

CUG 2006 Proceedings 1 of 11

Red Storm Systems Management: Topics on Extending Current
Capabilities

James H. Laros III, Sandia National Laboratories [I]

ABSTRACT: Systems like the Red Storm system at Sandia Laboratories provide grand
challenges for developers of systems software. While many of the challenges associated
with systems like Red Storm are experienced on other systems, like commodity clusters,
the sheer magnitude of the system magnifies issues that may seem trivial on less complex
systems. The value of taking an integrated approach to many of the challenges faced in
system software development and implementation on a system like Red Storm is
presented in this paper in the form of topical example implementations.

KEYWORDS: Red Storm, Cray XT3, Reliability Availability Serviceability, RAS,
Object Oriented, OO, Systems Management, DDN, Database

1. Introduction
In this paper we will discuss two example

implementations that leverage what we call the System
Description Language (SDL) to extend some of the
current capabilities of the Red Storm [II] system software.
These implementations are distinct but complementary to
the current system software. These example
implementations are presented in an attempt to illustrate
the benefits of approaching a problem, in this case
systems management, using concepts like the SDL.

We will first provide a brief discussion about the
SDL in Section 2 (System Description Language). This
section should provide sufficient background about the
concepts of the SDL that are leveraged in the specific
examples discussed in this paper. Two examples of how
these concepts can be applied are outlined in Section 3
(Describing a Red Storm System in Software) and Section
4 (Management of the DDN Subsystem). In Section 3 the
discussion focuses on how a very complex system like the
Red Storm XT3[III] system at Sandia Labs, can be
described in software and stored in a database. The
resulting database can form the basis of many and varied
capabilities. In Section 4 we will build on the concepts
described in Section 3 and add the expression of
functional capabilities to the system description. This
specific example will demonstrate interaction with the
Data Direct Networks (DDN)[IV] controllers which form
the basis for the storage system attached to Red Storm.

Finally, conclusions and thoughts on future work are
provided in Sections 5 and 6.

The examples provided in this paper will hopefully
provide a small look at what we feel is a huge opportunity
to improve the way systems software is architected for
platforms like Red Storm especially in the area of
Reliability Availability and Serviceability (RAS) systems.

2. System Description Language
The SDL provides a foundation that can be leveraged

to provide a wide range of utility. The SDL provides the
capability to produce a database which stores information
about software and hardware components, relationships
between components, and functional capabilities of
components. (In general, when we use the term
component we imply either software or hardware
component. From the perspective of the SDL there is little
or no difference in how each is described.) Relationships
between components can be topological, for example,
how components are physically connected to each other,
or describe the path that components use to communicate
with each other. Relationships can be straight forward or
very complicated. The functionality of components can be
leveraged to great advantage. In this area the SDL must
understand a wide variety of the languages that
components use to communicate.

We believe that SDL concepts map nicely to object
oriented concepts. In practice we have found that using an
object oriented approach results in a useful and extensible

CUG 2006 Proceedings 2 of 11

implementation. The specific implementations described
in Sections 3 and 4 are implemented using the Perl [V]
programming language. Perl supports most object
oriented concepts and has proven to be useful for quickly
implementing these concepts. We think it is likely that a
higher level object oriented language like C++ is better
suited to express some of the more abstract relationships
that the SDL is conceptually capable of.

Using object oriented terminology (with some
liberty), components map to classes. For each component
type in the system a class in the SDL will describe the
component type to the level of detail desired. Class
attributes can be used to define informational
characteristics about a component type or relationships
between component types. Notice we have used the term
component type rather than simply component. A class is
used to describe a type of component. Whether there are 1
or 1000 components of the same type in the system we
need only one class to describe that component type. For
each component in the system we will instantiate an
object of that component type (class) to specifically
represent that component. For example, if there are 1000
components of type A we would instantiate 1000 objects
of class A to represent each individual component. It is
important to note that attributes provide one way to
differentiate between instantiated components.

In the same way that information and relationships
can be defined in classes, the functionality of a
component can be encapsulated in a class. Adding class
methods that implement specific functional capabilities of
a component type allows objects instantiated based on the
class to be capable of the desired functions.

Inheritance is another important object oriented
concept that we leverage when implementing the SDL.
Many components share common characteristics in the
form of information, relationships and functionality.
Leveraging inheritance allows us to very naturally
express this commonality while not restricting us from
differentiating where necessary. We will provide
examples of how we leverage inheritance in Sections 3
and 4.

Once the SDL contains the classes necessary to
describe a system, objects are instantiated to represent the
components in the system and stored in a database. In
Section 3 we will provide a real world example of how
we leverage these concepts in practice to represent
component information and relationships of the Red
Storm system at Sandia Labs. In Section 4 we will
provide an example that demonstrates the implementation
of functional capabilities in addition to the information
and relationship characteristics demonstrated in Section 3.

Many of the concepts employed in the SDL were
originally conceived of and implemented as part of the
Cluster Integration Toolkit (CIT)[VI] project at Sandia
Labs. A detailed discussion of CIT can be found in An
Extensible, Portable, Scalable, Cluster Management
Software Architecture[VII]. A more implementation

focused view of these concepts can be found in The
Cluster Integration Toolkit - An Extensible, Portable,
Scalable Cluster Management Software Implementation
[VIII]. The concepts that are described in these papers have
evolved into what we have described as the SDL. A
discussion of an architecture that will leverage some of
the more expanded capabilities of the SDL concept can be
found in A Software and Hardware Architecture for a
Modular, Portable, Extensible Reliability Availability and
Serviceability System[IX].

3. Describing a Red Storm System in
Software
By leveraging the concepts discussed in Section 2 we

can describe systems of great complexity like the Red
Storm system at Sandia Labs. Red Storm is a very large
system comprised of many components. Some of the
components that we choose to represent are; Nodes
(referred to as AMD_single), L0’s1, L1’s and Seastars2.
In the following sections we will describe the class
structure used to describe these components, information
about them and how relationships can be expressed in the
classes. We will also describe how other concepts like
grouping can be leveraged to establish relationships
between instantiated objects.

Figure 1 Red Storm Hardware Module

(conceptual view)

3.1. Class Hierarchy
Figure 1 depicts a block diagram of some of the

components on a Red Storm module. The lines drawn
between the components represent relationships that will
be established between the components. In this
implementation each component type will have a
corresponding class. The class name is comprised of a

1 L0 and L1 in this paper refer to an embedded processor
that serves as part of the Red Storm Reliability
Availability and Serviceability system.
2 Seastar is a high speed proprietary Network Interface
Controller.

AMD_single
nid: 4

AMD_single
nid: 1

AMD_single
nid: 3

AMD_single
nid: 2

Seastar
nid:2

Seastar
nid: 1

Seastar
nid: 3

Seastar
nid: 4

L L

hierarchy of classes that combined provide the final
expression of the class and later the objects instantiated
from the class. The following is a list of the full Perl class
names of the components we will discuss.

Device::Node::Cray::AMD_single3

Device::Node::Cray::L0
Device::Node::Cray::L1
Device::Network::Cray::Seastar
Device::SrvrMgmt::Cray::L0
Device::SrvrMgmt::Cray::L1

Notice that each class name begins with the class

name Device. In this example we will be discussing
hardware type components. Most if not all hardware
components can be considered devices, therefore, the
common base class for all of the components we list is the
Device class. The second level class name (from the left)
is Node, Network or SrvrMgmt. The significance of this
class name is to structure the class hierarchy based on the
general purpose that the device serves. You might also
consider this a categorization of the type of device the
component is. Notice that both the Network and
SrvrMgmt class trees contain sub-classes L0 and L1. In
this implementation the L0 and L1 devices serve two
roles (or can be categorized as two different types of
device). Both exist in the system as nodes but they also
serve a server management purpose in the overall system.
This is one example of the flexibility this concept enables
the implementer.

All classes in this device hierarchy contain a class
type Cray. The primary purpose of this class is to
encapsulate concepts that are potentially specific to this
vendor’s devices. Finally the terminal class in each of the
listed classes is most specific to the individual device it is
describing. Note that, potentially, these classes can be
over-ridden further by sub-classing; for instance to
specify a more specific Seastar component or a particular
version of Seastar.

CUG 2006 Proceedings 3 of 11

Figure 2 Red Storm Component Class Hierarchy

3 Full or partial class names appear in bold text.

3.2. Component Information and Relationships

Figure 2 depicts both the inheritance path of the class
hierarchy that will be used to represent the Red Storm
system and attributes specific to terminal classes in the
hierarchy. (Note: only a few of the many attributes are
shown and will be discussed) The AMD_single class
inherits from the Cray, Node and Device classes
(traversing the class hierarchy from bottom to top). The
AMD_single class represents a processor socket (or a
node if you would rather, if the node is a single core
socket node) on the Red Storm system. Figure 1 depicts a
Red Storm compute module with four single core sockets.
Notice the name selected for the class. While the current
system has single core sockets it is likely that in the future
this or other XT3 systems will contain dual core sockets
(and before long, quad core). When this happens we can
simply create a class to represent the dual core socket
components called AMD_dual. This new class can
potentially be based on the AMD_single class and can be
designed to represent the differences between a single and
dual core socket component. It is important to note that
using the object oriented approach allows us great
flexibility in how these classes are defined and how we
construct an inheritance tree to express the system.

An example of an informational attribute is the nid4
(node id) attribute defined in the AMD_single class
(Figure 2). This attribute is used to store information
about a specific object that is instantiated based on this
class. (Other attributes can exist to specify information
specific to an entire class that is shared by all objects
instantiated from the class.) An important piece of
information about a processor on a Red Storm system
from the run-time perspective is the nid number. This
number is used, for example, for allocating the processors
that will be assigned to an application.

The AMD_single class also specifies an attribute L0.
This attribute contains the name of an instantiated object
of type Device::Node::Cray::L0 representing the
relationship between the L0 processor on the module and
the processor socket. In fact the same L0 object will be
specified in every object of type AMD_single that is on
the same physical module (board). Figure 1 depicts this
relationship. Notice that each AMD_single component is
connected to the L0 component by a red line. This line
depicts the relationship that is established between these
objects based on the attribute definition in each of the
instantiated AMD_single objects.

The final attribute depicted in Figure 2 associated
with the AMD_single class is the SS (Seastar) attribute.
This attribute enables an object that is instantiated based
on the AMD_single class to know which Seastar
component it is associated with. Figure 1 depicts four
Seastar components on a Red Storm compute module.

4 Attribute names will appear in italics.

Class: Device

Class: Node Class: Network Class: SrvrMgmt

Class: Cray

Class: L0
Attribute: L1

Class: L0
Attribute: L1

Class: L1
Attribute: SMW

Class: L1
Attribute: SMW

Class: Seastar
Attribute: L0
Attribute: nid

Class: Cray Class: Cray

Class: AMD_single
Attribute: L0
Attribute: nid
Attribute: SS

Each AMD_single component has a dedicated Seastar
component. This relationship can be established by
defining the SS attribute of an AMD_single object to the
specific Seastar object that provides its network interface.
Figure 1 depicts the relationship this attribute establishes
with black lines between each of the AMD_single
components and a Seastar component.

CUG 2006 Proceedings 4 of 11

The Seastar class also contains a nid attribute. This
attribute definition depicts another way to represent
information while also representing a relationship
between instantiated objects. Notice that in Figure 1 the
AMD_single component whose nid attribute is set to one
is related to the Seastar component whose nid attribute is
set to one. The black lines represent the relationships
formed as described previously by defining the SS
attribute. This relationship can also be inferred by the
common attribute definition in each object. This concept
can be leveraged as necessary to form many simple or
complex types of relationships.

The Seastar class, like the AMD_single class,
contains an L0 attribute. This attribute serves the same
purpose in the Seastar class as it does in the
AMD_single class. Notice that this is an example of
forming a many to one relationship. On a Red Storm
module the L0 is an important management component.
Specifying which L0 is responsible for the management
of components is a valuable piece of information that can
be leveraged for many purposes, such as a RAS [IX]
system.

The management hierarchy is defined further by the
attributes specified in the L0 and L1 classes. The Red
Storm management system is hierarchical in topology. In
brief, each Red Storm module has an L0 (as shown in
Figure 1). Each Red Storm cabinet contains one L1. The
L0’s on each of the 24 modules in a Red Storm cabinet
communicate with the L1 in the cabinet. In turn the L1’s
in each Red Storm cabinet communicate with the System
Management Workstation (SMW) at the top of the RAS
hierarchy. The L1 attribute in the L0 class defines the
relationship between the L0 and L1, and the SMW
attribute in the L1 class defines the relationship between
the L1 and the SMW. Forward and backward
relationships in a topology can be established using these
same concepts.

By choosing attributes that represent information and
relationships that are meaningful for a particular system, a
system description can be generated and stored in a
persistent manner that can be leveraged to provide great
utility.

Figure 3 Red Storm Component Collections and
Objects

3.3. The Red Storm Database
We have discussed how we use the SDL to describe

components of the Red Storm system (based on classes),
information about these components and relationships
between components. In producing the Red Storm
database we have another opportunity to express
relationships between components (instantiated objects).
Using the Red Storm naming convention we can leverage
a concept we refer to as collections, or groups, to
represent the physical topology of the system. (Other
topological relationships, like network topologies, that
exist in a system can be established using these concepts
or in combination with other concepts previously
discussed) Figure 3 depicts a portion of the physical
topology of a Red Storm system. Each block in the
diagram represents a more granular level of the physical
topology. At the top (left in Figure 3) is the entire Red
Storm system. In the database, the system is represented
by a collection called equipment. This name is only
meaningful in the sense that it was chosen to generically
represent any system we wish to describe. We have total
flexibility in naming collections and could have chosen to
name the collection redstorm for example. Note that the
collection name equipment is in red in Figure 3. Each
name in red represents a collection in the database. The
boxes in yellow represent objects instantiated based on
the classes that we discussed previously.

The Red Storm system (equipment) is made up of
many cabinets. Figure 3 represents a single cabinet of the
Red Storm system labeled c0-0. This name represents the
physical position of the cabinet in the Red Storm system
(c or cabinet in x position 0, y position 0). Note that all of
the names have an x and y coordinate in their name.
These names were chosen by Cray but the SDL can
accommodate any naming scheme that is chosen. To view
this grouping on an actual system, commands are
provided to display collections or objects in the database.
Since equipment is a collection in the database we can use

Red Storm
System

equipment

Cage
c0-0c0

c0-0c0b0

c0-0c0b1

c0-0c0b2

c0-0c0b3

c0-0c0b4

c0-0c0b5

c0-0c0b6

c0-0c0b7

c0-0c1b8

c0-0c1b9

c0-0c1b10

c0-0c1b11

c0-0c1b12

c0-0c1b13

c0-0c1b14

c0-0c1b15

c0-0c2b16

c0-0c2b17

c0-0c2b18

c0-0c2b19

c0-0c2b20

c0-0c2b21

c0-0c2b22

c0-0c2b23

Cage
c0-0c1

Cage
c0-0c2

c0-0c0s0n0

c0-0c0s0n1

c0-0c0s0n2

c0-0c0s0n3

c0-0c0s0s0

c0-0c0s0s1

c0-0c0s0s2

c0-0c0s0s3

c0-0cs0

Cabinet
c0-0

l1_x0y0

CUG 2006 Proceedings 5 of 11

the collection_mgr command to view what is contained in
the equipment collection.

collection_mgr equipment
c0-0
c0-1
c0-2

.

.

The collection_mgr command will list every object

and collection that is in the specified collection which in
this case would be every cabinet in the Red Storm system.
(For space considerations we have truncated the actual
output.) Note that the equipment collection contains,
among others, a collection named c0-0 or cabinet located
in x position 0 and y position 0. If we execute the
collection_mgr command on this collection we will see
what it contains.

collection_mgr c0-0
c0-0c0
c0-0c1
c0-0c2
l1_x0y0
l1_x0y0-mgt

Notice that the cabinet c0-0 contains three cage

names, c0-0c0, c0-0c1 and c0-0c2, representing the three
cages in a Red Storm cabinet. These are also collections
as depicted in Figure 3. There are two actual objects in
the cabinet collection, l1_x0y0 and l1_x0y0-mgt. Both
objects represent the same physical device in the cabinet.
Recall from our previous discussion that we have the
flexibility to describe different purposes for the same
device. If we examine these two objects more closely we
will see what the differences between the objects are:

device_mgr l1_x0y0
name => l1_x0y0
interface => 0
 nic => 0
 name => eth0
 address => 10.1.100.100
 net_mask => 255.255.0.0
 boot_if => 1
 hostname => l1_x0y0
 is_primary => 1
role => RAS
vmname => Management
x_pos => 0
y_pos => 0
isa => Device::Node::Cray::L1

device_mgr l1_x0y0-mgt
name => l1_x0y0-mgt
interface => 0
 nic => 0
 name => eth0
 address => 10.1.100.100
 net_mask => 255.255.0.0
 boot_if => 1
 hostname => l1_x0y0-mgt
 is_primary => 1
role => RAS
vmname => Management
x_pos => 0
y_pos => 0
isa => Device::SrvrMgmt::Cray::L1

Note that there are many attributes defined in each

object that we have not discussed. Some will be
mentioned later but some are beyond the scope of this
paper. Suffice it to say that each attribute serves a purpose
in describing the object that is intended to be leveraged
by the user for some reason.

If we examine the output from the two device_mgr
commands we notice more similarities than differences.
Recall that both of these objects represent the same
physical device. The class name for each object is
different. Additionally, each object requires a unique
name to be stored in the database (reflected by the name
attribute). The isa attribute of the object shows the full
class name of each object. The l1_x0y0 object is of type
Device::Node::Cray::L1 while the l1_x0y0-mgt object
is of type Device::SrvrMgmt::Cray::L1. Even though
we see little difference in the information defined for each
object, the class types could encapsulate different
functional capabilities that are not shown in this output.
In this sense the objects, while representing the same
device, could function very differently from each other
and express different capabilities.

We can continue to drill further down into the
hierarchy of collections using the collection_mgr
command on the cage names displayed from exploding
the cabinet collection. In this example we will expand the
cage 0 collection, c0-0c0, which is contained in the
cabinet c0-0 collection.

collection_mgr c0-0c0
c0-0c0b0
c0-0c0b1
c0-0c0b2
c0-0c0b3
c0-0c0b4
c0-0c0b5
c0-0c0b6
c0-0c0b7

From this output we can see that cage 0 of cabinet 0

contains eight boards number from 0-7, which represent
the eight boards in a Red Storm cage. These board
designations are also collections intended to provide a
more granular grouping of components just like the

previous collections. We can again drill further down into
this hierarchy of collections.

collection_mgr c0-0c0b0
c0-0c0s0n0
c0-0c0s0n1
c0-0c0s0n2
c0-0c0s0n3
c0-0c0s0s0
c0-0c0s0s1
c0-0c0s0s2
c0-0c0s0s3
c0-0c0s0
c0-0c0s0-mgt

As shown in Figure 3 all of the entries in a board

collection are actual devices. The c0-0c0s0 and c0-0c0s0-
mgt objects represent the L0 on board c0-0c0b0. The
reason for the two objects representing the same physical
device is equivalent to the example given for the L1
device at the cabinet level. In addition to the L0 object
there are four node objects and four Seastar objects
defined for each compute module in the system. These are
each represented by an object in the database. The
following device_mgr command shows some of the
attributes that are associated with node 0 on this board.

device_mgr c0-0c0s0n0
name => c0-0c0s0n0
l0 => c0-0c0s0
power => c0-0c0s0-mgt
power_port => 0
cage => 0
slot => 0
x_pos => 0
y_pos => 0
nid => 0
role => compute
vmname => catamount
leader => c0-0c0s0
SS => c0-0c0s0s0
isa => Device::Node::Cray::AMD_single

As mentioned previously there are many more

attributes defined for this object than we will be able to
describe. Notice however some of the attributes that we
mentioned previously define relationships between
objects. This node object specifies which L0 it is related
to on the module. In addition, it specifies the Seastar
object that it will use for communication. We can see
what class the object is specified by the isa attribute and
what node id is assigned by the nid attribute. Many of the
other attributes are likely self explanatory including the
role attribute that specifies that this node is a compute
node. Other valid roles could include IO, or RAS as we
saw previously when we expanded an L1 type object. An
example of a more software related attribute is the
vmname attribute. In this case vmname is set to catamount
specifying that this compute node is running the
catamount kernel. The vmname attribute for an IO node
could be set to Linux since the Linux kernel is typically

used on the IO partition. We could even include the
vmname attribute in the class definition for L0’s and L1’s
and set the object attribute to embedded_linux or even
more specifically the type of embedded Linux that is
used. There is virtually no limit to the information or
relationships that this methodology can represent.

Hopefully, it is obvious by this point that many
benefits can be realized by storing this wealth of
information and relationships between components in a
system. Some simple examples are generating host tables
or converting between node names and node id’s (nid).
These are simple examples and generating a complex
database like the one we have discussed seems to be a bit
drastic simply to generate host files. But consider the
challenges and amount of information necessary for a
RAS system. Now consider how much of the same
information a scheduling system needs. If we consider the
sheer number of configuration files and separate
definitions of information and complex relationships that
exist in the software necessary to run a system like Red
Storm the task of establishing a central storage of system
information like we have described becomes trivial in
comparison. We hope that using concepts like the SDL
described in this paper to generate a central repository of
information will become a cornerstone of future RAS
systems and provide benefit to other system software
components like schedulers and runtime systems.

4. Management of the DDN Subsystem
In this section we will discuss a targeted

implementation of the concepts outlined in previous
sections for the purpose of managing the DDN subsystem
which provides the storage for the Red Storm system. In
this implementation we will not only leverage the
informational and relational aspects that the SDL can
express but also implement the functional capabilities of
the DDN controllers. In this section we will build on the
concepts presented in previous sections and focus on the
implementation of functional capabilities.

CUG 2006 Proceedings 6 of 11

Figure 4 DDN Component Collections and Objects

DDN Subsystem
equipment

DDN Cabinet
DDN-1

DDN
Controller

DDN
Controller

DDN
Controller

DDN
Controller

4.1. The SDL and Class Hierarchy for the DDN
subsystem

The DDN subsystem, like the Red Storm system
itself, can physically be viewed in a hierarchical manner.
Figure 4 represents the hierarchy that we have
implemented (from left to right) to represent the physical
configuration of the DDN subsystem. Each box in the
diagram depicts a collection or object. White boxes are
collections with the collection name in red. Yellow boxes
are objects that represent hardware components. As with
the previous Red Storm system example, the top (left
most) collection which in this case represents the DDN
subsystem is called equipment. The equipment collection
itself contains collections representing each of the
cabinets in the DDN subsystem. Figure 4 depicts the
cabinet collection DDN-1. Each cabinet collection in this
implementation contains four DDN controllers. Figure 4
depicts the four DDN controller objects in yellow that are
contained in the DDN-1 cabinet collection.

CUG 2006 Proceedings 7 of 11

Figure 5 DDN Component Class Hierarchy

Figure 5 outlines the portion of the class hierarchy
that we implemented to represent the DDN subsystem.
We have applied the same principles discussed in
previous sections such as the use of attributes to express
information about components and relationships between
components. In this implementation we will add the use
of methods to express the functional capabilities of the
DDN controllers. Our decision process of where to place
methods in the class hierarchy is basically the same as the
decision of where to place attributes. Our goals are to
maximize code sharing and leverage inheritance as much
as possible. It is important to note that these decisions are
important but we are not permanently locked into our first
instincts. The object oriented concepts used in the SDL
allow us great flexibility to relocate the capabilities that
are implemented into new or existing classes as the
system, or how we view the system, evolves.

4.2. The DDN Command Line Interface
The DDN controllers provide a Command Line

Interface (CLI) to the user. Typically the CLI is accessed
by the user via a Telnet session. Once the user is logged

into a DDN controller they have access to a large number
of capabilities. For the purposes of the paper we will
categorize the DDN CLI commands into two categories,
1st and 2nd level commands. By our definition a 1st level
command is the execution of a DDN CLI command
without any associated parameters. A 2nd level command
is defined as the use of a 1st level command with
additional parameters. For example the DDN CLI
provides a command named “disk”. By our definition the
use of this command by itself is categorized as a 1st level
command. If the “disk” command is used with the
optional parameter list, the command “disk list” would be
categorized as a 2nd level command (by our definition).
The consistency of the DDN CLI allowed us to abstract
nearly all of the DDN CLI with a single method named
ddn_cli located in the DDN class (see Figure 5). The
methods implemented in the SDL can be loosely thought
of as device drivers. The methods are intended to
implement the capabilities of the component (in the case
of a hardware component). It should be noted that these
methods can only implement what a component is
capable of. This does not mean, however, that we cannot
develop methods that combine capabilities of a
component in creative ways to allow new capabilities. As
long as the new capabilities are built on top of basic
functionality there are no limitations (See Section 4.4
Custom Commands).

4.3. Our Command Line Interface
We first implement methods in the appropriate

classes to provide basic component functionality. To
make use of this functionality a user interface must be
provided that will accept input from the user and execute
the appropriate methods to accomplish the desired task.
We will briefly describe the user interface that we have
developed in the form of a series of commands that
represent the 1st and 2nd level DDN CLI.

The 1st level DDN CLI commands in our
implementation are executed with a command named
ddn. As with all of the commands we will describe adding
the flag –help will result in a description of the available
capabilities of the command. The ddn command abstracts
the 1st level DDN CLI commands using the following
command syntax.

ddn <flag> <component or collection>

The flag is simply the 1st level DDN CLI command

proceeded by two dashes (--). For example if you want to
execute the “faults” command you would use the flag
–faults. The component or collection portion of the
command allows the user to specify a single component
(object) which in this implementation would be a single
DDN controller, or a collection of components. Note that
the user may also provide a list comprised of multiple

Class: Device

Class: Storage

Class: Controller Class: Disk

Class: DDN
Method: ddn_cli

Class:
S2A_8500

Class:
S2A_8500_5_12

Class: SEAGATE

Class:
ST373207FC

Class:
ST373307FC

CUG 2006 Proceedings 8 of 11

components and or collections. The following examples
may help illustrate this concept.

ddn –faults BLK-C1-U-1

This command would execute the “faults” command

on the DDN controller BLK-C1-U-1 and display the
output as if the user went through the process of logging
into this controller and executing the “faults” command.

ddn –faults DDN-1

This command would execute the “faults” command

on each of the DDN controllers in the collection DDN-1
(BLK-C1-U-1, BLK-C1-U-2, BLK-C1-L-1, BLK-C1-L-2
from Figure 4) and display the output (Note that this is
done in parallel, see Section 4.5). This applies to every 1st
level DDN CLI command that is implemented.

The 2nd level DDN CLI commands are executed by
combining the prefix ddn_ with the 1st level DDN CLI
command, followed by a flag that indicates additional
parameters to be used with the command. The additional
parameters conform to the DDN CLI format. Examples
will provide a better description of this. Suppose the user
wants to execute the DDN CLI command “disk list” on
controller BLK-C1-U-1. The user would execute the
following command.

ddn_disk –list BLK-C1-U-1

In this command the 1st level DDN CLI command

“disk” is prepended by ddn_ to form the ddn_disk
command. The DDN CLI command “disk” has various
parameters that can be supplied along with the “disk”
command (list is one of them). The resulting command
ddn_disk –list will effectively execute the DDN CLI
command “disk list” on controller BLK-C1-U-1. This
approach was taken in an attempt to make the interface
we present familiar to users of the DDN CLI. Note that
users do not have to know every DDN CLI command
available. Executing the command ddn –help will display
a list of the 1st level DDN CLI commands that have been
implemented. The user can then construct the 2nd level
command by simply prepending ddn_ and adding the
–help flag to view the available options for that 2nd level
command.

It should be noted that all commands that we have
discussed and will discuss are actually implemented in a
single executable. The commands ddn, ddn_disk and
every other 2nd level command interface are actually links
to the ddn_cli command (not meant to be called natively).
This command acts much like the popular BusyBox [X] in
that how it executes is dependent on what command it is
called by.

4.4. Custom Commands
Once we implemented the basic capabilities of the

DDN CLI we used these capabilities as building blocks to
create additional commands based on user requirements.
This is probably best illustrated with a simple example.
The DDN CLI “faults” command when executed on a
DDN controller will output about seven lines for a
controller without faults and quite a few more if the
controller has faults. Suppose you are only interested in a
response if the controller has an error. By building on the
basic DDN “faults” command a method can be
constructed to examine the output and only notify the user
if a fault is detected. The following command will return
the controller name if it determines that there is a fault
present. If no fault is detected nothing is returned.

ddn –check_faults BLK-C1-U-1

Another value of a command like this is that it can be

combined with other commands. Since the command
listed will only return the controller name of a controller
that has a fault we can pipe the output of this command
into a subsequent command.

ddn –check_faults DDN-1 | xargs ddn –faults

This command will query all of the controllers in the
DDN-1 collection and return only those controllers that
show a fault. By piping the output into the second ddn
command we will display details about the fault for only
the controller that had a fault. It is hopefully not a
common situation that a controller displays faults. By
using this command we have the ability to execute a
single command that scans all of the controllers in the
system for faults and displays details for any controller
that is in a faulted state. By using a simple abstraction of
a basic capability we can now check the health of a large
number of controllers with a single command where
previously we would be required to log into each
controller to accomplish the same task. Note that all
custom commands are currently implemented using the
ddn command combined with a custom command flag
such as –check_faults.

More complex capabilities can be implemented in
much the same way. Each DDN controller has attached
storage or disks. As you can see in Figure 5 we have
included classes to represent disks in the DDN class
hierarchy. For a large system like the DDN subsystem on
Red Storm it would be very tedious and error prone to
account for every disk during the database creation
process. Since each DDN controller knows what disks are
attached to it, this information can be discovered and
entered into the database automatically rather than using a
more manual process. This is accomplished with a custom
method that leverages the “disk list” DDN CLI command.
The “disk list” command returns a wealth of information

CUG 2006 Proceedings 9 of 11

about each disk that is attached to a DDN controller. We
can simply develop a method that parses this output and
instantiates an object to represent each disk component
attached to that controller. By using this method for each
controller in the DDN subsystem our database will
contain an object representing every disk component in
the system. The following command is the user interface
to this capability.

ddn –populate_disks <controller or component>

This command will populate the database with the

disks that are attached to the controller specified. Note
that if a collection of controllers is specified the process
will be accomplished for every disk on every controller in
the collection. By extension, every disk in the entire
system can be discovered using a single command by
listing a collection that contains every controller in the
system.

While we have only discussed two examples of what
can be accomplished we hope it is evident that any
capability the end user desires can be implemented as
long as it is based on the native functionality provided by
the DDN controller.

4.5. Applying Parallelism
The benefits of the concepts presented in this paper

become much more evident when dealing with large
numbers of components. In the Red Storm example we
hope to have demonstrated value in producing a central
storage of information about the huge number of
components in that system that can be leveraged for many
purposes. In the DDN example we additionally
implemented functional interaction with components. To
be effective for large numbers of components we must
apply parallelism. Consider the process of executing a
single DDN CLI command without using any of the
capabilities that we are providing. A user must telnet to a
DDN controller, log in with a user name and password,
execute the command and view the results. While this
might be adequate for a system with a single or very few
controllers it can quickly become very time-consuming
for a large installation. So far we have shown that we can
save the user the time it takes to log into the controller by
automating the process as in the previous example of
checking to see if a device has any faults.

ddn –faults BLK-C1-U-1

By providing this interface we save the user a bit of

trouble and a few seconds of time depending on how fast
they can type. Recall that the user has the option of
specifying a collection of controllers on the command
line. If the collection only contains a few controllers and
the command executes fairly quickly this may still not
present an issue. But what if, for example, one of the

controllers in the list is unavailable and the timeout time
for the action that the user required is 30 seconds. If we
are executing this process in a serial manner we have just
added 30 seconds to the total execution time. Again for a
few controllers this might not be a problem. What if your
installation has a very large number of controllers? Even
if it only takes five seconds for each operation if your
installation has 88 controllers (like the Red Storm system)
the command would take 440 seconds or over seven
minutes. While this is probably faster than a user can log
into each of 88 controllers and perform the same task it is
in our opinion unacceptable. To remedy this we can
simply apply some parallelism to the user interface so that
the required command is executed on each controller in
the specified collection at the same time. More about
performance will be reported in Section 4.6.

4.6. Some Examples of the Resulting Capabilities
The DDN subsystem that supports the unclassified

side of the Red Storm system is comprised of 22 cabinets
each with four controllers (88 controllers total). Perhaps
the best display of some of the capabilities this
implementation provides is to show some timing
examples from our production system. To add some
perspective to these results we measured, with reasonable
accuracy, the time required to telnet into a controller,
execute the command “disk status” and log out. The total
time for this operation was just over six seconds. Your
results may vary. In contrast here is the result of using our
command to accomplish the same operation.

time ddn_disk –status BLK-C1-U-1
real 0m1.315s
user 0m0.190s
sys 0m0.000s

While this is relatively a very significant difference

the real benefit comes, as mentioned previously, when
dealing with large numbers of components. On the
production system we have added a collection called
all_controllers that contains the name of every controller
in the system. In the following example we will use the
–check_connection option of the ddn command which
logs into the specified controller(s) verifies that it has
reached the correct destination and logs out. The first
command will time this operation for a single controller.
The second command will time the operation for all 88
controllers in the system using the all_controllers
collection.

time ddn –check_connection BLK-C1-U-1
real 0m1.290s
user 0m0.190s
sys 0m0.010s

time ddn –check_connection all_controllers
real 0m2.420s
user 0m0.910s
sys 0m0.430s

CUG 2006 Proceedings 10 of 11

As you can see from these results we can perform
this operation on all 88 controllers in the system in less
time than it takes to log into a single controller manually.

One of the typical operations that administrators at
our site accomplish is executing the DDN CLI “stats”
command. This command produces a moderate amount of
output. The following two commands time how long it
takes to execute the “stats” command on a single
controller followed by all 88 controllers.

time ddn –stats BLK-C1-U-1
real 0m1.291s
user 0m0.190s
sys 0m0.010s

time ddn –stats all_controllers
real 0m5.447s
user 0m1.130s
sys 0m0.590s

Even using a command that produces significant

output, the time to execute a command on all of the
controllers in the system is very small. We should note
that when a command is executed on multiple
components the output for that component is prepended
by the controller name. This allows us to redirect large
amounts of output to a file and quickly find the controller
in question while viewing the file with an editor or using
your favorite UNIX utility to extract the information you
desire. We should also note that the times listed are
including the time to return and display all output from
the commands. Each command was executed multiple
times to verify that the results were consistent and
reproducible.

5. Conclusion
We hope that the examples provided in this paper

provide enough information for the reader to imagine
other uses for these concepts. The implementations
described originated as proof of concept exercises but
quickly proved to be useful on a production system. All
of the software used in these examples is freely
available[VI]. Please contact the author for further
information.

6. Future Work
One of the values of expressing information as we

have described is that it can be abstracted in different
ways to serve the many varying needs of the end user.
The DDN example abstracted the administrative interface
to the DDN controllers. This interface was targeted at
system administrators responsible for the task of
managing the DDN subsystem itself. Much of the same
information could be leveraged to provide important
configuration information to someone interested in
supporting Lustre[XI]. Relationship information, like
which nodes are connected to which DDN controller or

what disks are combined to form a file-system, could be
extremely valuable. By combining the information
described in the examples into a single database all of the
necessary information could be stored and retrieved in
numerous creative ways. We are in the process of
providing an abstraction of this combined information for
the I/O team at Sandia Labs.

Many of the concepts discussed in this paper are part
of an ongoing research project at Sandia Labs
investigating RAS software architectures.
Implementations such as these provide valuable proof of
concept exercises.

Acknowledgments
We would like to thank the Computer Science

Research Foundation (CSRF)[XII] at Sandia National
Laboratories for funding much of the work that lead to
the development of the concepts described in this paper.

About the Author
James H. Laros III is a Principle Member of the

Technical Staff at Sandia National Laboratories, currently
involved in research and development of Reliability
Availability and Serviceability (RAS) software
architectures.

References
I. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the
United States Department of Energy under contract
DE-AC04-94AL85000. Contact: jhlaros@sandia.gov

II. RedStorm http://www.cs.sandia.gov/platforms/RedStorm.html
III. Cray XT3

http://www.cray.com/products/xt3/index.html
IV. Data Direct Networks DDN

http://www.datadirectnet.com/company.html
V. Perl – http://www.cpan.org

VI. Cluster Integration Toolkit
CIT - http://www.cs.sandia.gov/CIT

VII. An Extensible, Portable, Scalable, Cluster Management
Software Architecture. James H. Laros III, Lee Ward,
Nathan W. Dauchy, Ron Brightwell, Trammell
Hudson, Ruth Klundt, Proceedings of the 2002 IEEE
International Conference on Cluster Computing, 23-26
Sept. 2002. Copyright 2002 IEEE

VIII. The Cluster Integration Toolkit - An Extensible,
Portable, Scalable Cluster Management Software
Implementation. James H. Laros III, Lee Ward, Nathan
W. Dauchy, James Vasak, Ruth Klundt, Glen Laguna,
Marcus Epperson, Jon R. Stearley Proceedings of the
1st Cluster World Conference and Expo 23-26 June,
2003.

IX. A Software and Hardware Architecture for a Modular,
Portable, Extensible, Reliability Availability and

mailto:jhlaros@sandia.gov
http://www.cs.sandia.gov/platforms/RedStorm.html
http://www.cray.com/products/xt3/index.html
http://www.datadirectnet.com/company.html
http://www.cpan.org/

CUG 2006 Proceedings 11 of 11

Serviceability System - James H. Laros III, presented at
the 2nd Workshop on HIgh Performance Computing
Reliability Issues in conjunction with the 12th
International Symposium on High Performance
Computer Architecture, February 11th, 2006.

X. BusyBox – http://www.busybox.net
XI. Lustre – http://www.clusterfs.com

XII. CSRF - Computer Science Research Institute
http://www.cs.sandia.gov/CSRI/

http://www.busybox.net/
http://www.clusterfs.com/

	Introduction
	System Description Language
	Describing a Red Storm System in Software
	Class Hierarchy
	Component Information and Relationships
	The Red Storm Database

	Management of the DDN Subsystem
	The SDL and Class Hierarchy for the DDN subsystem
	The DDN Command Line Interface
	Our Command Line Interface
	Custom Commands
	Applying Parallelism
	Some Examples of the Resulting Capabilities

	Conclusion
	Future Work
	Acknowledgments
	About the Author
	References

