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System Description Language (SDL)

• Describe a system in software
– Information about components in system

• Anything relevant can be stored
– Relationships between components in system

• Any simple or complex relationship between two or many 
components

– Functional capabilities of components
• Leverage anything a component can do

• Store resulting description in database
– Populate database from existing devices
– Compare database to state of devices
– Make devices reflect the current database

• Provides the foundation for many capabilities
• Leverage Object Oriented concepts heavily



Can we describe Red Storm this way?

• Represent system components by classes
– Class attributes hold information about instantiated 

objects
– Class attributes describe relationships between 

instantiated objects
• Instantiate objects for each component in system

– Can also express relationships by grouping objects 
in collections

• Persistently store objects in database



Red Storm Module (conceptual view)
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Red Storm SDL Class Hierarchy 
(topological view)
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Red Storm Component Class Names
(from class hierarchy)

Device::Node::Cray::AMD_single
Device::Node::Cray::L0
Device::Node::Cray::L1
Device::Network::Cray::Seastar
Device::SrvrMgmt::Cray::L0
Device::SrvrMgmt::Cray::L1



Red Storm Component Collections and Objects
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Text = collection name
= collection
= object



# device_mgr l1_x0y0
name => l1_x0y0
interface => 0

nic => 0
name => eth0
address => 10.1.100.100
net_mask => 255.255.0.0
boot_if => 1
hostname => l1_x0y0
is_primary => 1

role => RAS
vmname => Management
x_pos => 0
y_pos => 0
isa => Device::Node::Cray::L1

# device_mgr l1_x0y0-mgt
name => l1_x0y0-mgt
interface => 0

nic => 0
name => eth0
address => 10.1.100.100
net_mask => 255.255.0.0
boot_if => 1
hostname => l1_x0y0-mgt
is_primary => 1

role => RAS
vmname => Management
x_pos => 0
y_pos => 0
isa => Device::SrvrMgmt::Cray::L1

Viewing the stored Collections 
and Objects
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# collection_mgr c0-0c0
c0-0c0b0
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Viewing the stored Collections 
and Objects

(continued)

# device_mgr c0-0c0s0n0
name => c0-0c0s0n0
l0 => c0-0c0s0
power => c0-0c0s0-mgt
power_port => 0
cage => 0
slot => 0
x_pos => 0
y_pos => 0
nid => 0
role => compute
vmname => catamount
leader => c0-0c0s0
SS => c0-0c0s0s0
isa => Device::Node::Cray::AMD_single

# collection_mgr c0-0c0b0
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Can we use this concept to interact with 
components?

• Describe system the same way
• Add methods to implement component functionality

– Methods represent the language that the components 
communicate in

• Leverage the methods to accomplish useful work
– Interact with components
– Discover information about components

• Update database with this info
• Automatic population of database

– Configure components
• Configure components based on settings stored in 

database



DDN Component Collections and Objects

DDN Controller
BLK-C1-U-1

DDN Controller
BLK-C1-U-2

DDN Controller
BLK-C1-U-1

DDN Controller
BLK-C1-U-2

DDN Subsystem
equipment

DDN Cabinet
DDN-1

Text = collection name
= collection
= object



DDN Component Class Hierarchy
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Command formats and specific examples

# ddn <flag> <component or collection> - format for 1st level DDN CLI command

# ddn –faults BLK-C1-U-1 – example: execute the DDN CLI faults command
on controller BLK-C1-U-1

# ddn –faults DDN-1 – example: execute the DDN CLI faults command on all 
controllers in the DDN-1 collection

# ddn_<1st level cmd> --<2nd level parameter> <component or collection>  
- format for 2nd level DDN CLI command

# ddn_disk –list BLK-C1-U-1 – example: executes “disk list” on controller
BLK-C1-U-1

# ddn –check_faults BLK-C1-U-1 – example: executes “custom” check_faults
command

# ddn –check_faults DDN-1 | xargs ddn –faults – example: combining commands

# ddn –populate_disks <controller or component> - example: discovering attached
disks on controller or entire system



# time ddn –check_connection BLK-C1-U-1
real    0m1.290s
user    0m0.190s
sys     0m0.010s

# time ddn –check_connection all_controllers
real    0m2.420s
user    0m0.910s
sys     0m0.430s

Command execution 
times

# time ddn_disk –status BLK-C1-U-1
real    0m1.315s
user    0m0.190s
sys     0m0.000s # time ddn –stats BLK-C1-U-1

real    0m1.291s
user    0m0.190s
sys     0m0.010s

# time ddn –stats all_controllers
real    0m5.447s
user    0m1.130s
sys     0m0.590s



Conclusions

• This foundation can be leveraged for many purposes
– Reliability Availability and Serviceability (RAS) systems

• We are currently working on a RAS software architecture 
using the SDL as a foundation

– Schedulers
– Run-time systems
– Anything that needs information about a system to 

perform a task
• Very easy to extend for use on other systems
• Capable of storing information for very large systems

– We are storing approx xxx components in our redstorm 
database



Questions?

• Say thank you to Bob for me… Jim ☺
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