
May 17, 2006

Compiling Software Code to FPGA-Based
Application Accelerator Processors for

the XD1

Doug Johnson

David Gardner

Celoxica, Inc.
doug.johnson@celoxica.com

+1-310-543-2468

CUG 2006Slide 2

The Opportunity

Tools for Programming FPGA
from Software

HPC Leader

XD1 FPGA systems

Make FPGA programming transparent for
High-Performance Computing users

Enable FPGA use to enhance compute
system performance and flexibility

Open new applications and new market
opportunities for Cray HPC solutions

CUG 2006Slide 3

Algorithm Implementation in FPGAs

Application-Specific Hardware

Parallel performance
Low power, cost
Long, expensive design
cycle

HW/SW Accelerated System

Optimized performance
Optimized power, cost
SW programming flexibility

C Debug, Optimization, and Compilation

HW/SW Partitioning

Hand
Translation to RTL

RTL Design Flow

Physical Design Flow
.obj EDIF

EDIF/GDSII

C
onventional H

W
 D

esign Path

Celoxica
Software-to-Silicon
Programming Path

SW Compiled Celoxica’s Software Traditional HW
for Processor Compiled Silicon Methodologies

Algorithm Design (C code)

SW
 Processor Program

m
ing Path

Microprocessor

Serial execution
High power, cost
Software
programmable

CUG 2006Slide 4

Programming the Cray XD1 FPGA with DK

Algorithmic C-Code

Acceleration
FPGA

Cray XD1 Compute Blade

C-Debug, Optimization and Compilation

Hardware-Software Partitioning

Celoxica’s
Software-to-Silicon
Programming Path

Software
Compiler

Direct synthesis from algorithmic
C-code to XD1 FPGA

Enables software engineers to
program FPGAs without HDLs

Area and performance optimization
by exploiting parallelism in FPGA
architecture

May 17, 2006

Designing FPGA Hardware from C
using the DK Design Suite

CUG 2006Slide 6

Celoxica DK Algorithm Acceleration Flow

C-Synthesis
C to RTL
Generate human-
readable VHDL
and Verilog for
ASIC RTL hand-
off

C to FPGA
Direct
implementation to
device optimized
programmable
logic

Algorithm
design

Co-design
Provide rapid
iteration of
partitioning
decisions
throughout flow

Co-verification
Drive continuous
system verification
from concept to
hardware

CUG 2006Slide 7

Synthesizable ANSI-C for Hardware Design

Handel-C adds constructs to ANSI-C to enable DK to directly
implement hardware

fully synthesizable and based upon standard ANSI-C
Implements C algorithm direct to optimized FPGA or outputs RTL from C

Control statements
(if, switch, case, etc.)

Integer Arithmetic
Functions
Pointers

Basic types
(Structures, Arrays etc.)

#define
#include

Parallelism
Timing

Interfaces
Clocks

Macro pre-processor
RAM/ROM

Shared expression
Communications

Handel-C libraries
Fixed-point library
Bit manipulation
Single/Double

floating point library

Recursion
Side effects

Standard libraries
Malloc

Software-only
ANSI-C constructs

Majority of ANSI-C
constructs supported by DK

Handel-C
Additions for hardware

CUG 2006Slide 8

Fundamental Challenge for C-based Synthesis

Behavioral Synthesis is:
the automated transformation from a higher level of abstraction

(C/SystemC-based Algorithm or TLM implementation)
to a hardware implementation

(RTL description or gate netlist)

To do this ALL Behavioral Synthesis tools using ANY C/C++-based language must
address the following:

Concurrency
Timing
Data Types
Communication
Resource Sharing and Implementation

Celoxica Philosophy: Put control in the user’s hands!

CUG 2006Slide 9

Defining Concurrency – Handel-C

Course and fine grain parallelism in Handel-C

void main(void)
{

par{
processA(…);
processB(…);
…

}
}

// 3 Clock Cycles

a=1;
b=2;
c=3;

// 1 Clock Cycle
par{

a=1;
b=2;
c=3;
}

CUG 2006Slide 10

Timing Model

Assignments and delay statements take 1 clock cycle
Combinatorial expressions computed between clock
edges

Most complex expression determines clock period
Example: takes 1+n cycles (n is number of iterations)

index = 0; // 1 Cycle
while (index < length){

if(table[index] = key)
found=index; // 1 Cycle

else
index = index+1; // 1 Cycle

}
}

CUG 2006Slide 11

Data Types

Handel-C has one basic type - integer
May be signed or unsigned
Can be any width, not limited to 8, 16, 32 etc.
Fixed-point data types also supported for fractional
representation

Variables are mapped to hardware registers.

void main(void)
{

unsigned 6 a;
a=45;

}

1 0 1 1 0 1 = 0x2da =

LSBMSB

CUG 2006Slide 12

Communications

Allow communication and synchronization between two
parallel branches

Semantics based on CSP: unbuffered (synchronous) send and
receive

Declaration
Specifies data type to be communicated

{
…
c?b; //read c to b
…

}

{
…
c!a+1; //write a+1 to c
…

}

Chan unsigned 6 c;

ca b

CUG 2006Slide 13

Interfaces

Interfaces allow Handel-C designs to connect to external hardware and
logic.

Three types of interfaces

Buses – used for connecting to external pins

Ports – used for creating connection points for external logic.

e.g. Creating the ports for a VHDL entity

User Defined – used for including external logic blocks inside a Handel-C
design.

e.g. Including an EDIF black box inside a design.

May 17, 2006

DK Design Suite IDE

CUG 2006Slide 15

Integrated Development Environment (IDE)

Mix C/C++ & HC (for the description of parallel algorithms)

C/C++ code used in simulation, functional test benches & HW-SW co-
design

HC simulated cycle accurately and implemented as EDIF & RTL

Project management
Symbolic source browsers
Syntax highlighting
Cycle-accurate
multithreaded symbolic
debugger:

single step execution
break points;
variable watch
windows
thread focus.

Mix C/C++ & HC code

CUG 2006Slide 16

Mixed C/ C++/ HC Simulation

Supports TLM, mixed abstraction modeling & simulation
HC, C & C++ native support

Source-level parallel debug
Single stepping & break
points
HW simulated within the
system model
Fast simulation
Functional verification with
mixed languages
Architectural exploration
Refine & transform to HW
C/C++ testbenches
developed into models &
used throughout code

CUG 2006Slide 17

Mixed Language Simulation

IP reuse
Static timing
analysis
Libraries for HW-
SW simulation,
system modeling
Libraries for
virtual peripherals
& platform
abstraction

Connects with 3rd party simulators
VHDL/ Verilog/ SystemC/ Simulink/ Software ISS models

CUG 2006Slide 18

C Synthesis to FPGA Gates & RTL

Auto Generation of EDIF netlist and IEEE RTL
Static timing related directly to areas of source code for optimization
Detailed time/area estimations supports experimentation
Output nets names relate directly to source code.

Set timing constraints for I/O
signals
Technology mapped (to LUTs)
EDIF output
Use of embedded ALU
primitives (e.g. for Stratix DSP
blocks & Virtex-II/IV multipliers)
Automatic pipelining of RAM
accesses: (e.g. Actel BlockRAM,
Altera EAB and Xilinx
BlockRAM)
Retiming Synthesis

May 17, 2006

Implementing a Search Kernel
Algorithm on Cray’s XD1 Using DK

CUG 2006Slide 20

Application Acceleration on the XD1

Application Acceleration
Reconfigurable Computing
Tightly coupled to Opteron
FPGA acts like a programmable
co-processor
Performs vector operations
Well-suited for:

Searching, sorting, signal
processing, audio/video/image
manipulation, encryption, error
correction, coding/decoding,
packet processing, random
number generation.

XD1 Application Accelerator

Slide Courtesy of Cray Inc.

CUG 2006Slide 21

Search Kernel Algorithm Example

Hypercube Range Search Implementation
Algorithm has a set of p points and a set of h hypercubes, both of which having
d dimensions.
System identifies each point-hypercube combination where the point lies
completely within the hypercube
All of the point and hypercube parameters are represented by 16-bit positive
integers
Result of the search kernel should be represented as bit-vectors where each bit
represents a hit/miss flag for every point-hypercube combination
Resulting bit-vectors must be written back into the processor’s main memory
Parameters

Number of points will be limited to around 107

Number of hypercubes, h, was set at 64
Number of dimensions was set to 4

CUG 2006Slide 22

Handel-C Design Flow with DK4.0 for XD1

DK 4.0 for Cray XD1:
Design/Verification/

Debugging

DK RTL/EDIF Compiler

RTL Simulators:
ModelSim/Riviera for

additional timing analysis
and verification

Xilinx XST PAR

User Applications written
in Handel-C

VHDL

EDIF

bitfiles

Handel-C

Program XD1 FPGA

CUG 2006Slide 23

XD1 Application Acceleration System

Slide Courtesy of Cray Inc.

2.2 GHz Opteron

FPGA processing 64 hypercubes/cycle

140million/sec * 4 dimensions * 2 * 64 =~ 72 billion comparisons/sec

128,000 points processed 500 times

Calculation takes about 0.47 seconds

CUG 2006Slide 24

Search Kernel Algorithm Acceleration on the FPGA

Acceleration vs Number of
Hypercubes

0.0
20.0
40.0
60.0
80.0

100.0
120.0

1

11
3

22
5

33
7

44
9

56
1

67
3

78
5

89
7

10
09

Number of Hypercubes

A
cc

el
er

at
io

n

CUG 2006Slide 25

Copyright © 2005 Celoxica Ltd. All rights reserved. Celoxica and the Celoxica logo and Handel-C are trademarks of Celoxica Limited. All other
trademarks acknowledged. The information contained herein is subject to change without notice and is for general guidance only.

	Compiling Software Code to FPGA-Based Application Accelerator Processors for the XD1
	The Opportunity
	Algorithm Implementation in FPGAs
	Designing FPGA Hardware from C using the DK Design Suite
	Celoxica DK Algorithm Acceleration Flow
	Synthesizable ANSI-C for Hardware Design
	Fundamental Challenge for C-based Synthesis
	Defining Concurrency – Handel-C
	Timing Model
	Data Types
	Communications
	Interfaces
	DK Design Suite IDE
	Integrated Development Environment (IDE)
	Mixed C/ C++/ HC Simulation
	Mixed Language Simulation
	C Synthesis to FPGA Gates & RTL
	Implementing a Search Kernel Algorithm on Cray’s XD1 Using DK
	Search Kernel Algorithm Example
	Handel-C Design Flow with DK4.0 for XD1
	XD1 Application Acceleration System
	Search Kernel Algorithm Acceleration on the FPGA

