
 1

Alef™ Verification and Planning System
Samuel B. Luckenbill, James R. Ezick, Donald D. Nguyen,

Peter Szilagyi, Richard A. Lethin
Reservoir Labs, Inc.

ABSTRACT: Recently, solvers for the Satisfiability problem (SAT) have become an enabling technology
for diverse areas of military and commercial interest. However, solver performance, in terms of speed,
maximum problem size, and efficiency, is a limiting factor to the more extensive application of this
technology. This paper discusses Reservoir’s SAT-based planning and verification system, Alef, which
includes a compiler, intermediate language, and parallel solver for HPC hardware.

KEYWORDS: Alef, SAT, Satisfiability, Planning, Software Verification, Bounded Model Checking, Salt,
R-Stream, Cray XD1

1 Introduction

Solvers for the Satisfiability problem (SAT) are an enabling
technology for a diverse set of applications including
planning, mathematics, hardware verification, and software
verification. However, solver performance in terms of speed
and maximum problem size limits more extensive application
of the technology. We are developing a planning and
verification system, Alef, which includes a compiler,
intermediate language and tool, and a SAT solver for HPC
hardware.

The Alef front-end compiler translates software verification
problems into logical constraints. It is built on the Reservoir
R-Stream™ High-Level Compiler, created for DARPA’s
Polymorphous Computing Architectures (PCA) project [1]. R-
Stream is a C compiler, which includes an EDG front end and
multiple internal representations including Static Single
Assignment (SSA) [2].

To bridge the gap between front-end compilers and our SAT
solver, we have developed the Satisfiability Application Logic
Translator (Salt) intermediate language and tool. Salt is a
macro language, similar in design to an assembly language,
which provides a natural system for encoding SAT problems.
Salt constraints can be translated in a single pass into
Conjunctive Normal Form (CNF), preserving some high-level
problem structure. Salt is applicable to multiple problem
domains and provides intuitive operators for the expression of
common naturally occurring constraints.

The Alef parallel SAT solver utilizes algorithms and heuristics
that improve its performance over existing approaches. With
assistance from Cray, Inc., we are developing the solver to run
well on the Cray XD1 [3]. Our analysis shows that our
algorithms combined with the low message latency of the
XD1 is likely to produce a significant performance
improvement over existing solvers in terms of speed and
maximum problem size. In this paper, we discuss these
algorithms and present our performance projections.

In Section 2, we provide motivation for the Alef system by
discussing applications and social and economic need for
faster SAT solvers. In Section 3, we provide some background
on existing sequential and parallel SAT solvers and briefly
discuss the limitations of each approach. In Section 4, we
introduce the Alef parallel SAT solver and discuss its parallel
algorithms. Section 5 introduces the Salt intermediate
language and tool, Section 6 discusses the R-Stream based
verification front end, and Section 7 covers the current status
of the project.

2 Applications

The primary application domains for the Alef system are
formal verification of software and automated planning. The
increase in complexity of software and hardware systems is
placing a greater burden on verification engineers. This trend
is creating a demand for automated verification software.
Additionally, designers want to verify larger sections of
designs to ensure compatibility between modules and improve
product quality. In the hardware verification domain,
engineers are using a new class of Electronic Design
Automation (EDA) tools that reduce the formal verification of
complex designs to SAT problems and solve them with
general-purpose SAT solvers [4]. Currently, verification costs,
including empirical methods, consume in excess of 70% of the
engineering effort for new hardware designs [5][6][7]. This
cost is expected to grow, and verification methods are
expected to shift from empirical to formal, requiring better
SAT solver technology [8].

In the software domain, a major concern is the cost of
undetected bugs, discovered after deployment. With the
increasingly pervasive and deep embedding of computing in
consumer and military devices, correctness has become a
matter of public safety and national security. Expensive
examples of deployed bugs include security flaws in the
Windows operating system and cell phone recalls due to Java
Virtual Machine bugs. In 2002, the National Institute of
Standards and Technology estimated the cost of undetected
bugs in software at $60 billion US dollars annually [9]. To

 2

counter this cost, automated software verification tools are
emerging, but the relative complexity of software limits its
practicality.

Automated planning is a critical military technology with a
direct positive impact on strategic and tactical success,
mission safety, and mission cost. For example, when the
Department of Defense used automated planning software to
optimize the shipment of supplies and equipment during
Operation Desert Storm, the savings from using computer-
optimized schedules were greater than the total funding for
artificial intelligence research since the 1940s [10][11]. The
importance of SAT solvers for planning is illustrated by
SATPLAN, the winner of the 2004 Optimal Planning
Competition [12]. SATPLAN reduces planning problems
specified in the Planning Domain Definition Language
(PDDL) to SAT, and solves them with a general-purpose SAT
solver [13].

3 Related Work

Over the past decade, a substantial amount of work has been
done to accelerate SAT solvers. While the majority of this
work focused on accelerating sequential solvers that run on
single-processor workstations, some more recent work focuses
on building hardware and software to take advantage of fine-
grained and coarse-grained parallelism. In addition to the
parallel algorithms presented in Section 4, the Alef parallel
SAT solver includes standard heuristics from modern
sequential solvers.

3.1 Sequential SAT Solvers

Most modern SAT solvers are based on the Davis-Putnam-
Loveland-Logemann (DPLL) algorithm, an improved version
of the original Davis-Putnam algorithm [14][15][16]. The
DPLL algorithm begins with all variables in the SAT instance
unassigned. It chooses a variable and assigns it either 0 or 1.
After each decision, the algorithm performs Boolean
Constraint Propagation (BCP). BCP is the iterative process of
discovering variables that are implied to be 0 or 1 based on the
current partial assignment.

Consider BCP over the following Conjunctive Normal Form
(CNF) SAT instance with three clauses:

)()()(cbcbabaF ¬∧¬∧∧¬∧¬∧∧¬= . To satisfy a
Boolean formula expressed in CNF, we must satisfy every
clause in the formula (every clause must evaluate to 1). In
order to satisfy each clause, at least one literal in the clause
must be satisfied. If we assign a = 1, the first clause,

)(ba ∧¬ , implies that b = 1. If a = 1 and b = 1, then the
second clause implies that c = 1. However, if b = 1, the third
clause implies that c = 0, which is called a conflict.

In the DPLL algorithm, conflicts discovered during BCP are
resolved by backtracking through the current decision and

complementing its assignment. If the new assignment also
leads to a conflict, the decision variable is unassigned and the
previous decision is complemented. This continues until the
solver finds a decision that does not lead to a conflict. If there
are no previous decisions to complement, the SAT instance is
unsatisfiable, and the algorithm terminates. Otherwise, the
algorithm continues by choosing another unassigned variable
and assigning it a value. If no unassigned variables remain, the
algorithm has discovered a satisfying assignment to the
variables and terminates. This algorithm is outlined in Figure
1.

while (true) {
 if (decide() == SAT) {
 return SAT;
 } else if (propagate() == CONFLICT) {
 if (resolve() == FAIL) {
 return UNSAT;
 }
 }
}

Figure 1: DPLL Algorithm

As with all NP-Complete problems, in the worst case, for a
problem with n variables, the solver must search 2n possible
assignments. However, modern solvers such as zChaff and
BerkMin can solve some real-world problem instances with
more than a million variables [14][15][17]. This is possible
because of heuristics that frequently allow the solvers to
explicitly search less of the search space while still ensuring
that the entire space is covered. One heuristic determines the
order that the solver chooses unassigned variables and the
values to assign them. zChaff and BerkMin, two industry-
standard sequential SAT solvers, employ variants of the
Variable State Independent Decaying Sum (VSIDS) heuristic.
VSIDS tries to choose variables that are most local to the
current path of the search. As a result, the solver tends to
discover conflicts in the partial assignment earlier and move
through unsatisfiable search space faster.

Watch lists, introduced in SATO [18] and later refined by the
authors of zChaff, are a common implementation optimization
to BCP for clausal SAT solvers. Watch lists allow these
solvers to examine only the clauses where a conflict or
implication is likely to occur. This optimization is critical
because modern SAT solvers spend most of their runtime
performing BCP.

Conflict-driven learning is a heuristic that occurs during
conflict resolution. Normally, only a subset of the assignments
to the variables lead to a conflict. By isolating that subset, the
solver can prune unsatisfiable areas of the search space. Non-
chronological backtracking is tightly coupled with learning.
Rather than complementing the assignment to the most recent
decision, the solver backtracks through enough decisions to
completely resolve the conflict. The learned information

 3

prevents the solver from re-entering the same unsatisfiable
region of the search space later.

Finally, SAT solvers often use restarts to avoid becoming
trapped in local minima. Because each decision in the search
of a binary tree cuts the remaining search space in half, the
first few decisions, when the search space is the largest, are
the most important. However, the solver makes these
decisions when it has learned the least amount of information
about the problem. To diminish this effect, the solver may
occasionally restart the search but retain the information it has
learned. This gives it a chance to re-make the first few
decisions with more knowledge of the search space.

3.2 Parallel SAT Solvers

PaSAT [19][20] and the parallel implementation of zChaff
[21] are parallel SAT solvers designed to run on clusters. Both
replicate the original problem instance on every node of the
cluster and divide the search space among the nodes. The
software that runs at each node is a complete SAT solver,
responsible for only a subset of the variables. Each node
makes decisions, performs BCP, learns, backtracks, and
eventually detects that its piece of the search space is or is not
satisfiable. If the search space is satisfiable, all nodes
terminate and the satisfying result is reported to the user.
Detecting an unsatisfiable result is more complex because the
solver must show that all parts of the search space are
unsatisfiable. To handle this, one processor is elected the
master processor.

Because large pieces of the search space are generally
unsatisfiable, these solvers incorporate load balancing
strategies to keep nodes active. Additionally, they share
learned information between nodes to encourage them to work
synergistically. These solvers typically see speedups ranging
from 1x to 20x over sequential solvers, depending on problem
instance.

Inconsistent speedup is a major limitation of these parallel
solvers. Even on a large cluster, these solvers are not always
faster than a sequential solver running on a single workstation.
This inconsistency arises because large pieces of the search
space are often unsatisfiable and heuristics help solvers avoid
traversing unsatisfiable search space. While the amount of
space these parallel solvers can search increases linearly with
added nodes, often the additional work is non-productive.

As an alternative to exploiting parallelism between multiple
searches, Ying Zhao, a former graduate student at Princeton,
designed an application-specific processor to take advantage
of the fine-grained parallelism within a single search [22]. The
Zhao architecture is a torus of Tensilica cores with distributed
blocks of embedded DRAM, resembling the MIT RAW PCA
architecture [23]. Each Tensilica core implements custom
operators for BCP, while special routers move messages

between cores. Each core acts as a BCP engine for a subset of
the clauses, while a master core runs a sequential search over
the entire search space. The extremely low on-chip message
latency allows for the random distribution of clauses between
blocks of memory without significant communication
overhead during BCP. Decision making and backtracking are
also parallelized. In simulations, Zhao showed speed-ups
between 20x and 60x, with larger speed-ups obtained from
larger problems with more available parallelism.

In all of the solvers discussed so far, the maximum size of the
problem, in terms of number of clauses, is limited. While
PaSAT and parallel zChaff use multiple nodes in a cluster,
they must keep a complete copy of the problem instance and
supporting solver state at each node. The Zhao special purpose
architecture is limited to problems that fit in embedded
DRAM on a chip, which is very small compared to the RAM
in a workstation.

To the best of our knowledge, only one solver, part of the
DiVer Bounded Model Checking (BMC) system from NEC
labs, is able to use the additional memory available in parallel
machines to solve problems larger than the memory of a single
node [24]. DiVer’s parallel solver runs a similar algorithm to
the Zhao solver, where each node of a cluster is analogous to a
BCP engine in the Zhao architecture. The DiVer system uses a
natural linear decomposition generated from a BMC problem
to distribute clauses across the nodes of the cluster. Each time
step of the BMC problem is dependent only on the previous
time step, such that the decomposition forms a linear chain
where variables are shared only between adjacent time steps.
When the clauses are distributed among cluster nodes, BCP
requires only nearest-neighbor communication.

Using this approach on a network of workstations connected
with Gigabit Ethernet, the authors found a performance
penalty between 0.7 and 3.6. Performance penalty was
measured in terms of parallel speed / sequential speed, so
penalties less than 1 represent an increase in performance over
a sequential solver. In their study, larger performance
penalties were often related to small problem size, where less
parallelism is available.

4 Alef Parallel Satisfiability Solver

Alef’s parallel SAT algorithm is broken into the three threads:
master, worker, and search. Each thread runs an autonomous
message-driven algorithm. An instance of the Alef parallel
SAT solver running on n nodes will contain one master thread,
n worker threads and m search threads, where m is an integer
greater than zero.

The master thread is in charge of performing preprocessing to
establish the initial state of the search, distributing work to the
search threads, coordinating load balancing, detecting the case
when the problem is unsatisfiable, and shutting down the

 4

solver when it is complete. Search threads are in charge of
making decisions, coordinating BCP and conflict resolution,
and ultimately finding a satisfying result to the problem.
Worker threads perform BCP on behalf of the search and
master threads, and optionally perform distributed conflict
resolution. Figure 2 illustrates a possible distribution of these
threads over the nodes of a Cray XD1.

Figure 2: Example Distribution of Threads for Alef Parallel
SAT Solver on HPC Hardware

4.1 Communication Library

To ensure portability and to support the message-driven model
of the Alef solver, we have implemented a communication
library that hides the native communication interface from the
application. Because the communication latency for MPI on
the Cray XD1 is exceptionally low, the library is currently
implemented using MPI. The library provides one-sided send,
request, respond, and receive functionality. It also supports
reclamation of storage from outgoing messages, pooling of
MPI handles, a priority queue for each application-level
thread, invalidation of responses to stale requests, and
termination detection.

One-sided communication is critical to the performance of our
application because its behavior is data-dependent. For
example, during BCP, messages are sent from the search
thread to various worker threads depending on the distribution
of variables between nodes. Messages are then forwarded
between worker threads as additional implications are
discovered. To support this behavior efficiently, each thread
must be able to send a message and continue on with other
work. On the receiving side, a thread must be able to receive a
message when it becomes idle. While MPI supports non-
blocking sends and receives, it is a two-sided communication
protocol and there is no consideration for memory
management of pending sends. For each send, the recipient
must actively receive the message before the sender can free
the message state and MPI handle. Our library provides pools
of memory-managed handles for sending messages and

maintains queues of incoming messages, making the details of
the communication protocol transparent to the application.

The API additionally defines two other functions, request and
respond. These functions enable a thread to send a single
request that may provoke multiple responses. The thread may,
at any time, query the communication library to determine if
all responses to a request have been received. Because the
algorithm is message driven, a completed request indicates
that all work from that request has terminated. We call this
feature termination detection, and its application to distributed
BCP is described in Section 4.2. Finally, because the
communication library keeps track of requests with pending
responses, it is possible to invalidate responses to a stale
request. As stale responses arrive, they are not queued and the
application does not receive them.

4.2 Distributed Boolean Constraint Propagation

DPLL-based SAT solvers spend upwards of 80% of their time
performing BCP [14]. In a modern sequential SAT solver,
BCP is performed after each decision is made. The solver
starts by fetching clauses in the watch list for the variable that
was assigned. These are the clauses that could result in an
implication or a conflict. Because BCP is iterative, each
decision may lead to multiple implications, which may lead to
more implications, and so on.

Similar to the DiVer solver, Alef’s BCP algorithm is
distributed and utilizes multiple BCP engines in parallel. Each
engine, which we call a worker thread, owns a partition of the
clauses from the SAT instance and is responsible for
performing BCP on only those clauses. Unlike DiVer, Alef
has multiple search threads, so worker threads must maintain
the state necessary to perform BCP for each search thread.
This state includes watch lists, assignments to variables, and
partial assignment stacks. The overhead of this state is not
excessive; each small watch list is approximately 1/nth the
size of a full watch list, where n is the number of search
threads. If a worker thread is able to do BCP for all n search
threads, the total storage requirement is equivalent to one full
watch list.

In Figure 3, we have distributed the clauses from our
sequential BCP example in Section 3.1 between two worker
threads. Worker 1 owns clauses)(ba ∧¬ and),(cba ∧¬∧¬
and Worker 2 owns the clause).(cb ¬∧¬ Distributed BCP
begins when the search thread sets a = 1, then sends a BCP
request message to the worker threads that contain the variable
a. Because only Worker 1 contains the variable a, it sends
only one message. Worker 1 responds by performing BCP on
the two clauses in its clause database, which lead to the
implications b = 1 and c = 1. Rather than sending the new
implications back to the search thread, Worker 1 checks to see
if any other worker threads have variables b or c in their
clause partitions. Because Worker 2 has both b and c, the

 5

message with the entire chain of implications is forwarded to
Worker 2. When Worker 2 sets b = 1, its clause implies that c
= 0, which conflicts with the implication c = 1 from Worker 1.
Upon discovery of the conflict, BCP halts and the conflict is
sent back to the search thread.

Worker 1

Worker 2

Search
Thread

Assignment:
a = 1

Implication:
a = 1
b = 1
c = 1

Conflict:
a = 1
b = 1

c = 1, 0

Original BCP Request
Forwarded BCP Request

BCP Results

)(ba∧¬
)(cba ∧¬∧¬

)(cb ¬∧¬

Figure 3: Distributed Boolean Constraint Propagation

Implication forwarding makes it difficult for the search thread
to determine when BCP has terminated. For one request sent,
the search thread may receive multiple responses. In Alef, we
handle termination detection by assigning each message a
fractional value of the total response. As responses to a BCP
request are received, the fractional values are summed. When
the sum reaches 1, the search thread knows that all responses
to its BCP request have been received.

In Figure 4, a search thread issues a BCP request to a single
node. The message starts with a fractional value of (1/1),
indicating that it represents the entire request. The implied
variable(s) discovered by Worker 1 exist in the partitions of
both Worker 2 and Worker 3. Before forwarding the
implications to Worker 2 and Worker 3, the fractional value is
divided by 2, such that each forwarded message has a value of
½. Similarly, Worker 2 discovers another implied variable
contained in the partition of two other worker threads. The
fraction is split to ¼, and the implications are forwarded back
to Worker 1 and on to Worker 4. When Worker 3 receives the
forwarded message from Worker 1, the implied variable(s) it
discovers only exist in the partition of Worker 2. The fraction
is not split and the message is forwarded on. When each chain
of BCP terminates, the entire list of implications is sent back
to the search thread. The fractional values are summed after
each message arrives, and the thread continues with its search
after the values sum to 1. Fractional termination detection is
handled entirely within the communication library.

Figure 4: Message Forwarding and Termination Detection

4.3 Conflict Resolution

One of the most important heuristics in modern SAT solvers is
their ability to learn. The sequential implementation of
conflict resolution in zChaff assumes that clauses are stored
locally along with a complete assignment stack [14]. The
assignment stack is a data structure that records the order in
which decisions are made and implications are discovered,
and the clause that resulted in each implication. Like the
DiVer parallel solver, Alef currently implements a sequential
conflict resolution algorithm at each search thread.

Though DiVer’s solver is parallel with distributed data, it
implements a sequential conflict resolution algorithm. This
requires copying clauses from the nodes where they are stored
to the master processor in charge of the search. Additionally,
the master processor must construct an assignment stack from
implications that are discovered in parallel at worker nodes. In
the DiVer solver, as BCP engines discover implications, both
the implications and the clauses that resulted in implications
are returned to the master thread along with enough ordering
information to construct the assignment stack.

Alef has a more complex BCP algorithm than DiVer’s solver,
making construction of a global assignment stack more
difficult. Rather than sending implications back to the search
thread as they are discovered, they are forwarded to other
nodes until the chain of BCP terminates. As a result, messages
received in response to a single decision may contain
duplicate implications. Additionally, we do not assume that
any channels deliver messages in order, allowing us to use
lower-level communication libraries such as active messages.

To build the assignment stack, we must construct a topological
sort of the implications such that no implication discovered as
a result of another implication appears before it in the stack. In

 6

addition to the assignment stack, Alef needs some method to
fetch the clauses necessary for conflict resolution. The current
implementation requests clauses one-by-one, as they are
needed. This has the benefit of requiring no significant amount
of extra storage on the search thread’s node. However, we
plan to experiment with aggressive forwarding schemes
similar to the DiVer approach for better performance.

While the sequential conflict resolution algorithm is sufficient
for correctness, it does not take advantage of the distributed
data or parallel hardware available in the Alef system. To
address this, we have developed a distributed conflict
resolution algorithm. This algorithm does not copy clauses to
the search thread, nor does it construct a global assignment
stack. While a complete description of the algorithm is beyond
the scope of this paper, it is similar to a distributed min-cut
max-flow algorithm [25].

4.4 Alef and FPGAs

The Cray XD1 features Field-Programmable Gate Arrays
(FPGAs) connected to Opteron processors through
Hypertransport [3]. We have developed several ideas for the
use of FPGAs in conjunction with a general-purpose processor
for our SAT solver, though limitations in the software and
hardware that support FPGAs prohibit us from implementing
these ideas in the immediate future.

One promising idea is the fast evaluation of unrolled circuits
for hardware BMC. In hardware BMC, we want to verify that
a circuit conforms to a specification, for example, that an error
signal is always 0. Because proving that the error signal will
always be zero is undecidable, we bound the problem to k time
steps from some initial state. In a typical SAT-based BMC
tool, the circuit is unrolled k times and translated to CNF. The
tool then adds clauses to assert that the error signal is always
1. The entire problem instance is passed to a SAT solver,
which tries to find a satisfying assignment. If the solver is able
to find a satisfying assignment, it has found a case where an
error could occur. An unsatisfiable result from the solver
proves that there can be no error within k time steps from the
initial state.

One area where FPGAs excel and general-purpose processors
are weak is in the propagation of values through Boolean
circuits. In a general-purpose processor, we have to build
software models of the behavior of each gate and a data
structure that represents the connections between the gates. To
propagate a signal through this “circuit,” we traverse the data
structure of connections evaluating the appropriate gate
models along the way. This can be made quite fast by
compiling the circuit rather than interpreting it, as is done in
high-end Verilog simulators. However, it is still significantly
slower than a FPGA where the models of gates are replaced
by actual gates and propagation is massively parallel.

We suggest that each unrolling of the circuit could be
compiled to a FPGA for fast propagation. Each unrolling is a
copy of the circuit with the outputs from the previous copy
connected to the inputs of the next. To use a FPGA, we would
only have to synthesize one copy, then place and route it once
for each time step. The general-purpose processor running the
SAT solver could request that an attached FPGA propagate
signals through the circuit and return the result of the
propagation. However, in order to allow for propagation of
partial signals, the circuit would have to be translated into
ternary logic (X/0/1) before compilation to the FPGA. This
translation would be inexpensive, but require about twice as
many gates on the FPGA. Additionally, SAT solvers
propagate signals backwards through circuits starting at
arbitrary points. For this, we would need a new circuit for
each input to the original circuit. While building these circuits
would not be particularly computationally expensive, they
require significant real estate on the FPGA.

In addition to the requirement for ternary logic and reverse
propagation, the time it takes to do the place and route and the
latency between the general-purpose processor and the FPGA
represent significant obstacles. For a tightly packed large
Xilinx FPGA, place and route can take multiple hours.
Because we must count this overhead in the total runtime of
our solver, the costs could easily outweigh the benefits of
using a FPGA, especially for smaller problems.

On the XD1, the latency for a round trip message from the
Opteron to the FPGA is approximately 0.66µs, which is 3000
clock cycles on a 4GHz general-purpose processor. In addition
to the 3000-cycle overhead, the FPGA still has to do the
propagation. Because of the overhead, it may have been faster
to do the propagation directly on the Opteron. While we
cannot perform a cost-benefit analysis for using the FPGA
without significant additional effort, the incremental overhead
for its use due to chip-to-chip latency in addition to the up-
front overhead due to place and route appear excessive.

In the future, we believe that compilation of the entire DPLL-
based SAT solver to the FPGA may be a promising path. SAT
solvers are relatively simple, consisting of a state machine,
propagation engines, and heuristics for making decisions and
resolving conflicts. Despite their algorithmic simplicity, their
implementation often requires many thousands of lines of
code in a high-level programming language. Compilation of
the solver to a FPGA would be best accomplished by a
compiler capable of translating a higher-level programming
language into gates.

Another technology that could enable SAT on FPGAs is a fast
dynamic compiler combined with support for quickly
reprogramming small areas of the FPGA. Using this tool, we
could compile small pieces of data and program them on the
FPGA as they become important to the search. However,

 7

effective use of this compiled data would require significantly
lower processor-to-FPGA latency.

4.5 Projected Performance

We believe the Alef solver will be able to handle larger
problems and solve problems faster than sequential SAT
solvers. A workstation running a sequential SAT solver is
limited to problems that fit into memory and to the use of a
single CPU. The Alef system is able to use all available
memory and CPUs on a supercomputer or in a cluster. In
terms of problem size, we should be able to attempt to solve
problems that are up to two orders of magnitude larger than
other solvers, assuming more than 100x available RAM on a
large HPC system compared to a workstation.

In terms of speed, we expect Alef will excel on large
problems, where it is possible to exploit both data parallelism
in BCP and the algorithmic parallelism of multiple synergistic
searches. Quantifying the performance advantage of our solver
is difficult, and ultimately we must measure its performance
on benchmarks and real-world applications. However, we can
estimate the solver’s performance by comparing existing
solvers that share similar design characteristics.

The parallel solver from NEC Lab’s DiVer system exploits
data parallelism in BCP using a cluster of workstations. The
system runs a single search, controlled by a master processor,
which controls multiple BCP threads, one per cluster node.
The system was benchmarked using a cluster of three Pentium
4 workstations with standard Gigabit Ethernet, which has an
MPI message latency of approximately 100µs.

Ganai and Gupta report a performance penalty of 0.7 to 3.7
compared to a sequential solver over a range of benchmarks.
Performance penalty was defined as parallel speed / sequential
speed, so penalties less than 1 represented a speedup. For all
of the benchmarks under 124MB—benchmarks that would fit
on a single node with a sequential solver—they found a
significant slowdown (penalty >= 1.4). The largest slowdown
occurred on a very small 8MB benchmark, where the
overhead of distribution versus solver runtime was high. They
saw consistent speedup on benchmarks over 254MB. One
outlying 1538MB benchmark showed a slowdown (penalty =
1.4).

For large problems, DiVer’s solver often produced a speedup.
In the worst case, for a very small benchmark, it produced a
moderate slowdown (40%). This is encouraging because the
MPI message latency of standard Linux with Gigabit Ethernet
is over 50x greater than the latency of the Cray XD1 (1.7µs)
[3]. Because of this, we believe that targeting Alef to the XD1
will allow the solver to consistently realize a performance
speedup from data parallelism in BCP on moderate to large
structured benchmarks.

Calculating how much speedup is difficult, but we can set an
upper bound by looking at the Zhao architecture from
Princeton University. Zhao’s application-specific architecture
is a torus of customized Tensilica cores, each of which has
about the same power to run BCP as a workstation. The chip
runs a similar algorithm to the DiVer solver, but unlike DiVer
(and Alef), Zhao did not have to partition the clauses because
the on-chip latency between processor cores is in the
nanosecond range. The extremely low communication
overhead allowed Zhao to exploit all available data parallelism
in BCP. Using Tensilica’s simulators, Zhao showed the
maximum speedup from parallelism in BCP was 30x - 60x
over a range of benchmarks.

From Zhao’s work, we can conclude that, in the best case,
with very low communication latency, we can expect 30x -
60x speedup due to data parallelism from BCP. From Ganai
and Gupta’s work, we know that the worst case is a 40%
slowdown. We expect the Alef solver on the Cray XD1, with a
latency between the two bounding examples, will see a
speedup between 1x and 30x from data parallelism alone.

The second form of parallelism that our system will exploit is
algorithmic. By dividing the search space between multiple
search threads, each thread can search for a solution to the
same problem in parallel. This type of solver relies on various
forms of load balancing and sharing of learned information,
and most examples get between 1x and 20x speed up over
sequential solvers. Because the Alef solver is multithreaded
and will employ similar load balancing and information
sharing algorithms, we expect 1x - 20x speedup for this type
of parallelism.

While these two types of parallelism are independent, we do
not expect the speedups to multiply in the Alef solver. This is
because the solver has a finite number of worker threads. Each
added search thread places a greater load on the worker
threads, which limits the amount of parallel BCP they can
perform on behalf of each search thread. To achieve the
maximum 30x – 60x speed up from data parallelism in BCP,
we would need 30 – 60 BCP threads working together on
behalf of one search thread, each requiring a processing node.
However, we expect message latency to limit parallelism in
BCP, and expect additional search threads will help hide this
latency.

5 Salt Language and Tool

Salt is a constraint logic language and translator for SAT
applications. The Salt input language provides a simple and
intuitive syntax for representing propositional logic, fixed
point arithmetic, and set theoretic constraints. The Salt
translator provides a uniform method of translating those
constraints into optimized CNF. Salt can also introduce
partition annotations making it a useful preprocessor for the
Alef parallel SAT solver. Because the Salt language has an

 8

application-independent syntax, we can extend the
functionality of the Alef parallel solver without modification
to application problems expressed in Salt. Instead, we need
only modify the Salt translator to exploit the new solver
functionality.

Shaker, a companion tool to Salt, parses the output of a SAT
solver and translates the resulting variable assignments into a
readable form according to the variable bindings provided in a
Salt input file.

Now at version 1.02, Salt optimizes constraints based on a
system of lazy inference. In this system, assignments that can
be inferred from already-asserted constraints are used to
simplify subsequent constraints. The resulting translator is
both efficient and powerful. Salt also provides a novel
optimization mechanism based on controlling the complexity
of logical constraint subexpressions. This parameter, the
capture threshold of the translation, is key to achieving an
optimal translation for a specific solver.

The next version of Salt will provide a more robust
intermediate representation that can be generated directly
though an API, offering the ability to bypass the Salt language
front-end. The IR will also support a more aggressive set of
constraint optimizations, targeted at numerical and pseudo-
Boolean (linear inequality) constraints.

6 Alef Compiler

SAT solvers have applications in a wide variety of problem
domains, including planning and formal verification. For Alef,
we have chosen three domains that we think are particularly
interesting for their military and commercial applicability:
planning, software bounded model checking, and formal
verification of numerical precision.

The Alef system will include a front end that will accept
PDDL and translate it to CNF, annotating it for distribution
over the nodes of a parallel machine running our SAT solver.
Optimal planning problems have a natural time-step structure,
where each time step is only dependent on the previous time
step. With permission of the author, we have modified
SATPLAN [13] to annotate the CNF it produces with time
step markers. SATPLAN accepts optimal planning problems
in PDDL, produces CNF, then calls a sequential SAT solver to
solve the SAT instance. We believe that our parallel solver
will be able to solve the annotated CNF files from SATPLAN
significantly faster than a sequential solver is able to solve un-
annotated CNF.

For software BMC, we are modifying Reservoir’s R-Stream™
optimizing compiler to do automatic model extraction from
the source program and its specification. From these two
elements, R-Stream generates a Boolean formula that is
unsatisfiable if the specification holds for all possible
executions of the program. For the extraction, we use R-

Stream’s SSA internal representation, which simplifies the
extraction process. R-Stream also allows us to apply standard
compiler transformations such as program slicing, constant
propagation and variable hoisting to increase the performance
of the underlying model checker.

To improve the scalability of our system, our system will
include automatic program slicing to remove irrelevant
information from the generated problem. Additionally, we will
implement a program encoding that preserves context-
sensitivity by explicitly modeling the program stack. This will
allow us to skip inlining of procedure calls.

Formal verification of numerical precision builds on software
BMC techniques, particularly the ability to model the exact
value of a variable at any given point in a bounded program.
Our technique generates two value-exact models of the
program, one with lower precision and one with higher
precision. The high-precision version is identical to the low-
precision version except that bit-width of numeric types have
been increased. We then use our software bounded model
checker to verify that the result of the low-precision version
does not differ from the high-precision version by more than
an error bound e. If this property holds, we have proven that
the low-precision program approximates the high-precision
program within that error bound.

Extracting value-exact models of a program is only possible if
the execution of the program can be statically bound. For most
programs in which numerical precision is important, this will
not be an issue. A typical application might be building a
hardware circuit to implement a software function. Because it
is possible to implement the function in hardware, it should be
possible for the compiler to statically bind the execution of the
function, through programmer pragmas or static analysis.

7 Project Status

As of May 2006, 13 months of our 23-month Phase II SBIR
contract have elapsed. A sequential version of the Alef SAT
solver is complete and the parallel version is nearing its alpha
release. The Salt and Shaker tools are now at version 1.02 and
we are currently working towards 2.0. SATPLAN has been
modified to support our parallel solver, and we expect to
demonstrate the verification front end in the coming months.
We are actively soliciting prospective clients and
collaborators.

About the Authors

Samuel Luckenbill is building the Alef Parallel SAT solver
and is the project manager for Reservoir’s DARPA Phase II
SBIR to build the Alef System. He can be reached at
sbl@reservoir.com.

 9

James Ezick, Ph.D., works on Salt and other formal
verification projects at Reservoir. He can be reached at
ezick@reservoir.com.

Donald Nguyen and Peter Szilagyi are using Reservoir’s R-
Stream compiler to verify program correctness via bounded
model checking with SAT. They can be reached at
nguyen@reservoir.com and szilagyi@reservoir.com.

Richard Lethin, Ph.D., President of Reservoir Labs, is the
primary investigator for the DARPA Phase II SBIR. He can be
reached at lethin@reservoir.com.

For voice, fax, or written inquiries, all authors can be reached
at: Reservoir Labs, Inc., 632 Broadway, Suite 803, New York,
NY, 10012, +1-212-780-0527 (voice), +1-212-780-0547 (fax).
http://www.reservoir.com.

References

[1] R. Lethin et al., “R-Stream 3.0: Technologies for High
Level Embedded Application Mapping,” Reservoir
Labs, Inc., New York, NY, May 2004.

[2] C. Click, M. Paleczny, “A Simple Graph-Based
Intermediate Representation,” The First ACM
SIGPLAN Workshop on Intermediate Representations,
San Francisco, CA, 1995.

[3] Cray, Inc, “Cray XD1 Datasheet,” 2005, Available at:
http://www.cray.com/products/xd1/index.html

[4] R. Goering, “Synopsys Tips ‘Hybrid’ Formal
Verification,” EE Times, May 2003.

[5] T. Anderson, R. Bhagat, “Tackling Functional
Verification for Virtual Components,” ISD Magazine,
Nov. 2000.

[6] P. Rashinkar, L. Singh, “New SoC Verification
Techniques,” In Proc. IP/SOC’01, Mar. 2001.

[7] F. Ozguner, D. Marhefka, J. DeGroat, B. Wile, J. Stofer,
L. Hanrahan, “Teaching Future Verification Engineers:
The Forgotten Side of Logic Design,” In Proc. DAC’01,
Jun. 2001.

[8] T. Schubert, “High Level Formal Verification of Next-
Generation Microprocessors,” In Proc. DAC’03, Jun.
2003.

[9] National Institute of Standards and Technology. “The
Economic Impacts of Inadequate Infrastructure for
Software Testing,” May 2002, Available at:
http://www.nist.gov/director/prog-ofc/report02-3.pdf

[10] E. Phillips, “If it Works, it’s Not AI: A Commercial
Look at Artificial Intelligence Startups,” M.S. Thesis,
MIT, 1999.

[11] P. Winston, Artificial Intelligence, [In Lecture], MIT,
1992.

[12] “International Planning Competition,” [Online
Document], Hosted at ICAPS’04, Jun. 2004, Available
at: http://ipc.icaps-conference.org/

[13] H. Kautz, B. Selman, “Unifying SAT-based and Graph-
based Planning,” In Proc. IJCAI’99, Aug. 1999.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S.
Malik. Chaff: Engineering an Efficient SAT Solver. In
Proc. DAC’01, Las Vegas, NV, Jun., 2001.

[15] E. Goldberg, Y. Novikov, “BerkMin: a Fast and Robust
Sat-Solver,” In Proc. DATE’02, Mar. 2002.

[16] L. Ryan, “Efficient Algorithms for Clause-Learning
SAT Solvers,” M.Sc. Thesis, School of Computing
Science, Simon Fraser University, Feb., 2004.

[17] “Boolean Satisfiability Research Group at Princeton,”
[Online Document], Apr 2006, Available at:
http://www.princeton.edu/~chaff/zchaff.html

[18] H. Zhang, “SATO: An Efficient Propositional Prover,”
In Proc. CADE’97, Townsville, Australia, Jul. 1997.

[19] C. Sinz, W. Blochinger, W. Kuchlin, “PaSAT – Parallel
SAT-Checking with Lemma Exchange: Implementation
and Applications,” Vol. 9 of Electronic Notes in
Discrete Mathematics, Boston, MA, Jun. 2001.

[20] W. Blochinger, C. Sinz, W. Kuchlin, “Parallel
Propositional Satisfiability Checking with Distributed
Dynamic Learning,” Parallel Computing 29, 2003.

[21] Y. Yu, L. Zhang, S. Malik, “Practical Experiences with
Parallel Boolean Satisfiability by Shared Learning,”
SRC Report, Pub P006114, Aug. 2003.

[22] Y. Zhao, “Accelerating Boolean Satisfiability through
Application Specific Processing,” Ph.D. Thesis,
Department of Electrical Engineering, Princeton
University, Oct. 2001.

[23] M. Taylor, et al. “The Raw Microprocessor: A
Computational Fabric for Software Circuits and General
Purpose Programs,” IEEE Micro Mar./Apr. 2002.

[24] M. Ganai, A. Gupta, Z. Yang, P. Ashar, “Efficient
Distributed SAT and SAT-based Distributed Bounded
Model Checking,” In Proc. CHARME’03, Oct. 2003.

[25] R. Ahuja, J. Orlin, “A Fast and Simple Algorithm for
the Maximum Flow Problem,” Operations Research,
Vol. 37, No 5, Sept. – Oct. 1989.

This work was produced with US government support, under
DARPA Contract W31P4Q-04-C-R257. The US government
has certain rights to this work.

