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ABSTRACT: Recently codes have been developed for computing the Cholesky factorization with complete
pivoting of a symmetric positive semidefinite matrix for the serial LAPACK library. In the parallel ScaLA-
PACK library there are only routines for the unpivoted factorization in the positive definite case and no
algorithms use complete pivoting. We aim to assess the feasibility of complete pivoting in ScaLAPACK by
implementing a parallel pivoted Cholesky routine. We discuss the steps needed to parallelize the existing serial
code, and discuss the specific constraints of the data distribution and communication for ScaLAPACK. We
present some experiments, comparing our code and the existing ScaLAPACK code, conducted on both a Cray
XD1 and a Cray XT3. We show that on fewer processors our new code scales well and the pivoting overhead
is small. However, the pivoting overhead increases with the number of processors, but decreases with problem
size.

KEYWORDS: dense linear algebra, Cholesky factorization, complete pivoting, ScaLAPACK, parallel dis-
tributed algorithms

1 Introduction

The Cholesky factorization of a symmetric positive definite
matrix A ∈ Rn×n has the form

A = LLT ,

where L ∈ Rn×n is a lower triangular matrix with positive
diagonal elements. If A is positive semidefinite, of rank r,
there exists a Cholesky factorization with complete pivot-
ing ([8, Thm. 10.9], for example). That is, there exists a
permutation matrix P ∈ Rn×n such that

PT AP = LLT ,

where L is unique in the form

L =
[

L11 0
L12 0

]
,

with L11 ∈ Rr×r lower triangular with positive diagonal
elements. L is such that

`11 ≥ `22 ≥ · · · ≥ `rr.

A common occurrence of positive semidefinite matrices
is in statistics, namely covariance matrices. The (i, j)th

element of a covariance matrix, S, holds the sample covari-
ance of the ith and jth random variable.

The factorization is also used in some algorithms solv-
ing the linear least squares problem

min
x
‖Ax− b‖2, A semidefinite,

and as a test for whether a matrix is numerically positive
semidefinite or not.

In the ScaLAPACK [2] (Scalable Linear Algebra
PACKage) the routines PxPOTRF perform the Cholesky fac-
torization of a (dense) positive definite matrix without any
pivoting. We seek to add the functionality of dealing with
semidefinite matrices by implementing a parallel algorithm
with complete pivoting. Our algorithm is based on the
blocked serial algorithm of [9], written for LAPACK [1].
There are currently no algorithms in ScaLAPACK that use
complete pivoting.

In this paper we describe the parallelization of the al-
gorithm in [9]. We also report on some numerical experi-
ments with a code that is still under development. We look
at speed, scalability and the overall feasibility of complete
pivoting with the constraints of the ScaLAPACK data dis-
tribution and existing auxiliary routines.
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2 ScaLAPACK

Data in ScaLAPACK is distributed in a block cyclic manner
according to a BLACS [5] (Basic Linear Algebra Communi-
cation Subroutines) process grid, a conceptual rectangular
arrangement of processes. The BLACS provide routines
for frequently occurring operations in linear algebra. They
are portable and vendors supply machine specific versions
built on appropriate communication routines such as MPI.

Block cyclic distribution ensures good load balancing
and aids scalability, and there is analysis to support this.
The data is distributed in a round robin way for blocks of
size MB ×NB.

This is best illustrated by an example. Figure 1 shows a
2-by-4 BLACS process grid. The numbers around the edge
indicate the coordinates of each process, with the process
number shown on the different coloured squares for each
processes. That is, process number 2 is at coordinate (0, 2)
in the process grid.

Figure 1: A 2-by-4 BLACS process grid.

If we distribute a two dimensional array according to the
process grid in Figure 1, in a block cyclic manner for a
block size of MB×NB, then we have the situation shown
on the left hand side of Figure 2. The data stored by a
process is coloured according to the processes in Figure 1.
The right hand side of Figure 2 shows the local storage
of the parts of the array on the process with coordinates
(0, 0). The array is stored in column major order. The col-
umn highlighted is stored contiguously in memory, in the
direction of the arrow.

Figure 2: A two dimensional array distributed according to
a 2-by-4 process BLACS grid, with block size MB ×NB.

The computational routines ScaLAPACK is built on

top of LAPACK and the PBLAS [3] (Parallel Basic Linear
Algebra Subprograms).

3 A Blocked Serial Algorithm

Our algorithm is a blocked algorithm. That is an algorithm
that treats the matrix as consisting of not individual ele-
ments but blocks of elements. In the following algorithm
we use a block update, which involves matrix multiplication
type operations. Here, after a number of steps, we update
the trailing matrix and then restart the factorization from
this smaller updated matrix. These matrix-matrix oper-
ations are more efficient in terms of data reuse and use
the memory hierarchy of a machine more effectively. This
leads to more floating point operations per second than the
matrix-vector type operations in the rest of the algorithm.
The algorithm we present in this section has been shown
to compute up to 8 times faster than its unblocked coun-
terpart [9]. For a detailed discussion on blocked algorithms
see [1].

The basic steps of our algorithm are based on a GAXPY
(Generalized Ax Plus y) algorithm and are:

Set L = lower triangular part of A
for j = 1: n

`jj = `jj − Lj1L
T
j1

`jj =
√

`jj

% Update jth column
if 1 < j < n L3j = L3j − L31L

T
j1

if j < n L32 = L3j/`jj

end

We use the following block representation to give us
the block update. We can write for the semidefinite ma-
trix A(k−1) ∈ Rn×n and nb ∈ R [7]

A(k−1) =
[

A
(k−1)
11 A

(k−1)
12

AT (k−1)

12 A
(k−1)
22

]

=
[

L11 0
L21 In−nb

] [
Inb

0
0 A(k)

] [
L11 0
L21 In−nb

]T

,

where L11 ∈ Rnb×nb and L21 ∈ R(n−nb)×nb form the first
nb columns of the Cholesky factor L of A(k−1). Now to
complete our factorization of A(k−1) we need to factor the
reduced matrix

A(k) = A
(k−1)
22 − L21L

T
21, (3.1)

which we can explicitly form, taking advantage of symme-
try.

Thus we perform nb steps of the GAXPY algorithm
above, update the trailing matrix, than restart the GAXPY
process on this smaller matrix.

We can add pivoting by looking for the largest possible
value of `jj at each step. We call this the pivot. This is
implemented in the following algorithm:
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Algorithm 3.1 This algorithm computes the pivoted
Cholesky factorization with complete pivoting PT AP =
LLT of a symmetric positive semidefinite matrix A ∈
Rn×n, overwriting A with L, using a block update and block
size nb. The nonzero elements of the permutation matrix
P are given by P (piv(k), k) = 1, k = 1: n.

Set L = lower triangular part of A
ε = nu
piv = 1: n
% Tolerance in stopping criterion
tol = n ∗ u ∗max(diag(A))
for k = 1:nb: n

% Allow for last incomplete block
jb = min(nb, n− k + 1)
% Store accumulated dot products
dots(k: n) = 0
for j = k: k + jb− 1

if j > k
dots(i) = dots(i) + L(i, j − 1)2, i = j:n

end
q = min

{
p : L(p, p)− dots(p) =

max
j≤i≤n

{L(i, i)− dots(i)}
}

if L(q, q) ≤ tol
% computed rank of A is j − 1
return

end
swap L(j, : ) and L(q, : )
swap L(: , j) and L(: , q)
swap dots(j) and dots(q)
swap piv(j) and piv(q)
L(j, j) = L(j, j)− dots(j)
L(j, j) =

√
L(j, j)

% Update jth column
if 1 < j < n

L(j + 1: n, j) = L(j + 1: n, j)−
L(j + 1: n, 1: j − 1)L(j, 1: j − 1)T

end
if j < n

L(j + 1: n, j) = L(j + 1: n, j)/L(j, j)
end

end
if k + jb < n
% perform block update

L(j + 1:n, j + 1: n) = L(j + 1:n, j + 1: n)−
L(j + 1: n, 1: j)L(j + 1: n, 1: j)T

end
end

This algorithm requires n3/3 flops. Note for compu-
tational efficiency we can store the inner products when
calculating the pivot and update them on each iteration.
The pivoting overhead is 3(r + 1)n− 3/2(r + 1)2 flops and

(r + 1)n− (r + 1)2/2 comparisons, where r = rank(A).
The computed rank of A is determined by stopping

when a pivot is less than or equal to tol, which is a tol-
erance. For a discussion of this and a full derivation of this
algorithm and the LAPACK style code see [9].

4 A Block Cyclic Parallel
Algorithm

In parallelizing Algorithm 3.1 we do the following.
Firstly, as Algorithm 3.1 is blocked it fits into block

cyclic data distribution. We use a square block size,
MB = NB. The GAXPY part of the algorithm on the
current block column is computed by a process column in
the BLACS grid, the one which owns that part of the dis-
tributed matrix. All processes take part in the block up-
date.

Secondly, there is no way in ScaLAPACK to extract
the diagonal elements of the distributed matrix. At the
start and after each block update we send the diagonal ele-
ments, diagonal block by diagonal block, to the processors
in the current process column in the sender’s process row to
some temporary workspace. After this the current process
column has a distributed copy of the diagonal elements in
the trailing matrix stored as a vector. We keep this and
update it at each stage of factorizing the current block col-
umn. We use the BLACS routine DGEBS2D which sends a
rectangular array. We call the routine as if we are sending
the first row in a block, but we give the overall number
of rows in the local array as one more, this picks out the
diagonal elements.

At each step of the current column we need to compute
the pivot. Each processor computes its contribution, with-
out the need for further communication, and stores this in
a workspace array. We can then use the PBLAS routine
PDAMAX on this workspace array to compute the maximum
value. The routine returns the pivot to each processor in
the current column, each process then broadcasts the pivot
along their process row. Clearly there is a lot more commu-
nication between processes required in a pivoted algorithm
compared to one without pivoting.

With the pivot information received, we then need to
swap the current and pivot rows and columns. We facilitate
the swaps with the PBLAS routine PDSWAP.

The vector piv which stores the information needed to
compute the permutation matrix is distributed over every
process column and rows are swapped when a pivot is de-
termined.

Finally, computing the current column of L is done by
calling the equivalent PBLAS routines to the BLAS [6] [4]
routines in our LAPACK routine. Likewise the block up-
date.
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Implementing these considerations we have the follow-
ing algorithm:

Algorithm 4.1 This algorithm computes the pivoted
Cholesky factorization with complete pivoting PT AP =
LLT of a symmetric positive semidefinite matrix A ∈
Rn×n, overwriting A with L. The algorithm requires data
to be distributed over a BLACS process grid in a block cyclic
manner with a block size of nb×nb. The nonzero elements
of the permutation matrix P are given by P (piv(k), k) = 1,
k = 1: n.

Set L = lower triangular part of A
ε = nu
piv is distributed over each process column
piv = 1: n
% Tolerance in stopping criterion
tol = n ∗ u ∗max(diag(A))
for k = 1:nb: n

% Allow for last incomplete block
jb = min(nb, n− k + 1)
% Store accumulated dot products
dots(k: n) = 0
if I own a diagonal block

Send diag elements to process in my row
and current column

end
if I am in the current column

Receive diag blocks to work
end
% Current process col has all diag elements
for j = k: k + jb− 1

if I own elements in cols k: k + jb− 1
compute my contribution of:

if j > k
dots(i) = dots(i) + L(i, j − 1)2, i = j:n

end
q = min

{
p : L(p, p)− dots(p) =

max
j≤i≤n

{work(i, i)− dots(i)}
}

Broadcast pivot along process row
else

Receive pivot
end
if L(q, q) ≤ tol

% computed rank of A is j − 1
return

end
% global swaps
swap L(j, : ) and L(q, : )
swap L(: , j) and L(: , q)
swap dots(j) and dots(q)
swap piv(j) and piv(q)
if I own elements in cols k: k + jb− 1

compute my contribution of:
L(j, j) = L(j, j)− dots(j)
L(j, j) =

√
L(j, j)

% Update jth column
if 1 < j < n

L(j + 1: n, j) = L(j + 1: n, j)−
L(j + 1: n, 1: j − 1)L(j, 1: j − 1)T

end
if j < n

L(j + 1: n, j) = L(j + 1: n, j)/L(j, j)
end

end
end
if k + jb < n
% perform global block update

L(j + 1: n, j + 1: n) = L(j + 1:n, j + 1: n)−
L(j + 1: n, 1: j)L(j + 1: n, 1: j)T

end
end

5 Numerical Experiments

We timed and compared the following two routines:

• A double precision Fortran implementation of Algo-
rithm 4.1, which we refer to hereafter as our code.

• The ScaLAPACK routine PDPOTRF which computes
the unpivoted Cholesky factorization of a (double
precision) positive definite matrix.

We generate a random symmetric positive definite matrix
using the ScaLAPACK testing routine PDMATGEN. Note that
as we are using positive definite matrices our code will not
exit due to a pivot being less than or equal to the toler-
ance. This will enable us to see the pivoting overhead in
our code. We do not look at the numerical behavior or
rank detection properties of our code in this paper.

We compare the codes on three sizes of matrix, namely

n = 8000, 16000, 32000.

The following parameters are used and thus we tune the
codes empirically. These were narrowed down after some
initial runs.

• NB = 16, 32, 64, 128, 256

• PEs = 4, 8, 16, 32, 64 (XD1 only)

• Process grids of: 2×2, 2×4, 4×2, 2×8, 4×4, 8×
2, 4× 8, 8× 4, 4× 16, 8× 8, 16× 4.

The tests were performed on the following machines:

• A Cray XD1 with 2.4 GHz Opteron processors and
2GB memory per processor and two processors per
node.
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• A Cray XT3 with 2.6 GHz Opteron processors and
2GB memory per processor.

In all cases we give the best time for each value of n and
the number of processors. This was exclusively the grids
with more rows than columns for both codes. A block size
of 64 usually gave the quickest time for both codes.

Figure 3 shows the timings for the two routines on the
XD1.
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Figure 3: Timings for the XD1.

As we would expect with additional computation and
communication the times to compute the pivoted factoriza-
tion are longer. We show the pivoting overhead in Table 1.
Here the figures show the difference in time of both codes
as a percentage of the time for the unpivoted ScaLAPACK
routine. We can see that as we increase the problem size
that the overhead decreases. However, as we increase the
number of processors the overhead generally increases. It
is modest for runs on 4 processors but very large indeed
for 64 processors.Thus we expect the code not to scale too
well.

Table 1: Pivoting overhead on the XD1.

PEs 4 8 16 32 64
n = 8000 11.2 54.8 96.8 95.6 155.1

n = 16000 3.9 40.6 70.5 60.4 106.4
n = 32000 27.8 52.8 42.1 63.8

The scaling is shown in Figure 4 for n = 8000 and
n = 16000. The green line shows linear scaling compared
with the computation time of each routine on 4 processors.
We see that the ScaLAPACK codes scales well to 64 pro-
cessors, particulary for the larger problem size. Our code
doesn’t scale as well, although for n = 16000 we are scaling
to 32 processors.
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Figure 4: Scaling on the XD1.

As stated earlier we are only comparing the fastest
times for each code over the range of block sizes and pro-
cess grids. Figure 5 shoes the effect of choosing different
values for a problem size of n = 16000 and on 64 pro-
cessors. We can clearly see here that the optimal block
size is 32 and optimal grid is 16-by-4. The block size ef-
fects whether whole blocks fit into cache for the matrix-
vector and matrix-matrix operations as well as much of
the GAXPY operations are done before the block update.
With grids with more rows than columns, more processes
are involved in the GAXPY operations and less involved
in communicating the pivots.
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Figure 5: Effect of process grid and block size with
n = 16000

Figure 6 show the timings for the XT3. We can see
that the timings for larger problems and few processors
are much quicker, up to 55% faster compared to the XD1.
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However, as the numbers of processors increase the times
are within 2 or 3%. This behavior means the codes doesn’t
scale quite as well on the XT3 as they did on the XD1.
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Figure 6: Timings for the XT3.

We can see in Figure 7 that on 32 processors the that
a problem of n = 8000 gives a speed up of just over 3
times over the time on 4 processors, compared with ap-
proximately 4 on the XD1, and a speed up of nearly 5
times with n = 16000 compared to 7 times on the XD1.
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Figure 7: Scaling on the XT3.

6 Conclusions

The aim of the work in this paper was to ascertain the
feasibility of implementing the Cholesky factorization with
complete pivoting for ScaLAPACK. The code we demon-
strated is still under development.

On smaller numbers of processes the pivoting only adds
around 10% to the computation time. However, on higher
numbers of processors this was as large as 155%. However,
the overhead does decrease with problem size and larger
problem sizes scaled to 32 processors.

We conclude that the code does appear to be practical
but further investigation is required, particulary we would
like to run larger problems on more processors, to see if the
code will scale in these cases.
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