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“The Opportunity Celoxica

Turning Software into Silicon

- CeloxXica

HPC Leader Tools for Programming FPGA

from Software

XD1 FPGA systems

» Make FPGA programming transparent for
High-Performance Computing users

» Enable FPGA use to enhance compute
system performance and flexibility

v » Open new applications and new market
opportunities for Cray HPC solutions
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Celoxica

Turning Software into Silicon

l@orithmic C-CD

| ¥
Hardware-Software Partitioning

C-Debug, Optimization and Compilation

Direct synthesis from algorithmic
C-code to XD1 FPGA

Software - ¢ Enables software engineers to
Compiler design slle program FPGAs without HDLs

Py
Celoxica’s Area and performance optimization

Softwar e-tc_>-SiIi con by exploiting parallelism in FPGA
Programming Path architecture

|
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Celox'ca

Designing FPGA Hardware from C
using the DK Design Suite




Celoxica DK Algorithm Acceleration Flow Celoxica

Turning Software into Silicon

Alg?”thm . __ C-Synthesis
design 8 »C to RTL
: MATTAB 4\,

»Co-design SIMULINK ~ R Generate human-
Provide rapid Baset readable VHDL
iteration of ‘ L and Verilog for
partitioning P " a ASIC RTL hand-
decisions c J / off
throughout flow g RTL Simulator BARE  Software 1SS |

- ,\ ( »C to FPGA

» Co-verification g Direct
Drive continuous o implementation to
system verification - device optimized
from concept to = - programmable
hardware 5

N FPGA Vendor ) ogIC
.

To ASIC
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Celoxica

nthesizable ANSI-C for Hardware Design

» Handel-C adds constructs to ANSI-C to enable DK to directly
implement hardware
m fully synthesizable and based upon standard ANSI-C
m Implements C algorithm direct to optimized FPGA or outputs RTL from C

Handel-C
Additions for hardware

Majority of ANSI-C
Software-only constructs supported by DK

Parallelism

ANSI-C constructs Control statements Timing
(if, switch, case, etc.) Interfaces
Integer Arithmetic Clocks
Functions Macro pre-processor
Pointers RAM/ROM
Basic types Shared expression
(Structures, Arrays etc.) Communications
#define Handel-C libraries
#include Fixed-point library

Bit manipulation
Single/Double
floating point library |-
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I-';na.r;rw-ehtél Challenge for C-based Synthesis Celoxica

Turning Software into Silicon

Behavioral Synthesis is:
the automated transformation from a higher level of abstraction
(C/SystemC-based Algorithm or TLM implementation)
to a hardware implementation
(RTL description or gate netlist)

To do this ALL Behavioral Synthesis tools using ANY C/C++-based language must
address the following:

m Concurrency

Timing

Data Types

Communication

Resource Sharing and Implementation

Celoxica Philosophy: Put control in the user’s hands!
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Defining Concurrency — Handel-C Celoxica

Turning Software into Silicon

» Course and fine grain parallelism in Handel-C

void main(void) I 1 Clock Cycle Il 3 Clock Cycles
{ par{ 1
par{ a=1; af ’
processA(...); ::g’ :;: ;
processB(...); } ’ ’
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Timing Model Celoxica

Turning Software into Silicon

» Assignments and delay statements take 1 clock cycle

» Combinatorial expressions computed between clock
edges
m Most complex expression determines clock period
m Example: takes 1+n cycles (n is number of iterations)

index = 0; Il 1 Cycle
while (index < length){
if(table[index] = key)
found=index; // 1 Cycle
else
index = index+1; // 1 Cycle

}
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Data Types Celoxica

Turning Software into Silicon

Handel-C has one basic type - integer
May be signed or unsigned

Can be any width, not limited to 8, 16, 32 etc.

Fixed-point data types also supported for fractional

representation
Variables are mapped to hardware registers.

vV v v Vv

void main (void)

{

unsigned 6 a;
a=45;

a=11/0]1]1/0]1]=0x2d

MSB LSB
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Communications Celoxica

Turning Software into Silicon

» Allow communication and synchronization between two
parallel branches

m Semantics based on CSP: unbuffered (synchronous) send and
receive

» Declaration
m Specifies data type to be communicated

v c v
a » b
¥ ¥

Chan unsigned 6 c;

{ {

clat+l; //write a+l to c¢ c?b; //read c to b
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Interfaces Celoxica

Turning Software into Silicon

» Interfaces allow Handel-C designs to connect to external hardware and
logic.

» Three types of interfaces

m Buses — used for connecting to external pins

m Ports — used for creating connection points for external logic.

O e.g. Creating the ports for a VHDL entity

m User Defined — used for including external logic blocks inside a Handel-C
design.

o e.g. Including an EDIF black box inside a design.
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Celoxica

Turning Software into Silicon

DK Design Suite IDE




Celoxica

Turning Software into Silicon

Mix C/C++ & HC (for the description of parallel algorithms)

C/C++ code used in simulation, functional test benches & HW-SW co-

design

HC simulated cycle accurately and implemented as EDIF & RTL
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» Mix C/C++ & HC code
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Mixed C/ C++/ HC Simulation

Celoxica

Turning Software into Silicon

» Supports TLM, mixed abstraction modeling & simulation
» HC, C & C++ native support

= G hardware_bubble Wlir Virten-E Chip
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Source-level parallel debug

Single stepping & break
points

HW simulated within the
system model

Fast simulation

Functional verification with
mixed languages

Architectural exploration
Refine & transform to HW

C/C++ testbenches
developed into models &
used throughout code




uaqe Simulation Celoxica

- - Turning Software into Silicon

» Connects with 3rd party simulators
» VHDL/ Verilog/ SystemC/ Simulink/ Software ISS models

## Interface declaration
interface TTL7446 (unsigned 7 segrents. unsigned 1 rbon)
D] Dby e B = ELEEE S decode{unsigned 1 lta=ltaVal, unsigned 1 rbin=rhinVal.

T B DR Moy ot Debug ook Winder Heb R : unsigned 4 digit=digit¥al. unsigned 1 bin=bin¥al)}:
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SW simulation,
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Turning Software into Silicon

»

Auto Generation of EDIF netlist and IEEE RTL

Static timing related directly to areas of source code for optimization
Detailed time/area estimations supports experimentation

Output nets names relate directly to source code.

v v v VY

» Set timing constraints for I/O
signals

» Technology mapped (to LUTSs)
EDIF output
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Celox'ca

Implementing a Search Kernel
Algorithm on Cray’s XD1 Using DK




Application Acceleration on the XD1 Celoxica

Turning Software into Silicon

Application Acceleration
» Reconfigurable Computing
» Tightly coupled to Opteron

» FPGA acts like a programmable
co-processor

» Performs vector operations

» Well-suited for:

m Searching, sorting, signal
processing, audio/video/image
manipulation, encryption, error
correction, coding/decoding,
packet processing, random
number generation.

XD1 Application Accelerator

Slide Courtesy of Cray Inc.
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Search Kernel Algorithm Example Celoxica

Turning Software into Silicon

» Hypercube Range Search Implementation

m Algorithm has a set of p points and a set of h hypercubes, both of which having
d dimensions.

m System identifies each point-hypercube combination where the point lies
completely within the hypercube

m All of the point and hypercube parameters are represented by 16-bit positive
integers

m Result of the search kernel should be represented as bit-vectors where each bit
represents a hit/miss flag for every point-hypercube combination

m Resulting bit-vectors must be written back into the processor’s main memory

m Parameters
o Number of points will be limited to around 107
o Number of hypercubes, h, was set at 64
o0 Number of dimensions was set to 4
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Handel-C Design Flow with DK4.0 for XD1 Celoxica

Turning Software into Silicon

User Applications written
in Handel-C

DK 4.0 for Cray XD1:
Design/Verification/
Debugging

* Handel-C

DK RTL/EDIF Compiler

* EDIF

Xilinx XST PAR

* bitfiles

Program XD1 FPGA

RTL Simulators:
V"'D.'- ModelSim/Riviera for
additional timing analysis
and verification
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XD1 Application Acceleration System Celoxica

Turning Software into Silicon

2.2 GHz Opteron

AMD Opteran FPGA processing 64 hypercubes/cycle

HyperTrapapurt 140million/sec * 4 dimensions * 2 * 64 =~ 72 billion comparisons/sec

________________________________________________________________________________

) 32GB/s  _
—_—

AP _3.2GE’s

QDR SEAM

Application Acceleration FRPGA
Allinx Yirtex || Pro

2GB/s| | 2 GB/s

Cray Rapidarray Interconnect
128,000 points processed 500 times

Calculation takes about 0.47 seconds

Slide Courtesy of Cray Inc.
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Seérch Kernel Algorithm Acceleration on the FPGA Ce’o j('i'ca‘

Turning Software into Silicon

Acceleration vs Number of
Hypercubes
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Celoxica

Copyright © 2005 Celoxica Ltd. All rights reserved. Celoxica and the Celoxica logo and Handel-C are trademarks of Celoxica Limited. All other
trademarks acknowledged. The information contained herein is subject to change without notice and is for general guidance only.
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