
Red Storm Systems Management:
Topics on Extending Current Capabilities

James H. Laros III
jhlaros@sandia.gov

Sandia National Laboratories

Presented by
Robert A. Ballance
raballa@sandia.gov

System Description Language (SDL)

• Describe a system in software
– Information about components in system

• Anything relevant can be stored
– Relationships between components in system

• Any simple or complex relationship between two or many
components

– Functional capabilities of components
• Leverage anything a component can do

• Store resulting description in database
– Populate database from existing devices
– Compare database to state of devices
– Make devices reflect the current database

• Provides the foundation for many capabilities
• Leverage Object Oriented concepts heavily

Can we describe Red Storm this way?

• Represent system components by classes
– Class attributes hold information about instantiated

objects
– Class attributes describe relationships between

instantiated objects
• Instantiate objects for each component in system

– Can also express relationships by grouping objects
in collections

• Persistently store objects in database

Red Storm Module (conceptual view)

AMD_single
nid: 4

AMD_single
nid: 1

AMD_single
nid: 3

AMD_single
nid: 2

Seastar
nid:2

Seastar
nid: 1

Seastar
nid: 3

Seastar
nid: 4

L0 L1

Red Storm SDL Class Hierarchy
(topological view)

Class: Device

Class: Node Class: Network Class: SrvrMgmt

Class: Cray Class: Cray Class: Cray

Class: L0
Attribute: L1

Class: L0
Attribute: L1

Class: Seastar
Attribute: L0
Attribute: nid

Class: L1
Attribute: SMW

Class: L1
Attribute: SMW

Class: AMD_single
Attribute: L0
Attribute: nid
Attribute: SS

Red Storm Component Class Names
(from class hierarchy)

Device::Node::Cray::AMD_single
Device::Node::Cray::L0
Device::Node::Cray::L1
Device::Network::Cray::Seastar
Device::SrvrMgmt::Cray::L0
Device::SrvrMgmt::Cray::L1

Red Storm Component Collections and Objects

Red Storm
System

equipment

Cage
c0-0c0

c0-0c0b0

c0-0c0b1

c0-0c0b2

c0-0c0b3

c0-0c0b4

c0-0c0b5

c0-0c0b6

c0-0c0b7

c0-0c1b8

c0-0c1b9

c0-0c1b10

c0-0c1b11

c0-0c1b12

c0-0c1b13

c0-0c1b14

c0-0c1b15

c0-0c2b16

c0-0c2b17

c0-0c2b18

c0-0c2b19

c0-0c2b20

c0-0c2b21

c0-0c2b22

c0-0c2b23

Cage
c0-0c2

Cage
c0-0c1

Cabinet
c0-0

c0-0c0s0n0

c0-0c0s0n1

c0-0c0s0n2

c0-0c0s0n3

c0-0c0s0s0

c0-0c0s0s1

c0-0c0s0s2

c0-0c0s0s3

c0-0cs0

l1_x0y0

Text = collection name
= collection
= object

device_mgr l1_x0y0
name => l1_x0y0
interface => 0

nic => 0
name => eth0
address => 10.1.100.100
net_mask => 255.255.0.0
boot_if => 1
hostname => l1_x0y0
is_primary => 1

role => RAS
vmname => Management
x_pos => 0
y_pos => 0
isa => Device::Node::Cray::L1

device_mgr l1_x0y0-mgt
name => l1_x0y0-mgt
interface => 0

nic => 0
name => eth0
address => 10.1.100.100
net_mask => 255.255.0.0
boot_if => 1
hostname => l1_x0y0-mgt
is_primary => 1

role => RAS
vmname => Management
x_pos => 0
y_pos => 0
isa => Device::SrvrMgmt::Cray::L1

Viewing the stored Collections
and Objects

collection_mgr equipment
c0-0
c0-1
c0-2
.
.

collection_mgr c0-0
c0-0c0
c0-0c1
c0-0c2
l1_x0y0
l1_x0y0-mgt

collection_mgr c0-0c0
c0-0c0b0
c0-0c0b1
c0-0c0b2
c0-0c0b3
c0-0c0b4
c0-0c0b5
c0-0c0b6
c0-0c0b7

Viewing the stored Collections
and Objects

(continued)

device_mgr c0-0c0s0n0
name => c0-0c0s0n0
l0 => c0-0c0s0
power => c0-0c0s0-mgt
power_port => 0
cage => 0
slot => 0
x_pos => 0
y_pos => 0
nid => 0
role => compute
vmname => catamount
leader => c0-0c0s0
SS => c0-0c0s0s0
isa => Device::Node::Cray::AMD_single

collection_mgr c0-0c0b0
c0-0c0s0n0
c0-0c0s0n1
c0-0c0s0n2
c0-0c0s0n3
c0-0c0s0s0
c0-0c0s0s1
c0-0c0s0s2
c0-0c0s0s3
c0-0c0s0
c0-0c0s0-mgt

Can we use this concept to interact with
components?

• Describe system the same way
• Add methods to implement component functionality

– Methods represent the language that the components
communicate in

• Leverage the methods to accomplish useful work
– Interact with components
– Discover information about components

• Update database with this info
• Automatic population of database

– Configure components
• Configure components based on settings stored in

database

DDN Component Collections and Objects

DDN Controller
BLK-C1-U-1

DDN Controller
BLK-C1-U-2

DDN Controller
BLK-C1-U-1

DDN Controller
BLK-C1-U-2

DDN Subsystem
equipment

DDN Cabinet
DDN-1

Text = collection name
= collection
= object

DDN Component Class Hierarchy

Class: Device

Class: Storage

Class: Controller Class: Disk

Class: DDN
Method: ddn_cli

Class: SEAGATE

Class:
S2A_8500

Class:
S2A_8500_5_12

Class:
ST373207FC

Class:
ST373307FC

Command formats and specific examples

ddn <flag> <component or collection> - format for 1st level DDN CLI command

ddn –faults BLK-C1-U-1 – example: execute the DDN CLI faults command
on controller BLK-C1-U-1

ddn –faults DDN-1 – example: execute the DDN CLI faults command on all
controllers in the DDN-1 collection

ddn_<1st level cmd> --<2nd level parameter> <component or collection>
- format for 2nd level DDN CLI command

ddn_disk –list BLK-C1-U-1 – example: executes “disk list” on controller
BLK-C1-U-1

ddn –check_faults BLK-C1-U-1 – example: executes “custom” check_faults
command

ddn –check_faults DDN-1 | xargs ddn –faults – example: combining commands

ddn –populate_disks <controller or component> - example: discovering attached
disks on controller or entire system

time ddn –check_connection BLK-C1-U-1
real 0m1.290s
user 0m0.190s
sys 0m0.010s

time ddn –check_connection all_controllers
real 0m2.420s
user 0m0.910s
sys 0m0.430s

Command execution
times

time ddn_disk –status BLK-C1-U-1
real 0m1.315s
user 0m0.190s
sys 0m0.000s # time ddn –stats BLK-C1-U-1

real 0m1.291s
user 0m0.190s
sys 0m0.010s

time ddn –stats all_controllers
real 0m5.447s
user 0m1.130s
sys 0m0.590s

Conclusions

• This foundation can be leveraged for many purposes
– Reliability Availability and Serviceability (RAS) systems

• We are currently working on a RAS software architecture
using the SDL as a foundation

– Schedulers
– Run-time systems
– Anything that needs information about a system to

perform a task
• Very easy to extend for use on other systems
• Capable of storing information for very large systems

– We are storing approx xxx components in our redstorm
database

Questions?

• Say thank you to Bob for me… Jim ☺

	System Description Language (SDL)
	Can we describe Red Storm this way?
	Can we use this concept to interact with components?
	Conclusions
	Questions?

