

Symmetric Pivoting in ScaLAPACK

Craig Lucas University of Manchester

Cray User Group 8 May 2006, Lugano

Combining the strengths of UMIST and The Victoria University of Manchester

Introduction

Combining the strengths of UMIST and The Victoria University of Manchester

MANCH

Introduction

- We wanted to parallelize a serial algorithm for the pivoted Cholesky factorization for ScaLAPACK [1] (Scalable Linear Algebra PACKage), based on existing serial code [4].
- The matrix to be factored is symmetric and requires symmetric (or complete) pivoting. At each stage of the algorithm two rows and two columns are swapped
- We will look at how well this performs on Cray systems, in particular an XD1 and XT3
- The code uses existing ScaLAPACK and PBLAS [2] (Parallel Basic Linear Algebra Subprograms) routines.

Form of a Cholesky Factorization

If A is symmetric positive definite then

$$A = LL^T$$

If A is positive semidefinite, of rank r, then

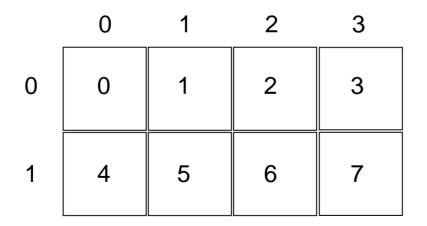
$$P^{T}AP = LL^{T}$$

where P is a permutation matrix and *L* is unique, with positive diagonal elements, in the form

$$A = \begin{bmatrix} L_{11} & 0 \\ L_{12} & 0 \end{bmatrix}, \quad L_{11} \text{ is } r \times r$$

Combining the strengths of UMIST and The Victoria University of Manchester

- ScaLAPACK
- Nothing uses symmetric pivoting in ScaLAPACK at present.
- ScaLAPACK uses *block cyclic* data distribution according to the BLACS [3] (Basic Linear Algebra Communication Subroutines) process grid:



2 by 4 process grid

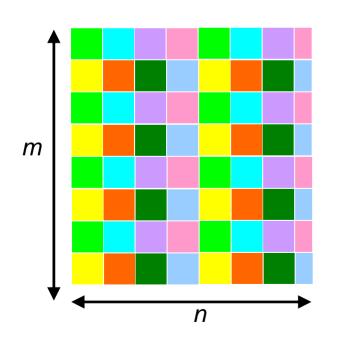
Process of rank 4 is at coordinate (1,0)

Process grid is enclosed in a *context*, like an MPI communicator

Combining the strengths of UMIST and The Victoria University of Manchester

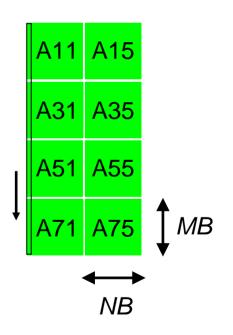
Block Cyclic Distribution

 Data is distributed in a *Block Cyclic* manner, according to the BLACS process grid and blocks of *MB* by *NB* 0 1 2 3



Process at (0,0) stores (4 X MB) X (2 X NB) of the global array.

Storage is Fortran column major order.



Algorithm

Combining the strengths of UMIST and The Victoria University of Manchester

Blocked Algorithm

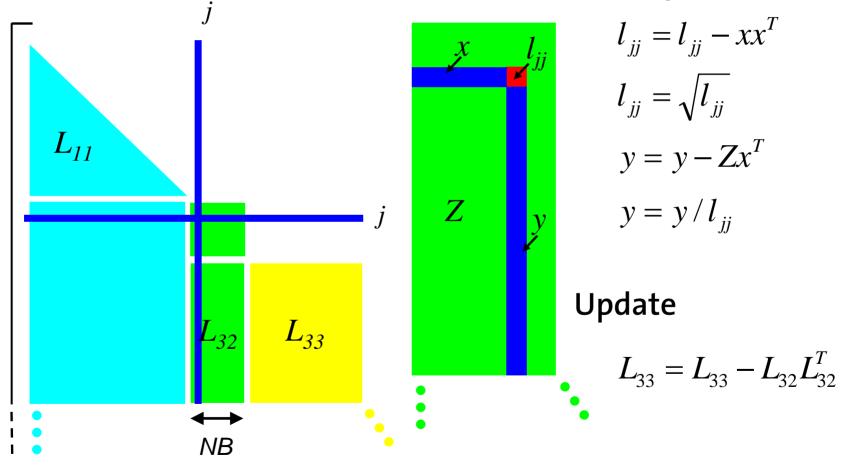
Our algorithm is *blocked*, that is we perform operations on blocks instead of individual elements.

a1	1 a12	a13	a14	a15	a16	a17	A11	A12	A13
a2	1 a22	a23	a24	a25	a26	a27			
a3	1 a32	a33	a34	a35	a36	a37			
a4	1 a42	a43	a44	a45	a46	a47	 A21	A22	A23
a5	1 a52	a53	a54	a55	a56	a57			
a6	1 a62	a63	a64	a65	a66	a67		 	
a7	1 a72	a73	a74	a75	a76	a77	A31	A32	A33

- This ensures effective use of memory hierarchy, via BLAS.
 Serial code up to 8 times faster [4].
- Blocked algorithms fit into the data distribution of ScaLAPACK.

Algorithm

NB steps:



Combining the strengths of UMIST and The Victoria University of Manchester

At the *j*th step: qqNB

- *L_n* has been factored
- Current column:

• Find the largest possible diagonal element, the *pivot*, in the *q*th position, say

 $\max_{i=j:n} l_{ii} - x_i x_i^T$

Swap jth row and column with qth row and column

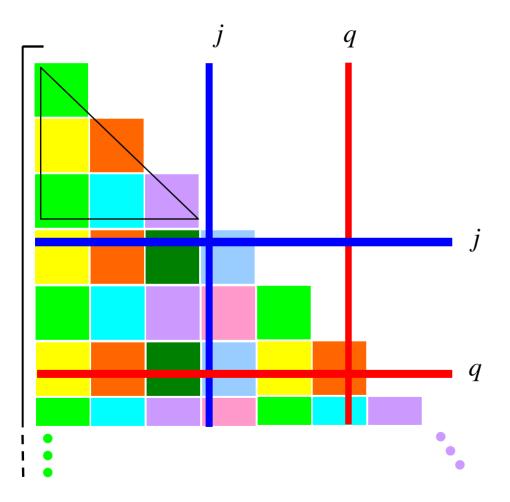
Exit if pivot is "zero"

- Compute *j*th column
- [•]Update trailing matrix

MANCHESTER

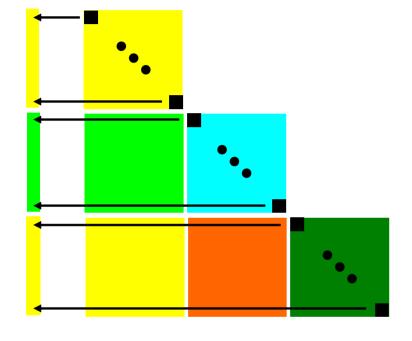
The University of Manchester

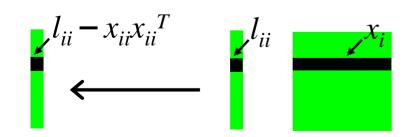
Algorithm and Block Cyclic Data



- We need to compute the pivot, but the x_i are distributed down the process column and diagonal elements are distributed over all rows and columns.
- Swapping of rows and columns now must be done down each process row and along each process column.
- Communication can involve all processes.

Parallel Algorithm Details





- At the start of each block column we send the diagonal elements of trailing matrix(L₃₃) to a vector distributed over the current process column.
- The send is done block by block as there is no global routine for diagonal elements. We cheat by giving the leading diemnsion of local array +1 to pick out diagonal elements.
- Getting all the diagonal elements each time would be very costly.
- The processes in the current column can do its contribution of $l_{ii} x_{ii}x_{ii}^T$ without any communication.

MANCH

Parallel Algorithm Details

- The maximum value is computed with a combine operation down the process column, existing PDAMAX routine in PBLAS.
- We need to now broadcast the pivot position, q, along the process rows. We can now call global swap operations.
- We also need to swap our local copies of diagonal elements etc.
- We are now able to compute the current column, and continue until the end of the current block column.

Experiments

Combining the strengths of UMIST and The Victoria University of Manchester

Test Machines

- Cray XD1
 - Aston University
 - Cray XD1 2.4 GHz Opteron processors with 2GB memory per processor and two processors per node.
- Cray XT3
 - CSCS
 - Cray XT₃ 2.6 GHz Opteron processors with 2GB memory per processor.

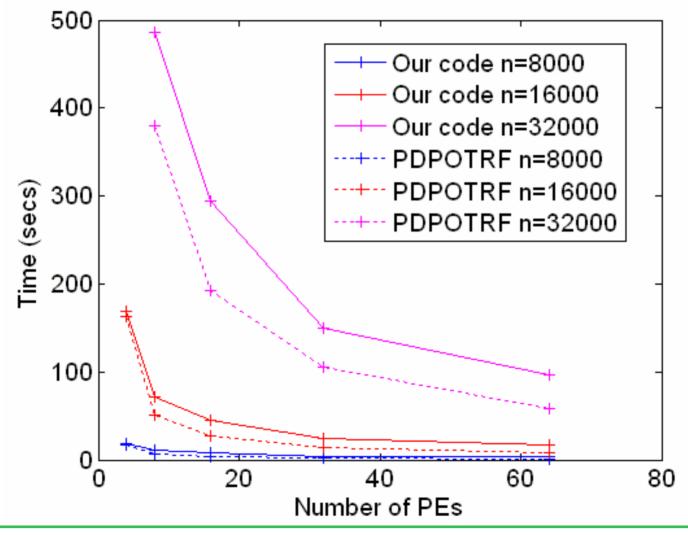
- We compare our code with the ScaLAPACK routine PDPOTRF, in ACML, which computes the factorization for positive definite matrix. This code is optimized.
- This is done so we can see the pivoting overhead in our algorithm. Which is the point of this talk!
- We do not look at the numerical behaviour and rank detection.
- Tuning parameters looked at empirically.

Timings

- Here we time the code for different problem sizes
 - n = 8000, 16000, 32000
- Different block sizes
 - NB = 16, 32, 64, 128, 256
- Different process grids
 - 2x2, 2x4, 4x2, 2x8, 4x4, 8x2, 4x8, 8x4, 4x16, 8x8, 16x4, 8x8, 16x4
 - 64 PEs XD1 only
- In each case we give the best time to compute the factorization.

Timings

Timings on the XD1



Combining the strengths of UMIST and The Victoria University of Manchester

May 2006, Lugano

CUG 2006

Pivoting Overhead

Difference between pivoted and non-pivoted codes as a percentage non-pivoted compute time.

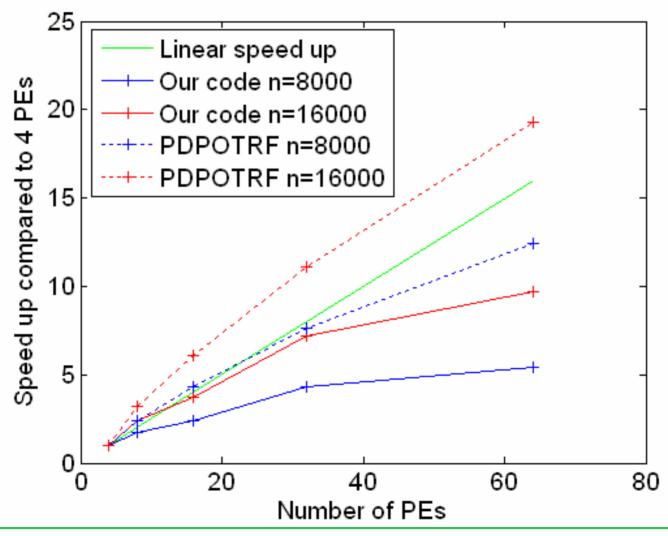
n PE 4	8	16	32	64
--------	---	----	----	----

8000 11.2 54.8 96.8 95.6 155.1	8000	11.2	54.8	96.8	95.6	155.1
--------------------------------	------	------	------	------	------	-------

16000	3.9	40.6	70.5	60.35	106.4
-------	-----	------	------	-------	-------

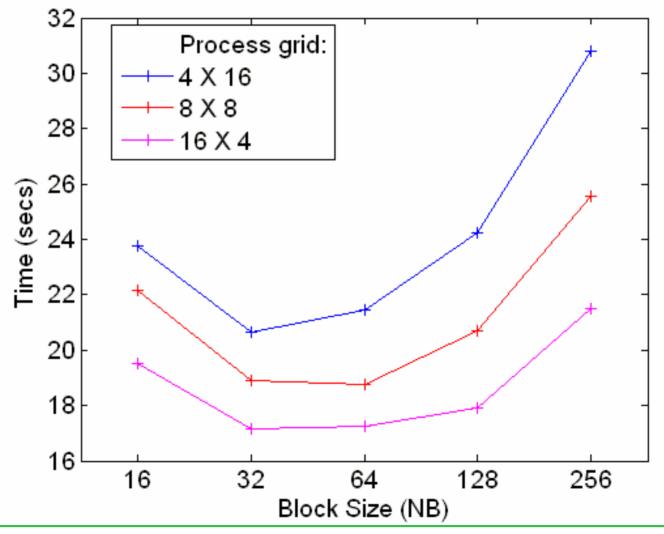
32000	27.8	52.8	42.1	63.8	
-------	------	------	------	------	--

Scaling on the XD1



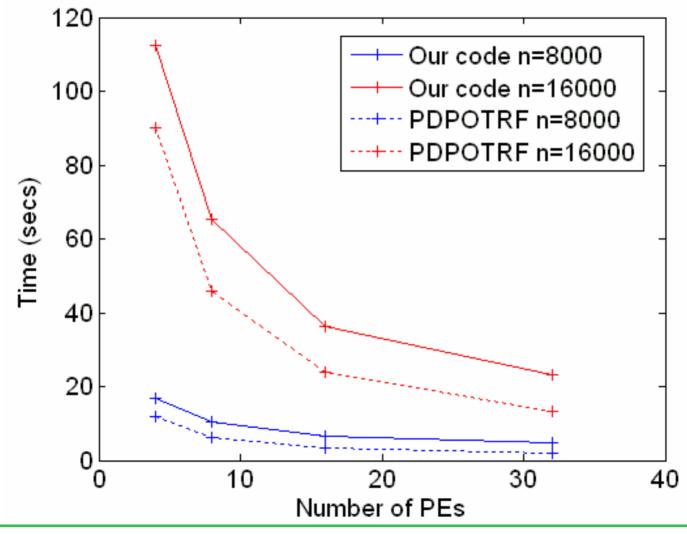
Combining the strengths of UMIST and The Victoria University of Manchester

Block Sizes and Process Grids, n=16000



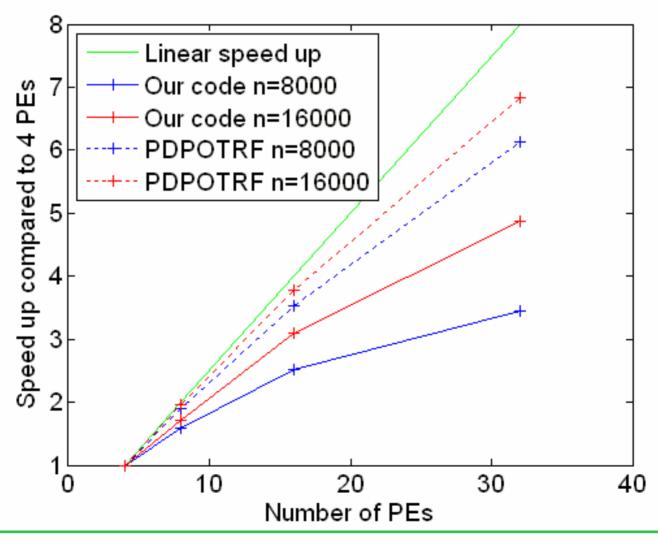
Combining the strengths of UMIST and The Victoria University of Manchester

Timings on the XT3



Combining the strengths of UMIST and The Victoria University of Manchester

Scaling on the XT3



Combining the strengths of UMIST and The Victoria University of Manchester

Conclusions

- Wasn't sure we could get anything practical at all!
- Scaling is OK, for the problem sizes we ran, up to 32 processors.
- Pivoting overhead decreases with problem size...
- ... but increases with the number of processes. Pivoted code can take 2.5 times longer.

And finally...

Combining the strengths of UMIST and The Victoria University of Manchester

Further Work

- Work in process, code probably needs "optimization"
- Larger problems on more processors.
- Better communication pattern?
- One sided communication?
- Packed Storage?

And thanks to

- Aston for the XD1, particularly Andrey Kaliazin
- CSCS for the XT3, particularly Marie-Christine Sawley and Neil Stringfellow
- Kevin Roy at Manchester for running codes

- References
- [1] L. S. Blackford et al. *ScaLAPACK user's guide*. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.
- [2] J. Choi et al. A proposal for a set of parallel basic linear algebra subprograms. LAPACK Working Note 100, May 1995.
- [3] J. Dongarra et al. A user's guide to the BLACS v1.1. LAPACK Working Note~94, May 1997.
- [4] Craig Lucas. LAPack-style codes for level 2 and 3 pivoted Cholesky factorizations. LAPACK Working Note 161, February 2004.
- LAPACK Working Notes: www.netlib.org/lapack/lawns/downloads

Manchester Computing

Combining the strengths of UMIST and The Victoria University of Manchester