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Introduction

We wanted to parallelize a serial algorithm for the pivoted 
Cholesky factorization for ScaLAPACK [1] (Scalable Linear 
Algebra PACKage) , based on existing serial code [4]. 

The matrix to be factored is symmetric and requires 
symmetric (or complete) pivoting. At each stage of the 
algorithm two rows and two columns are swapped

We will look at how well this performs on Cray systems, in 
particular an XD1 and XT3 

The code uses existing ScaLAPACK and PBLAS [2] (Parallel 
Basic Linear Algebra Subprograms) routines.
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Form of a Cholesky Factorization

If A is symmetric positive definite then

If A is positive semidefinite, of rank r, then

where P is a permutation matrix and L is unique, with 
positive diagonal elements, in the form

A = LLT
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ScaLAPACK
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1

2 by 4 process grid

Process of rank 4 is at
coordinate (1,0)

Nothing uses symmetric pivoting in ScaLAPACK at present.

ScaLAPACK uses block cyclic data distribution according to 
the BLACS [3] (Basic Linear Algebra Communication 
Subroutines) process grid:

Process grid is enclosed in a context, like an MPI 
communicator
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Block Cyclic Distribution

Data is distributed in a Block Cyclic manner, 
according to the BLACS process grid and blocks of 
MB by NB
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n
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0      
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A11  A15  

A31  A35 

A51  A55  

A71  A75 MB
Process at (0,0) stores         
(4 X MB) X (2 X NB) of 
the global array.

Storage is Fortran 
column major order. NB
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Blocked Algorithm

Our algorithm is blocked, that is we perform operations on 
blocks instead of individual elements.

This ensures effective use of memory hierarchy, via BLAS. 
Serial code up to 8 times faster [4].

Blocked algorithms fit into the data distribution of 
ScaLAPACK.

a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27

a31 a32 a33 a34 a35 a36 a37

a41 a42 a43 a44 a45 a46 a47

a51 a52 a53 a54 a55 a56 a57

a61 a62 a63 a64 a65 a66 a67

a71 a72 a73 a74 a75 a76 a77

A11         A12         A13

A21         A22         A23

A31         A32         A33

NB



May 2006, Lugano CUG 2006 9Combining the strengths of UMIST and
The Victoria University of Manchester

Algorithm

For L=A, current block column: NB steps:

Update
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Algorithm - Pivoting

At the jth step: •L11 has been factored

•Current column:

•Find the largest possible 
diagonal element, the pivot, 
in the qth position, say

•Swap jth row and column 
with qth row and column

•Exit if pivot is “zero”

•Compute jth column

•Update trailing matrix

j                  q

j    

q

L11

NB

T
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Algorithm and Block Cyclic Data

We need to compute the 
pivot, but the xi are 
distributed down the 
process column and 
diagonal elements are 
distributed over all rows and 
columns. 

Swapping of rows and 
columns now must be done 
down each process row and 
along each process column.

Communication can involve 
all processes.

j                  q

j    

q



May 2006, Lugano CUG 2006 12Combining the strengths of UMIST and
The Victoria University of Manchester

Parallel Algorithm Details

At the start of each block column we 
send the diagonal elements of 
trailing matrix(L33) to a vector 
distributed over the current process 
column. 

The send is done block by block as 
there is no global routine for diagonal 
elements. We cheat by giving the 
leading diemnsion of local array +1 to 
pick out diagonal elements.

Getting all the diagonal elements 
each time would be very costly. 

The processes in the current column 
can do its contribution of lii – xiixii

T

without any communication.

xiliilii – xiixii
T
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Parallel Algorithm Details

The maximum value is computed with a combine operation 
down the process column, existing PDAMAX routine in 
PBLAS.

We need to now broadcast the pivot position, q,  along the 
process rows.  We can now call global swap operations.

We also need to swap our local copies of diagonal elements 
etc.

We are now able to compute the current column, and 
continue until the end of the current block column.
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Test Machines

Cray XD1

– Aston University

– Cray XD1 2.4 GHz Opteron processors with 2GB memory per 
processor and two processors per node.

Cray XT3

– CSCS

– Cray XT3 2.6 GHz Opteron processors with 2GB memory per 
processor.
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Timings

We compare our code with the ScaLAPACK routine 
PDPOTRF, in ACML, which computes the factorization for 
positive definite matrix. This code is optimized.

This is done so we can see the pivoting overhead in our 
algorithm. Which is the point of this talk!

We do not look at the numerical behaviour and rank 
detection.

Tuning parameters looked at empirically.
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Timings

Here we time the code for different problem sizes

– n = 8000, 16000, 32000

Different block sizes

– NB = 16, 32, 64, 128, 256

Different process grids

– 2x2, 2x4, 4x2, 2x8, 4x4, 8x2, 4x8, 8x4, 4x16, 8x8, 16x4, 8x8, 16x4

– 64 PEs XD1 only

In each case we give the best time to compute the 
factorization.
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Timings on the XD1 
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Pivoting Overhead

n       PE 4 8 16 32 64

8000 11.2 54.8 96.8 95.6 155.1

16000 3.9 40.6 70.5 60.35 106.4

32000 27.8 52.8 42.1 63.8

Difference between pivoted and non-pivoted codes as a 
percentage non-pivoted compute time.
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Scaling on the XD1 
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Block Sizes and Process Grids, n=16000 
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Timings on the XT3
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Scaling on the XT3 
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Conclusions

Wasn’t sure we could get anything practical at all!

Scaling is OK, for the problem sizes we ran, up to 32 
processors.

Pivoting overhead decreases with problem size...

… but increases with the number of processes. Pivoted code 
can take 2.5 times longer.



Combining the strengths of UMIST and
The Victoria University of Manchester

And finallyAnd finally……
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Further Work

Work in process, code probably needs “optimization”

Larger problems on more processors. 

Better communication pattern?

One sided communication?

Packed Storage?
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Aston for the XD1, particularly Andrey Kaliazin
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Neil Stringfellow

Kevin Roy at Manchester for running codes
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