path

SW Compiled Celoxica’s Software                       Traditional HW 
for Processor                   Compiled Silicon                Methodologies 

Algorithm Design (C code)

SW
 Processor Program

m
ing Path

Microprocessor

Serial execution
High power, cost
Software 
programmable
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Programming the Cray XD1 FPGA with DK

Algorithmic C-Code

Acceleration
FPGA

Cray XD1 Compute Blade

C-Debug, Optimization and Compilation

Hardware-Software Partitioning

Celoxica’s 
Software-to-Silicon 
Programming Path

Software
Compiler

Direct synthesis from algorithmic 
C-code to XD1 FPGA

Enables software engineers to 
program FPGAs without HDLs

Area and performance optimization  
by exploiting parallelism in FPGA 
architecture
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Designing FPGA Hardware from C 
using the DK Design Suite
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Celoxica DK Algorithm Acceleration Flow

C-Synthesis
C to RTL
Generate human-
readable VHDL 
and Verilog for 
ASIC RTL hand-
off

C to FPGA
Direct 
implementation to 
device optimized 
programmable 
logic

Algorithm 
design

Co-design
Provide rapid 
iteration of 
partitioning 
decisions 
throughout flow

Co-verification
Drive continuous 
system verification 
from concept to 
hardware
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Synthesizable ANSI-C for Hardware Design

Handel-C adds constructs to ANSI-C to enable DK to directly 
implement hardware

fully synthesizable and based upon standard ANSI-C
Implements C algorithm direct to optimized FPGA or outputs RTL from C

Control statements
(if, switch, case, etc.)

Integer Arithmetic
Functions
Pointers

Basic types
(Structures, Arrays etc.)

#define
#include

Parallelism
Timing

Interfaces
Clocks

Macro pre-processor
RAM/ROM

Shared expression
Communications

Handel-C libraries
Fixed-point library
Bit manipulation
Single/Double 

floating point library

Recursion
Side effects

Standard libraries
Malloc

Software-only 
ANSI-C constructs

Majority of ANSI-C 
constructs supported by DK

Handel-C
Additions for hardware
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Fundamental Challenge for C-based Synthesis

Behavioral Synthesis is:
the automated transformation from a higher level of abstraction

(C/SystemC-based Algorithm or TLM implementation) 
to a hardware implementation

(RTL description or gate netlist)

To do this ALL Behavioral Synthesis tools using ANY C/C++-based language must 
address the following:

Concurrency
Timing
Data Types
Communication
Resource Sharing and Implementation

Celoxica Philosophy: Put control in the user’s hands!
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Defining Concurrency – Handel-C

Course and fine grain parallelism in Handel-C

void main(void)
{

par{
processA(…);
processB(…);
…

}
}

// 3 Clock Cycles 

a=1;
b=2;
c=3;

// 1 Clock Cycle 
par{

a=1;
b=2;
c=3;
}
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Timing Model

Assignments and delay statements take 1 clock cycle
Combinatorial expressions computed between clock 
edges

Most complex expression determines clock period
Example: takes 1+n cycles (n is number of iterations)

index = 0;                      // 1 Cycle
while (index < length){

if(table[index] = key)
found=index;     // 1 Cycle

else
index = index+1; // 1 Cycle

}
}
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Data Types

Handel-C has one basic type - integer
May be signed or unsigned
Can be any width, not limited to 8, 16, 32 etc.
Fixed-point data types also supported for fractional 
representation

Variables are mapped to hardware registers.

void main(void)
{

unsigned 6 a;
a=45;

}

1 0 1 1 0 1 = 0x2da =

LSBMSB
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Communications

Allow communication and synchronization between two 
parallel branches

Semantics based on CSP: unbuffered (synchronous) send and 
receive

Declaration
Specifies data type to be communicated

{
…
c?b;  //read c to b
…

}

{
…
c!a+1;  //write a+1 to c
…

}

Chan unsigned 6 c;

ca b
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Interfaces

Interfaces allow Handel-C designs to connect to external hardware and 
logic.

Three types of interfaces

Buses – used for connecting to external pins

Ports – used for creating connection points for external logic.

e.g. Creating the ports for a VHDL entity

User Defined – used for including external logic blocks inside a Handel-C 
design.

e.g. Including an EDIF black box inside a design. 
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DK Design Suite IDE
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Integrated Development Environment (IDE)

Mix C/C++ & HC (for the description of parallel algorithms) 

C/C++ code used in simulation, functional test benches & HW-SW co-
design

HC simulated cycle accurately and implemented as EDIF & RTL

Project management
Symbolic source browsers
Syntax highlighting 
Cycle-accurate 
multithreaded symbolic 
debugger:

single step execution
break points; 
variable watch 
windows 
thread focus.

Mix C/C++ & HC code
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Mixed C/ C++/ HC Simulation

Supports TLM, mixed abstraction modeling  & simulation 
HC, C & C++ native support

Source-level parallel debug
Single stepping & break 
points 
HW simulated within the 
system model
Fast simulation
Functional verification with 
mixed languages
Architectural exploration
Refine & transform to HW 
C/C++ testbenches
developed into models & 
used throughout code
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Mixed Language Simulation

IP reuse
Static timing 
analysis
Libraries for HW-
SW simulation, 
system modeling
Libraries for 
virtual peripherals 
& platform 
abstraction

Connects with 3rd party simulators
VHDL/ Verilog/ SystemC/ Simulink/ Software ISS models
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C Synthesis to FPGA Gates & RTL

Auto Generation of EDIF netlist and IEEE RTL
Static timing related directly to areas of source code for optimization 
Detailed time/area estimations supports experimentation
Output nets names relate directly to source code. 

Set timing constraints for I/O 
signals
Technology mapped (to LUTs) 
EDIF output
Use of embedded ALU 
primitives (e.g. for Stratix DSP 
blocks & Virtex-II/IV multipliers)
Automatic pipelining of RAM 
accesses: (e.g. Actel BlockRAM, 
Altera EAB and Xilinx 
BlockRAM) 
Retiming Synthesis
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Implementing a Search Kernel 
Algorithm on Cray’s XD1 Using DK
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Application Acceleration on the XD1

Application Acceleration
Reconfigurable Computing
Tightly coupled to Opteron
FPGA acts like a programmable 
co-processor 
Performs vector operations
Well-suited for:

Searching, sorting, signal 
processing, audio/video/image 
manipulation, encryption, error 
correction, coding/decoding, 
packet processing, random 
number generation.

XD1 Application Accelerator

Slide Courtesy of Cray Inc.
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Search Kernel Algorithm Example

Hypercube Range Search Implementation
Algorithm has a set of p points and a set of h hypercubes, both of which having 
d dimensions.  
System identifies each point-hypercube combination where the point lies 
completely within the hypercube
All of the point and hypercube parameters are represented by 16-bit positive 
integers
Result of the search kernel should be represented as bit-vectors where each bit 
represents a hit/miss flag for every point-hypercube combination 
Resulting bit-vectors must be written back into the processor’s main memory
Parameters

Number of points will be limited to around 107

Number of hypercubes, h, was set at 64
Number of dimensions was set to 4 



CUG 2006Slide 22

Handel-C Design Flow with DK4.0 for XD1

DK 4.0 for Cray XD1:
Design/Verification/

Debugging

DK RTL/EDIF Compiler

RTL Simulators:
ModelSim/Riviera for

additional timing analysis
and verification

Xilinx XST PAR

User Applications written
in Handel-C

VHDL

EDIF

bitfiles

Handel-C

Program XD1 FPGA
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XD1 Application Acceleration System

Slide Courtesy of Cray Inc.

2.2 GHz Opteron 

FPGA processing 64 hypercubes/cycle

140million/sec * 4 dimensions * 2 * 64 =~ 72 billion comparisons/sec 

128,000 points processed 500 times 

Calculation takes about 0.47 seconds 
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Search Kernel Algorithm Acceleration on the FPGA

Acceleration vs Number of 
Hypercubes 
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