
1

The Application Level Placement Scheduler

Michael Karo1, Richard Lagerstrom1,
Marlys Kohnke1, Carl Albing1

Cray User Group

May 8, 2006

Abstract

Cray platforms present unique resource and workload management challenges due to their scale and
complexity. The Application Level Placement Scheduler (ALPS) is a software suite designed to address
these challenges. ALPS provides uniform access to computational resources by masking many of the
architecture specific characteristics of the system from the user. This paper provides an overview of the
ALPS software together with the methodologies used during its design.

1.0 Introduction

Current and future Cray platforms will
consist of large numbers of heterogeneous
computational resources simultaneously running
many independent operating system instances.
The existing resource management infrastructure
on legacy Cray platforms was not designed to
operate in this type of environment. These
circumstances have necessitated the design and
implementation of a new software component
called ALPS. The ALPS software design is
intended to address both the requirements of
future Cray platforms and the limitations
inherent to legacy software components. The
ALPS infrastructure incorporates a robust
modular design to ensure extensibility and
maintain a level of abstraction between the
resource management model and the underlying
hardware and operating system architectures.
Emphasis has been placed on the separation of
policy and mechanism to more clearly identify
the functional requirements of the software.

It is important to note the target
platform for ALPS is limited to systems running
Compute Node Linux (CNL). There are no plans
to replace yod/CPA on systems running the
Catamount operating system.

2.0 ALPS Architecture

The ALPS architecture is divided into

several components, each responsible for
fulfilling a specific set of functional

requirements. This model ensures a modular
design that will remain maintainable and
encourage code reuse. The ALPS components
that run on each node of a system vary
depending on the type of service the node is
intended to provide. The following diagram
illustrates several of the ALPS components
together with their interactions:

The ALPS software components

communicate using the XML-RPC protocol. The
protocol provides an extensible language that
may easily be enhanced in future revisions of the
software to support additional message types and
services. In addition, ALPS makes use of
memory mapped files to consolidate and
distribute data efficiently. This reduces the
demand on the daemons that maintain these files
by allowing clients and other daemons direct

1 Cray Inc., Mendota Heights, MN, USA, [mek|rnl|kohnke|albing]@cray.com

2

access to data they require.

3.0 The Application Lifecycle

The aprun client represents the primary

interface between the user and their application.
Upon invocation, the user specifies command
line arguments that convey the resource
requirements for the application together with
the location of the executable binary file. The
aprun client parses the command line arguments
and contacts the local apsys daemon running on
the login node. The apsys daemon then forks an
apsys agent to handle the remainder of the
request.

Once in contact with the apsys agent,
the aprun client relays the information it has
collected from the user. The apsys agent then
forwards this request to the apsched daemon to
obtain a placement list that is consistent with the
resource requirements the user specified. If a
suitable set of available resources cannot be
identified, this process will be repeated
periodically until one exists. Once the target
resources have been identified, apsched
generates a placement list, registers a
reservation, and relays it to the aprun client. The
reservation ensures the resources assigned to the
user may no longer be committed to another
application.

The aprun client then contacts the apinit
daemon running on the first node assigned to the
application (PEØ). The apinit daemon forks an
application shepherd to manage the process(es)
that will execute on the node. The aprun client
then transmits the placement list for the
application and (optionally) the executable
binary data to the shepherd. The shepherd may
contact additional apinit daemons running on
other nodes assigned to the application, relaying
the placement list to each. Each apinit daemon
contacted forks an application shepherd to
manage the process(es) local to the node. This
process continues until an application control
tree is established between the shepherds running
on each node assigned to the application. The
radix of the control tree is set to eight by default,
but may be configured by the administrator to a
value between two and thirty-two.

Once the control tree has been
established and the placement list communicated
to each shepherd, the application initialization
process begins. The initialization process
recreates the user’s environment on the login
node for each of the PEs of the application.

Depending on the architecture of the nodes,
initialization may also entail allocation of
distributed memory for the application. Once
initialization is complete, control is passed to the
application.

While the application is running, each
shepherd monitors the PEs of the application. If
the aprun process or one of the PEs catches a
signal, it will be propagated to each PE through
the ALPS control network for the application. In
addition, the aprun client manages the standard
input, standard output, and standard error
streams for the application. Any characters
received on the standard input stream are
forwarded to PEØ of the application. Any
characters generated by the PEs of the
application are sent to the aprun client and
returned on the appropriate stream to the user.

When an application exits, either
normally or due to error, ALPS must ensure that
all resources allocated for the application are
surrendered. This may involve deallocation of
distributed memory and the forceful removal of
stray processes. Once cleanup is complete, the
aprun client exits.

4.0 ALPS Clients

The ALPS clients provide the user

interface to ALPS and application management.
They are separated into four distinct areas of
functionality:

1. Application submission (aprun)
2. Application monitoring (apstat)
3. Application signaling (apkill)
4. Batch system integration (apbasil)

Each client is described in more detail in the
following subsections.

4.1 The aprun Client

As previously stated, the aprun client

represents the primary interface between the user
and their application. Its primary function is to
submit applications to the ALPS system for
placement and execution. The aprun client is
responsible for parsing command line arguments,
forwarding the user’s environment, forwarding
signals, and management of the standard input,
output and error streams. It is also capable of
supporting both automatic and manual node
selection.

3

4.2 The apstat Client

The apstat client relays status

information from ALPS to the user. The
information may include data describing current
resource availability, reserved resources, and
running applications. It is not necessary for
apstat to generate a request that is passed to a
daemon for processing. Instead, apstat is able to
utilize the memory mapped files that the
daemons maintain to acquire the data it needs to
generate a report for the user. This capability
reduces the demands on the ALPS daemons,
allowing them to more effectively service
applications

4.3 The apkill Client

The apkill client is responsible for

delivering signals to applications. When apkill is
called, it parses the supplied command line
arguments including the signal type and
application ID. The client contacts the local
apsys daemon, which generates an apsys agent to
manage the remainder of the transaction. The
agent locates the login node on which the aprun
for the target application ID resides by
consulting the memory mapped files. If the aprun
is running on the local node, the apsys agent will
deliver the signal itself. If not, the apsys agent
contacts the apsys daemon on the target node to
proxy the request. Once delivered, a response is
returned to the apkill client indicating the result
of the operation.

4.4 The apbasil Client

The apbasil client represents the

interface between ALPS and the batch system.
This client implements the Batch and
Application Scheduler Interface Layer (BASIL).
The BASIL protocol will be discussed in more
detail in a later section. The client acts as the
gateway between ALPS and external resource
managers that implement scheduling policies for
the system.

5.0 ALPS Daemons

The ALPS daemons implement a

variety of services required to support
application submission, placement, execution,
and cleanup on the system. Each daemon
addresses a specific service. The daemons work

in concert with the ALPS clients and system
components to manage applications and
computational resources.

5.1 The apbridge Daemon

In order for the apsched daemon to

make sensible placement decisions, apsched
must have a description of the hardware on
which it will place jobs. This includes the
quantity and speed of specific processors as well
as some elementary topological information.
Furthermore it requires on-going status
information, to know which PEs are available
and which are down (or otherwise unavailable).

The apbridge daemon is the bridge from
the architecture independent ALPS software to
the architecture dependent specifics of the
underlying system. It is the layer between
apsched and the specifics of a platform. The
apbridge daemon queries the system database
(SDB) to collect data on the hardware
configuration and topology and supplies it to the
apsched daemon.

Ongoing status information is supplied
to apsched from apbridge, though apbridge gets
the status changes via the apwatch daemon
(described below).

This modular breakdown has allowed
for development and testing to occur on systems
distinct from the final hardware architecture
through the use of a simple test harness at a few
key points. Furthermore, we have run apbrige in
conjunction with synthetic hardware databases
with configurations from a few dozen to over
15,000 processing elements.

5.2 The apwatch Daemon

Ongoing status information is supplied

to apsched from apbridge, but apbridge gets its
event information from apwatch. The apwatch
daemon registers with the host-specific
mechanism for receiving events. Those events,
when received, are translated into an
architecture-neutral format and passed to
apbridge for further processing and eventual
delivery to apsched.

For development and testing purposes
we have been able to substitute a script-based
event replay mechanism and a random event
generator to simulate individual node up/down
events, clusters of such events on adjacent nodes,
and larger numbers of events on unrelated nodes.

4

5.3 The apsys Daemon

The apsys daemon is a local privileged

program that provides access to apsched from
ALPS client programs. There is one apsys
daemon per login node. The apsys daemon
writes pending application status information
into a file for display by apstat. During ALPS
startup, the apsys daemon attempts to recover
connections to aprun clients that had previously
been running applications. The apsys daemon is
responsible for notifying apsched about resource
reservations to be freed.

The apsys daemon forks an apsys agent
child to process incoming requests from ALPS
client programs. The apsys agent child retains a
persistent socket connection to aprun for the
lifetime of the aprun program. All other socket
connections are transitory. All apkill signal
requests are either handled locally or forwarded
to the appropriate remote apsys daemon for
processing. The signal is delivered to aprun who
then forwards the signal over the ALPS control
network for delivery to the application.
Resource reservation messages from apbasil are
also forwarded to apsched for processing.

5.4 The apinit Daemon

An important design principle of the

control mechanism used to manage the compute
nodes is that the daemon on every node is
independent and every daemon behaves in the
same way. With very few exceptions we have
been able to apply this principle to apinit.

Every compute node has an apinit
master daemon started as part of the boot
procedure. A known privileged listening port is
opened and the master waits for a connection to
be requested. The master daemon initiates all
new activity on a compute node, typically by
forking a child process and transferring
responsibility to that child. The major functions
are launching applications and creating the tool
helper environment.

An application first comes into
existence on a compute node when aprun
connects to the apinit daemon on the first node
of an application's allocated node set. Aprun
sends a launch message containing all of the
information the compute nodes need to launch
and manage the new application to the daemon.
The master daemon extracts just enough
information from this message to construct a
control structure that it will use to maintain

knowledge of the application on its compute
node. The master daemon forks a child (called
apshepherd here to distinguish it from the master
daemon) dedicated to managing the specific
application on that compute node. The message
and the socket connection from aprun are
transferred to apshepherd. The master daemon
continues to listen for new messages and monitor
all of the apshepherd instances on its compute
node.

Apshepherd takes a role on the compute
node that is very similar in many respects to that
of the login shell on support nodes. Each PE of
the application assigned to its node runs as a
child of apshepherd. Apshepherd establishes the
user's identity and provides the stdin (PEØ only),
stdout and stderr connection to the remote aprun.
Apshepherd initiates the application after
performing architecture specific setup functions
to prepare the environment for the application to
run.

Before the application can be brought
into execution all of the compute nodes assigned
to the application must be contacted. To scale to
large numbers of nodes, apshepherd divides the
list of un-contacted destination nodes into two to
thirty-two parts depending on the fanout factor
included in the message. Each destination is
contacted by apshepherd with the original launch
message altered to tell the destination node
which portion of the placement list it is required
to launch and forward. Every apshepherd does
the same, which generates the control network
tree for the application.

Aprun is the root of the control network
and the apshepherd instances running on each
assigned compute node make up the branches.
The control tree exists for the life of the
application. Synchronization, signal, stdout,
stderr and low-level interface traffic flow on the
control network. The control network is heavily
used during application setup and teardown to
orchestrate and synchronize these operations.
While an application is running only signals,
stdout, stderr and low-level interface messages
use the control network. The low-level interface
provides a way for a PE to send requests to the
local apshepherd. Some of those requests make it
possible for one PE to send a signal to another
PE or group of PEs within its application for
application management purposes.

An application is brought into execution
by each apshepherd once the control network is
established and all required synchronization is
complete. The details of inter-node
synchronization are architecture dependent and

5

depend upon the amount of initialization that is
required to establish the proper application
execution environment.

When the application is in execution
apshepherd is mostly asleep waiting for events
on the control sockets and pipes or for signals
caused by the termination of parts of the
application running on its node. The primary
responsibility of apshepherd when the
application is in execution is to manage exit
events. There are two ways an exit event can be
handled. The controlled exit happens when a PE
tells apshepherd it is about to terminate and then
does so. That is considered normal application
termination and does not result in any
preemptive action. An uncontrolled exit happens
when a PE exist without telling apshepherd it
intended to do so. This is considered a fatal
application error and will result in killing all of
the application.

An entire application can be killed only
by a signal message from aprun. In the
uncontrolled exit case, the apshepherd noticing
the event composes a signal message and sends it
to aprun. Aprun receives and retransmits the kill
signal from the root of the tree. Each apshepherd
in the control tree acts on the signal message and
forwards it to the apshepherds it controls. In this
way the message reaches all of the compute
nodes assigned to the application.

The other major control event is when
one of the network connections drops. Each
apshepherd is sensitive to its control network
connections. If any of them close, apshepherd
will kill all local PEs and then terminate. In this
way it closes all of the portions of the control
tree it controls. Each apshepherd reacts similarly
so the control network is dissolved. Aprun
detects this when its connection to the
apshepherd on PEØ closes. This is considered a
fatal error, which occurs only if a compute node
crashes or an apshepherd aborts.

5.5 The apsched Daemon

Apsched manages memory and

processor resources associated with applications
running on compute nodes. Some compute node
architectures have additional requirements
typically involving distributed memory and the
interconnect between compute nodes.

Apsched does not enforce policy. Policy
enforcement belongs to the workload manager or
other system components. Apsched only
guarantees the correctness of application

placement and may optimize placement for
performance to the extent possible. The output of
a reservation or placement request is a specific
resource list. There is no assumption of resource
uniformity over the compute nodes. Each
compute node must be treated independently
since there is no guarantee that any two nodes
have exactly the same set of available resources
at a given time. It is vital that memory usage on
the compute nodes be strictly enforced and
managed. There is no virtual memory or
swapping generally available on compute nodes,
as one would expect in a virtual memory system.
Memory oversubscription is therefore typically
fatal to either the offending application or some
other application running on the compute node.

Although the process of placement can
be complex, apsched has a simple interface to its
clients. A privileged socket is opened when
apsched starts to be used for configuration. The
apbridge daemon will send configuration
information to apsched initially. The socket
connection to apbridge is maintained for the
lifetime of apsched. Event messages from
apbridge indicating changes to the state of
compute nodes keep apsched informed of the
compute node resources available at all times.

When initial configuration is complete
apsched performs any required recovery and
identification tasks, creates its shared memory
files, and populates them with the initial system
state. These files are windows into internal
scheduler information needed by apstat and other
clients for display or decision making purposes.
After this is complete, apsched opens its
scheduling listening port and begins to accept
placement, reservation and other messages.

In the simple case of an interactive user
typing an aprun command a placement message
originating from aprun will arrive at the
scheduler. A preliminary check for obvious
errors or impossible requirements is made. If the
request seems possible to handle, apsched begins
a sequence of placement operations whose goal
is to deliver a placement list to aprun that will be
forwarded to the compute nodes. This process
will result in a placement list or a message
indicating the request could not be placed.

If the request was satisfied, apsched
updates its internal and shared information so the
resource usage is retained and becomes visible.
If the resources could not be allocated, a "try
again" message is returned with information
about why the request failed. Apsched has no
queues or memory of waiting requests. Other
players in the ALPS complex deal with pending

6

requests and other things that require long-term
memory. When an application terminates, an exit
message is sent to apsched so it will release the
resources reserved for that application. The
simple case is called atomic placement.
Interactive aprun commands will use this form of
placement.

Workload managers can use the
confirmation/claim form of placement. In this
case the workload manager will confirm the
application resources before the batch job is
initiated. If the confirmation is successful, the
job will start; if not, it will be requeued by the
workload manager and tried later. With resources
confirmed prior to the batch job being initiated,
aprun placement requests within the batch job
will operate in the claim mode. When the
placement request arrives at apsched from aprun
it is matched with the prior confirmation and a
placement list is delivered immediately. Multiple
aprun requests may claim the confirmed
resources during the life of the batch job.

In confirmation/claim mode the
workload manager must cancel the resource
confirmation when the batch job completes for
the resources to become generally available.

An important implementation rule in
apsched is that the scheduler cannot stall. If there
is any activity that might take an arbitrary length
of time, that work is delegated to a forked child
so that apsched can continue without delay. This
is important because apsched is the single place
that all placement requests must pass through. If
it stalls, new applications cannot be launched.

6.0 Application Helpers

ALPS provides compute node launch

assistance to login node application tools which
require a helper program to run on the same set
of compute nodes as an application. Examples
of these application tools are debuggers and
performance analysis programs.

These login node tools and their
compute node helper programs link with an
ALPS library. The library provides interfaces for
the helper program to launch on the application
compute nodes. It also provides interfaces to
obtain application placement list information,
gather ALPS control network tree information,
perform startup and exit synchronization
between the tool and the application, and
determine application PE information per
compute node.

7.0 Batch System Integration

Historically, integration between batch

systems and lower level system resource
managers has been an afterthought in the design
of both components. With the design of ALPS,
this is not the case. The apbasil client acts as the
gateway between ALPS and third party batch
systems. The communication between apbasil
and the batch system uses an interface called the
Batch and Application Scheduler Interface Layer
(BASIL). The BASIL protocol is implemented in
XML-RPC to maintain extensibility and
backward compatibility in future revisions. The
initial BASIL protocol implements three primary
functions:

1. Inventory
2. Reservation creation
3. Reservation cancellation

When a user submits a job to the batch

system, the batch scheduler must determine
whether sufficient resources exist to run the job.
To accomplish this, it must obtain a current
picture of available and assigned resources.
BASIL provides this capability through its
inventory interface, providing detailed
information in XML format that may be quickly
parsed by the batch system. Once the data is
parsed, the batch scheduler may use the data to
schedule one or more batch jobs for execution.

Once a batch job has been scheduled,
the batch system must initialize the job on one or
more login nodes of the Cray system. During
initialization, the batch system must create an
ALPS reservation for the job to ensure resources
will remain available throughout its lifetime.
During execution of the batch job there may be
times when the resources it has been assigned are
not being fully utilized. The reservation prevents
ALPS from creating conflicting resource
assignments.

During execution of the batch job, there
may be several calls to aprun to launch
applications on the reserved set of resources.
ALPS recognizes when an application launch
originates from a batch job and assigns resources
from the pool that had been previously reserved.

Upon completion of the batch job, the
batch system must make a final BASIL request
to cancel the reservation for the job. This frees
the reserved resources, making them available
for reassignment.

7

8.0 Summary

The ALPS software suite is comprised

of multiple clients and servers, each intended to
fulfill a specific set of responsibilities as they
relate to application and system resource
management. The design of the ALPS system is
intended to address the needs of both current and
future Cray platforms. Special attention has been
paid to ensure the design remains modular,
extensible, scalable, and maintainable. Features
of ALPS including apbridge, the tool helper
interface, and the BASIL protocol help to
maintain a separation between ALPS and
external components. The implementation of a
reservation mechanism ensures availability of
resources to both batch and interactive users. The
elegance of the ALPS design is due in large part
to its simplicity.

