
Combining the strengths of UMIST and
The Victoria University of Manchester

Symmetric Pivoting in Symmetric Pivoting in
ScaLAPACKScaLAPACK
Craig Lucas
University of Manchester

Cray User Group
8 May 2006, Lugano

Combining the strengths of UMIST and
The Victoria University of Manchester

IntroductionIntroduction

May 2006, Lugano CUG 2006 3Combining the strengths of UMIST and
The Victoria University of Manchester

Introduction

We wanted to parallelize a serial algorithm for the pivoted
Cholesky factorization for ScaLAPACK [1] (Scalable Linear
Algebra PACKage) , based on existing serial code [4].

The matrix to be factored is symmetric and requires
symmetric (or complete) pivoting. At each stage of the
algorithm two rows and two columns are swapped

We will look at how well this performs on Cray systems, in
particular an XD1 and XT3

The code uses existing ScaLAPACK and PBLAS [2] (Parallel
Basic Linear Algebra Subprograms) routines.

May 2006, Lugano CUG 2006 4Combining the strengths of UMIST and
The Victoria University of Manchester

Form of a Cholesky Factorization

If A is symmetric positive definite then

If A is positive semidefinite, of rank r, then

where P is a permutation matrix and L is unique, with
positive diagonal elements, in the form

A = LLT

PTAP = LLT

rrL
L
L

A ×⎥
⎦

⎤
⎢
⎣

⎡
= is 11

12

11 ,
0
0

May 2006, Lugano CUG 2006 5Combining the strengths of UMIST and
The Victoria University of Manchester

ScaLAPACK

0 1 2 3

0 1 2 3

4 5 6 7

0

1

2 by 4 process grid

Process of rank 4 is at
coordinate (1,0)

Nothing uses symmetric pivoting in ScaLAPACK at present.

ScaLAPACK uses block cyclic data distribution according to
the BLACS [3] (Basic Linear Algebra Communication
Subroutines) process grid:

Process grid is enclosed in a context, like an MPI
communicator

May 2006, Lugano CUG 2006 6Combining the strengths of UMIST and
The Victoria University of Manchester

Block Cyclic Distribution

Data is distributed in a Block Cyclic manner,
according to the BLACS process grid and blocks of
MB by NB

0 1 2 3

4 5 6 7

n

0 1 2 3

0

1

m

A11 A15

A31 A35

A51 A55

A71 A75 MB
Process at (0,0) stores
(4 X MB) X (2 X NB) of
the global array.

Storage is Fortran
column major order. NB

Combining the strengths of UMIST and
The Victoria University of Manchester

AlgorithmAlgorithm

May 2006, Lugano CUG 2006 8Combining the strengths of UMIST and
The Victoria University of Manchester

Blocked Algorithm

Our algorithm is blocked, that is we perform operations on
blocks instead of individual elements.

This ensures effective use of memory hierarchy, via BLAS.
Serial code up to 8 times faster [4].

Blocked algorithms fit into the data distribution of
ScaLAPACK.

a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27

a31 a32 a33 a34 a35 a36 a37

a41 a42 a43 a44 a45 a46 a47

a51 a52 a53 a54 a55 a56 a57

a61 a62 a63 a64 a65 a66 a67

a71 a72 a73 a74 a75 a76 a77

A11 A12 A13

A21 A22 A23

A31 A32 A33

NB

May 2006, Lugano CUG 2006 9Combining the strengths of UMIST and
The Victoria University of Manchester

Algorithm

For L=A, current block column: NB steps:

Update

L11

NB

j

j

T

jj

T

jjjj

T
jjjj

LLLL

lyy

Zxyy

ll

xxll

32323333

/

−=

=

−=

=

−=

L33L32

x

yZ

ljj

May 2006, Lugano CUG 2006 10Combining the strengths of UMIST and
The Victoria University of Manchester

Algorithm - Pivoting

At the jth step: •L11 has been factored

•Current column:

•Find the largest possible
diagonal element, the pivot,
in the qth position, say

•Swap jth row and column
with qth row and column

•Exit if pivot is “zero”

•Compute jth column

•Update trailing matrix

j q

j

q

L11

NB

T
iiiinji

xxl −
= :

max

xi lii

May 2006, Lugano CUG 2006 11Combining the strengths of UMIST and
The Victoria University of Manchester

Algorithm and Block Cyclic Data

We need to compute the
pivot, but the xi are
distributed down the
process column and
diagonal elements are
distributed over all rows and
columns.

Swapping of rows and
columns now must be done
down each process row and
along each process column.

Communication can involve
all processes.

j q

j

q

May 2006, Lugano CUG 2006 12Combining the strengths of UMIST and
The Victoria University of Manchester

Parallel Algorithm Details

At the start of each block column we
send the diagonal elements of
trailing matrix(L33) to a vector
distributed over the current process
column.

The send is done block by block as
there is no global routine for diagonal
elements. We cheat by giving the
leading diemnsion of local array +1 to
pick out diagonal elements.

Getting all the diagonal elements
each time would be very costly.

The processes in the current column
can do its contribution of lii – xiixii

T

without any communication.

xiliilii – xiixii
T

May 2006, Lugano CUG 2006 13Combining the strengths of UMIST and
The Victoria University of Manchester

Parallel Algorithm Details

The maximum value is computed with a combine operation
down the process column, existing PDAMAX routine in
PBLAS.

We need to now broadcast the pivot position, q, along the
process rows. We can now call global swap operations.

We also need to swap our local copies of diagonal elements
etc.

We are now able to compute the current column, and
continue until the end of the current block column.

Combining the strengths of UMIST and
The Victoria University of Manchester

ExperimentsExperiments

May 2006, Lugano CUG 2006 15Combining the strengths of UMIST and
The Victoria University of Manchester

Test Machines

Cray XD1

– Aston University

– Cray XD1 2.4 GHz Opteron processors with 2GB memory per
processor and two processors per node.

Cray XT3

– CSCS

– Cray XT3 2.6 GHz Opteron processors with 2GB memory per
processor.

May 2006, Lugano CUG 2006 16Combining the strengths of UMIST and
The Victoria University of Manchester

Timings

We compare our code with the ScaLAPACK routine
PDPOTRF, in ACML, which computes the factorization for
positive definite matrix. This code is optimized.

This is done so we can see the pivoting overhead in our
algorithm. Which is the point of this talk!

We do not look at the numerical behaviour and rank
detection.

Tuning parameters looked at empirically.

May 2006, Lugano CUG 2006 17Combining the strengths of UMIST and
The Victoria University of Manchester

Timings

Here we time the code for different problem sizes

– n = 8000, 16000, 32000

Different block sizes

– NB = 16, 32, 64, 128, 256

Different process grids

– 2x2, 2x4, 4x2, 2x8, 4x4, 8x2, 4x8, 8x4, 4x16, 8x8, 16x4, 8x8, 16x4

– 64 PEs XD1 only

In each case we give the best time to compute the
factorization.

May 2006, Lugano CUG 2006 18Combining the strengths of UMIST and
The Victoria University of Manchester

Timings on the XD1

May 2006, Lugano CUG 2006 19Combining the strengths of UMIST and
The Victoria University of Manchester

Pivoting Overhead

n PE 4 8 16 32 64

8000 11.2 54.8 96.8 95.6 155.1

16000 3.9 40.6 70.5 60.35 106.4

32000 27.8 52.8 42.1 63.8

Difference between pivoted and non-pivoted codes as a
percentage non-pivoted compute time.

May 2006, Lugano CUG 2006 20Combining the strengths of UMIST and
The Victoria University of Manchester

Scaling on the XD1

May 2006, Lugano CUG 2006 21Combining the strengths of UMIST and
The Victoria University of Manchester

Block Sizes and Process Grids, n=16000

May 2006, Lugano CUG 2006 22Combining the strengths of UMIST and
The Victoria University of Manchester

Timings on the XT3

May 2006, Lugano CUG 2006 23Combining the strengths of UMIST and
The Victoria University of Manchester

Scaling on the XT3

May 2006, Lugano CUG 2006 24Combining the strengths of UMIST and
The Victoria University of Manchester

Conclusions

Wasn’t sure we could get anything practical at all!

Scaling is OK, for the problem sizes we ran, up to 32
processors.

Pivoting overhead decreases with problem size...

… but increases with the number of processes. Pivoted code
can take 2.5 times longer.

Combining the strengths of UMIST and
The Victoria University of Manchester

And finallyAnd finally……

May 2006, Lugano CUG 2006 26Combining the strengths of UMIST and
The Victoria University of Manchester

Further Work

Work in process, code probably needs “optimization”

Larger problems on more processors.

Better communication pattern?

One sided communication?

Packed Storage?

May 2006, Lugano CUG 2006 27Combining the strengths of UMIST and
The Victoria University of Manchester

And thanks to …..

Aston for the XD1, particularly Andrey Kaliazin

CSCS for the XT3, particularly Marie-Christine Sawley and
Neil Stringfellow

Kevin Roy at Manchester for running codes

May 2006, Lugano CUG 2006 28Combining the strengths of UMIST and
The Victoria University of Manchester

References

[1] L. S. Blackford et al. ScaLAPACK user's guide. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997.

[2] J. Choi et al. A proposal for a set of parallel basic linear algebra
subprograms. LAPACK Working Note 100, May 1995.

[3] J. Dongarra et al. A user's guide to the BLACS v1.1. LAPACK Working
Note~94, May 1997.

[4] Craig Lucas. LAPack-style codes for level 2 and 3 pivoted Cholesky
factorizations. LAPACK Working Note 161, February 2004.

LAPACK Working Notes: www.netlib.org/lapack/lawns/downloads

Combining the strengths of UMIST and
The Victoria University of Manchester

Manchester ComputingManchester Computing

	Symmetric Pivoting in ScaLAPACK
	Introduction
	Introduction
	Form of a Cholesky Factorization
	ScaLAPACK
	Block Cyclic Distribution
	Algorithm
	Blocked Algorithm
	Algorithm
	Algorithm - Pivoting
	Algorithm and Block Cyclic Data
	Parallel Algorithm Details
	Parallel Algorithm Details
	Experiments
	Test Machines
	Timings
	Timings
	Timings on the XD1
	Pivoting Overhead
	Scaling on the XD1
	Block Sizes and Process Grids, n=16000
	Timings on the XT3
	Scaling on the XT3
	Conclusions
	And finally…
	Further Work
	And thanks to …..
	References

