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1 Introduction 

Solvers for the Satisfiability problem (SAT) are an enabling 
technology for a diverse set of applications including 
planning, mathematics, hardware verification, and software 
verification. However, solver performance in terms of speed 
and maximum problem size limits more extensive application 
of the technology. We are developing a planning and 
verification system, Alef, which includes a compiler, 
intermediate language and tool, and a SAT solver for HPC 
hardware.  

The Alef front-end compiler translates software verification 
problems into logical constraints. It is built on the Reservoir 
R-Stream™ High-Level Compiler, created for DARPA’s 
Polymorphous Computing Architectures (PCA) project [1]. R-
Stream is a C compiler, which includes an EDG front end and 
multiple internal representations including Static Single 
Assignment (SSA) [2]. 

To bridge the gap between front-end compilers and our SAT 
solver, we have developed the Satisfiability Application Logic 
Translator (Salt) intermediate language and tool. Salt is a 
macro language, similar in design to an assembly language, 
which provides a natural system for encoding SAT problems. 
Salt constraints can be translated in a single pass into 
Conjunctive Normal Form (CNF), preserving some high-level 
problem structure. Salt is applicable to multiple problem 
domains and provides intuitive operators for the expression of 
common naturally occurring constraints. 

The Alef parallel SAT solver utilizes algorithms and heuristics 
that improve its performance over existing approaches. With 
assistance from Cray, Inc., we are developing the solver to run 
well on the Cray XD1 [3]. Our analysis shows that our 
algorithms combined with the low message latency of the 
XD1 is likely to produce a significant performance 
improvement over existing solvers in terms of speed and 
maximum problem size. In this paper, we discuss these 
algorithms and present our performance projections. 

In Section 2, we provide motivation for the Alef system by 
discussing applications and social and economic need for 
faster SAT solvers. In Section 3, we provide some background 
on existing sequential and parallel SAT solvers and briefly 
discuss the limitations of each approach. In Section 4, we 
introduce the Alef parallel SAT solver and discuss its parallel 
algorithms. Section 5 introduces the Salt intermediate 
language and tool, Section 6 discusses the R-Stream based 
verification front end, and Section 7 covers the current status 
of the project.  

2 Applications 

The primary application domains for the Alef system are 
formal verification of software and automated planning. The 
increase in complexity of software and hardware systems is 
placing a greater burden on verification engineers. This trend 
is creating a demand for automated verification software. 
Additionally, designers want to verify larger sections of 
designs to ensure compatibility between modules and improve 
product quality. In the hardware verification domain, 
engineers are using a new class of Electronic Design 
Automation (EDA) tools that reduce the formal verification of 
complex designs to SAT problems and solve them with 
general-purpose SAT solvers [4]. Currently, verification costs, 
including empirical methods, consume in excess of 70% of the 
engineering effort for new hardware designs [5][6][7]. This 
cost is expected to grow, and verification methods are 
expected to shift from empirical to formal, requiring better 
SAT solver technology [8]. 

In the software domain, a major concern is the cost of 
undetected bugs, discovered after deployment. With the 
increasingly pervasive and deep embedding of computing in 
consumer and military devices, correctness has become a 
matter of public safety and national security. Expensive 
examples of deployed bugs include security flaws in the 
Windows operating system and cell phone recalls due to Java 
Virtual Machine bugs. In 2002, the National Institute of 
Standards and Technology estimated the cost of undetected 
bugs in software at $60 billion US dollars annually [9]. To 
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counter this cost, automated software verification tools are 
emerging, but the relative complexity of software limits its 
practicality.  

Automated planning is a critical military technology with a 
direct positive impact on strategic and tactical success, 
mission safety, and mission cost. For example, when the 
Department of Defense used automated planning software to 
optimize the shipment of supplies and equipment during 
Operation Desert Storm, the savings from using computer-
optimized schedules were greater than the total funding for 
artificial intelligence research since the 1940s [10][11]. The 
importance of SAT solvers for planning is illustrated by 
SATPLAN, the winner of the 2004 Optimal Planning 
Competition [12]. SATPLAN reduces planning problems 
specified in the Planning Domain Definition Language 
(PDDL) to SAT, and solves them with a general-purpose SAT 
solver [13].  

3 Related Work 

Over the past decade, a substantial amount of work has been 
done to accelerate SAT solvers. While the majority of this 
work focused on accelerating sequential solvers that run on 
single-processor workstations, some more recent work focuses 
on building hardware and software to take advantage of fine-
grained and coarse-grained parallelism. In addition to the 
parallel algorithms presented in Section 4, the Alef parallel 
SAT solver includes standard heuristics from modern 
sequential solvers.  

3.1 Sequential SAT Solvers 

Most modern SAT solvers are based on the Davis-Putnam-
Loveland-Logemann (DPLL) algorithm, an improved version 
of the original Davis-Putnam algorithm [14][15][16]. The 
DPLL algorithm begins with all variables in the SAT instance 
unassigned. It chooses a variable and assigns it either 0 or 1. 
After each decision, the algorithm performs Boolean 
Constraint Propagation (BCP). BCP is the iterative process of 
discovering variables that are implied to be 0 or 1 based on the 
current partial assignment.  

Consider BCP over the following Conjunctive Normal Form 
(CNF) SAT instance with three clauses: 

)()()( cbcbabaF ¬∧¬∧∧¬∧¬∧∧¬= . To satisfy a 
Boolean formula expressed in CNF, we must satisfy every 
clause in the formula (every clause must evaluate to 1). In 
order to satisfy each clause, at least one literal in the clause 
must be satisfied. If we assign a = 1, the first clause, 

)( ba ∧¬ , implies that b = 1. If a = 1 and b = 1, then the 
second clause implies that c = 1. However, if b = 1, the third 
clause implies that c = 0, which is called a conflict.  

In the DPLL algorithm, conflicts discovered during BCP are 
resolved by backtracking through the current decision and 

complementing its assignment. If the new assignment also 
leads to a conflict, the decision variable is unassigned and the 
previous decision is complemented. This continues until the 
solver finds a decision that does not lead to a conflict. If there 
are no previous decisions to complement, the SAT instance is 
unsatisfiable, and the algorithm terminates. Otherwise, the 
algorithm continues by choosing another unassigned variable 
and assigning it a value. If no unassigned variables remain, the 
algorithm has discovered a satisfying assignment to the 
variables and terminates. This algorithm is outlined in Figure 
1. 

while (true) { 
    if (decide() == SAT) { 
        return SAT; 
    } else if (propagate() == CONFLICT) { 
        if (resolve() == FAIL) { 
            return UNSAT; 
        } 
    } 
} 

Figure 1: DPLL Algorithm 

As with all NP-Complete problems, in the worst case, for a 
problem with n variables, the solver must search 2n possible 
assignments. However, modern solvers such as zChaff and 
BerkMin can solve some real-world problem instances with 
more than a million variables [14][15][17]. This is possible 
because of heuristics that frequently allow the solvers to 
explicitly search less of the search space while still ensuring 
that the entire space is covered. One heuristic determines the 
order that the solver chooses unassigned variables and the 
values to assign them. zChaff and BerkMin, two industry-
standard sequential SAT solvers, employ variants of the 
Variable State Independent Decaying Sum (VSIDS) heuristic. 
VSIDS tries to choose variables that are most local to the 
current path of the search. As a result, the solver tends to 
discover conflicts in the partial assignment earlier and move 
through unsatisfiable search space faster. 

Watch lists, introduced in SATO [18] and later refined by the 
authors of zChaff, are a common implementation optimization 
to BCP for clausal SAT solvers. Watch lists allow these 
solvers to examine only the clauses where a conflict or 
implication is likely to occur. This optimization is critical 
because modern SAT solvers spend most of their runtime 
performing BCP. 

Conflict-driven learning is a heuristic that occurs during 
conflict resolution. Normally, only a subset of the assignments 
to the variables lead to a conflict. By isolating that subset, the 
solver can prune unsatisfiable areas of the search space. Non-
chronological backtracking is tightly coupled with learning. 
Rather than complementing the assignment to the most recent 
decision, the solver backtracks through enough decisions to 
completely resolve the conflict. The learned information 
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prevents the solver from re-entering the same unsatisfiable 
region of the search space later. 

Finally, SAT solvers often use restarts to avoid becoming 
trapped in local minima. Because each decision in the search 
of a binary tree cuts the remaining search space in half, the 
first few decisions, when the search space is the largest, are 
the most important. However, the solver makes these 
decisions when it has learned the least amount of information 
about the problem. To diminish this effect, the solver may 
occasionally restart the search but retain the information it has 
learned. This gives it a chance to re-make the first few 
decisions with more knowledge of the search space. 

3.2 Parallel SAT Solvers 

PaSAT [19][20] and the parallel implementation of zChaff 
[21] are parallel SAT solvers designed to run on clusters. Both 
replicate the original problem instance on every node of the 
cluster and divide the search space among the nodes. The 
software that runs at each node is a complete SAT solver, 
responsible for only a subset of the variables. Each node 
makes decisions, performs BCP, learns, backtracks, and 
eventually detects that its piece of the search space is or is not 
satisfiable. If the search space is satisfiable, all nodes 
terminate and the satisfying result is reported to the user. 
Detecting an unsatisfiable result is more complex because the 
solver must show that all parts of the search space are 
unsatisfiable. To handle this, one processor is elected the 
master processor.  

Because large pieces of the search space are generally 
unsatisfiable, these solvers incorporate load balancing 
strategies to keep nodes active. Additionally, they share 
learned information between nodes to encourage them to work 
synergistically. These solvers typically see speedups ranging 
from 1x to 20x over sequential solvers, depending on problem 
instance.  

Inconsistent speedup is a major limitation of these parallel 
solvers. Even on a large cluster, these solvers are not always 
faster than a sequential solver running on a single workstation. 
This inconsistency arises because large pieces of the search 
space are often unsatisfiable and heuristics help solvers avoid 
traversing unsatisfiable search space. While the amount of 
space these parallel solvers can search increases linearly with 
added nodes, often the additional work is non-productive.  

As an alternative to exploiting parallelism between multiple 
searches, Ying Zhao, a former graduate student at Princeton, 
designed an application-specific processor to take advantage 
of the fine-grained parallelism within a single search [22]. The 
Zhao architecture is a torus of Tensilica cores with distributed 
blocks of embedded DRAM, resembling the MIT RAW PCA 
architecture [23]. Each Tensilica core implements custom 
operators for BCP, while special routers move messages 

between cores. Each core acts as a BCP engine for a subset of 
the clauses, while a master core runs a sequential search over 
the entire search space. The extremely low on-chip message 
latency allows for the random distribution of clauses between 
blocks of memory without significant communication 
overhead during BCP. Decision making and backtracking are 
also parallelized. In simulations, Zhao showed speed-ups 
between 20x and 60x, with larger speed-ups obtained from 
larger problems with more available parallelism. 

In all of the solvers discussed so far, the maximum size of the 
problem, in terms of number of clauses, is limited. While 
PaSAT and parallel zChaff use multiple nodes in a cluster, 
they must keep a complete copy of the problem instance and 
supporting solver state at each node. The Zhao special purpose 
architecture is limited to problems that fit in embedded 
DRAM on a chip, which is very small compared to the RAM 
in a workstation.  

To the best of our knowledge, only one solver, part of the 
DiVer Bounded Model Checking (BMC) system from NEC 
labs, is able to use the additional memory available in parallel 
machines to solve problems larger than the memory of a single 
node [24]. DiVer’s parallel solver runs a similar algorithm to 
the Zhao solver, where each node of a cluster is analogous to a 
BCP engine in the Zhao architecture. The DiVer system uses a 
natural linear decomposition generated from a BMC problem 
to distribute clauses across the nodes of the cluster. Each time 
step of the BMC problem is dependent only on the previous 
time step, such that the decomposition forms a linear chain 
where variables are shared only between adjacent time steps. 
When the clauses are distributed among cluster nodes, BCP 
requires only nearest-neighbor communication.  

Using this approach on a network of workstations connected 
with Gigabit Ethernet, the authors found a performance 
penalty between 0.7 and 3.6. Performance penalty was 
measured in terms of parallel speed / sequential speed, so 
penalties less than 1 represent an increase in performance over 
a sequential solver. In their study, larger performance 
penalties were often related to small problem size, where less 
parallelism is available.  

4 Alef Parallel Satisfiability Solver 

Alef’s parallel SAT algorithm is broken into the three threads: 
master, worker, and search. Each thread runs an autonomous 
message-driven algorithm. An instance of the Alef parallel 
SAT solver running on n nodes will contain one master thread, 
n worker threads and m search threads, where m is an integer 
greater than zero. 

The master thread is in charge of performing preprocessing to 
establish the initial state of the search, distributing work to the 
search threads, coordinating load balancing, detecting the case 
when the problem is unsatisfiable, and shutting down the 
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solver when it is complete. Search threads are in charge of 
making decisions, coordinating BCP and conflict resolution, 
and ultimately finding a satisfying result to the problem. 
Worker threads perform BCP on behalf of the search and 
master threads, and optionally perform distributed conflict 
resolution. Figure 2 illustrates a possible distribution of these 
threads over the nodes of a Cray XD1. 

 

Figure 2: Example Distribution of Threads for Alef Parallel 
SAT Solver on HPC Hardware 

4.1 Communication Library 

To ensure portability and to support the message-driven model 
of the Alef solver, we have implemented a communication 
library that hides the native communication interface from the 
application. Because the communication latency for MPI on 
the Cray XD1 is exceptionally low, the library is currently 
implemented using MPI. The library provides one-sided send, 
request, respond, and receive functionality. It also supports 
reclamation of storage from outgoing messages, pooling of 
MPI handles, a priority queue for each application-level 
thread, invalidation of responses to stale requests, and 
termination detection. 

One-sided communication is critical to the performance of our 
application because its behavior is data-dependent. For 
example, during BCP, messages are sent from the search 
thread to various worker threads depending on the distribution 
of variables between nodes. Messages are then forwarded 
between worker threads as additional implications are 
discovered. To support this behavior efficiently, each thread 
must be able to send a message and continue on with other 
work. On the receiving side, a thread must be able to receive a 
message when it becomes idle. While MPI supports non-
blocking sends and receives, it is a two-sided communication 
protocol and there is no consideration for memory 
management of pending sends. For each send, the recipient 
must actively receive the message before the sender can free 
the message state and MPI handle. Our library provides pools 
of memory-managed handles for sending messages and 

maintains queues of incoming messages, making the details of 
the communication protocol transparent to the application.  

The API additionally defines two other functions, request and 
respond. These functions enable a thread to send a single 
request that may provoke multiple responses. The thread may, 
at any time, query the communication library to determine if 
all responses to a request have been received. Because the 
algorithm is message driven, a completed request indicates 
that all work from that request has terminated. We call this 
feature termination detection, and its application to distributed 
BCP is described in Section 4.2. Finally, because the 
communication library keeps track of requests with pending 
responses, it is possible to invalidate responses to a stale 
request. As stale responses arrive, they are not queued and the 
application does not receive them. 

4.2 Distributed Boolean Constraint Propagation 

DPLL-based SAT solvers spend upwards of 80% of their time 
performing BCP [14]. In a modern sequential SAT solver, 
BCP is performed after each decision is made. The solver 
starts by fetching clauses in the watch list for the variable that 
was assigned. These are the clauses that could result in an 
implication or a conflict. Because BCP is iterative, each 
decision may lead to multiple implications, which may lead to 
more implications, and so on.  

Similar to the DiVer solver, Alef’s BCP algorithm is 
distributed and utilizes multiple BCP engines in parallel. Each 
engine, which we call a worker thread, owns a partition of the 
clauses from the SAT instance and is responsible for 
performing BCP on only those clauses. Unlike DiVer, Alef 
has multiple search threads, so worker threads must maintain 
the state necessary to perform BCP for each search thread. 
This state includes watch lists, assignments to variables, and 
partial assignment stacks. The overhead of this state is not 
excessive; each small watch list is approximately 1/nth the 
size of a full watch list, where n is the number of search 
threads. If a worker thread is able to do BCP for all n search 
threads, the total storage requirement is equivalent to one full 
watch list. 

In Figure 3, we have distributed the clauses from our 
sequential BCP example in Section 3.1 between two worker 
threads. Worker 1 owns clauses )( ba ∧¬  and ),( cba ∧¬∧¬  
and Worker 2 owns the clause ).( cb ¬∧¬  Distributed BCP 
begins when the search thread sets a = 1, then sends a BCP 
request message to the worker threads that contain the variable 
a. Because only Worker 1 contains the variable a, it sends 
only one message. Worker 1 responds by performing BCP on 
the two clauses in its clause database, which lead to the 
implications b = 1 and c = 1. Rather than sending the new 
implications back to the search thread, Worker 1 checks to see 
if any other worker threads have variables b or c in their 
clause partitions. Because Worker 2 has both b and c, the 
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message with the entire chain of implications is forwarded to 
Worker 2. When Worker 2 sets b = 1, its clause implies that c 
= 0, which conflicts with the implication c = 1 from Worker 1. 
Upon discovery of the conflict, BCP halts and the conflict is 
sent back to the search thread.  

Worker 1

Worker 2

Search 
Thread

Assignment:
a = 1

Implication:
a = 1
b = 1
c = 1

Conflict:
a = 1
b = 1

c = 1, 0

Original BCP Request
Forwarded BCP Request

BCP Results

)( ba∧¬
)( cba ∧¬∧¬

)( cb ¬∧¬

 

Figure 3: Distributed Boolean Constraint Propagation 

Implication forwarding makes it difficult for the search thread 
to determine when BCP has terminated. For one request sent, 
the search thread may receive multiple responses. In Alef, we 
handle termination detection by assigning each message a 
fractional value of the total response. As responses to a BCP 
request are received, the fractional values are summed. When 
the sum reaches 1, the search thread knows that all responses 
to its BCP request have been received.  

In Figure 4, a search thread issues a BCP request to a single 
node. The message starts with a fractional value of (1/1), 
indicating that it represents the entire request. The implied 
variable(s) discovered by Worker 1 exist in the partitions of 
both Worker 2 and Worker 3. Before forwarding the 
implications to Worker 2 and Worker 3, the fractional value is 
divided by 2, such that each forwarded message has a value of 
½. Similarly, Worker 2 discovers another implied variable 
contained in the partition of two other worker threads. The 
fraction is split to ¼, and the implications are forwarded back 
to Worker 1 and on to Worker 4. When Worker 3 receives the 
forwarded message from Worker 1, the implied variable(s) it 
discovers only exist in the partition of Worker 2. The fraction 
is not split and the message is forwarded on. When each chain 
of BCP terminates, the entire list of implications is sent back 
to the search thread. The fractional values are summed after 
each message arrives, and the thread continues with its search 
after the values sum to 1. Fractional termination detection is 
handled entirely within the communication library. 

 

 

Figure 4: Message Forwarding and Termination Detection 

4.3 Conflict Resolution 

One of the most important heuristics in modern SAT solvers is 
their ability to learn. The sequential implementation of 
conflict resolution in zChaff assumes that clauses are stored 
locally along with a complete assignment stack [14]. The 
assignment stack is a data structure that records the order in 
which decisions are made and implications are discovered, 
and the clause that resulted in each implication. Like the 
DiVer parallel solver, Alef currently implements a sequential 
conflict resolution algorithm at each search thread.  

Though DiVer’s solver is parallel with distributed data, it 
implements a sequential conflict resolution algorithm. This 
requires copying clauses from the nodes where they are stored 
to the master processor in charge of the search. Additionally, 
the master processor must construct an assignment stack from 
implications that are discovered in parallel at worker nodes. In 
the DiVer solver, as BCP engines discover implications, both 
the implications and the clauses that resulted in implications 
are returned to the master thread along with enough ordering 
information to construct the assignment stack. 

Alef has a more complex BCP algorithm than DiVer’s solver, 
making construction of a global assignment stack more 
difficult. Rather than sending implications back to the search 
thread as they are discovered, they are forwarded to other 
nodes until the chain of BCP terminates. As a result, messages 
received in response to a single decision may contain 
duplicate implications. Additionally, we do not assume that 
any channels deliver messages in order, allowing us to use 
lower-level communication libraries such as active messages. 

To build the assignment stack, we must construct a topological 
sort of the implications such that no implication discovered as 
a result of another implication appears before it in the stack. In 
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addition to the assignment stack, Alef needs some method to 
fetch the clauses necessary for conflict resolution. The current 
implementation requests clauses one-by-one, as they are 
needed. This has the benefit of requiring no significant amount 
of extra storage on the search thread’s node. However, we 
plan to experiment with aggressive forwarding schemes 
similar to the DiVer approach for better performance. 

While the sequential conflict resolution algorithm is sufficient 
for correctness, it does not take advantage of the distributed 
data or parallel hardware available in the Alef system. To 
address this, we have developed a distributed conflict 
resolution algorithm. This algorithm does not copy clauses to 
the search thread, nor does it construct a global assignment 
stack. While a complete description of the algorithm is beyond 
the scope of this paper, it is similar to a distributed min-cut 
max-flow algorithm [25].  

4.4 Alef and FPGAs 

The Cray XD1 features Field-Programmable Gate Arrays 
(FPGAs) connected to Opteron processors through 
Hypertransport [3]. We have developed several ideas for the 
use of FPGAs in conjunction with a general-purpose processor 
for our SAT solver, though limitations in the software and 
hardware that support FPGAs prohibit us from implementing 
these ideas in the immediate future.  

One promising idea is the fast evaluation of unrolled circuits 
for hardware BMC. In hardware BMC, we want to verify that 
a circuit conforms to a specification, for example, that an error 
signal is always 0. Because proving that the error signal will 
always be zero is undecidable, we bound the problem to k time 
steps from some initial state. In a typical SAT-based BMC 
tool, the circuit is unrolled k times and translated to CNF. The 
tool then adds clauses to assert that the error signal is always 
1. The entire problem instance is passed to a SAT solver, 
which tries to find a satisfying assignment. If the solver is able 
to find a satisfying assignment, it has found a case where an 
error could occur. An unsatisfiable result from the solver 
proves that there can be no error within k time steps from the 
initial state. 

One area where FPGAs excel and general-purpose processors 
are weak is in the propagation of values through Boolean 
circuits. In a general-purpose processor, we have to build 
software models of the behavior of each gate and a data 
structure that represents the connections between the gates. To 
propagate a signal through this “circuit,” we traverse the data 
structure of connections evaluating the appropriate gate 
models along the way. This can be made quite fast by 
compiling the circuit rather than interpreting it, as is done in 
high-end Verilog simulators. However, it is still significantly 
slower than a FPGA where the models of gates are replaced 
by actual gates and propagation is massively parallel.  

We suggest that each unrolling of the circuit could be 
compiled to a FPGA for fast propagation. Each unrolling is a 
copy of the circuit with the outputs from the previous copy 
connected to the inputs of the next. To use a FPGA, we would 
only have to synthesize one copy, then place and route it once 
for each time step. The general-purpose processor running the 
SAT solver could request that an attached FPGA propagate 
signals through the circuit and return the result of the 
propagation. However, in order to allow for propagation of 
partial signals, the circuit would have to be translated into 
ternary logic (X/0/1) before compilation to the FPGA. This 
translation would be inexpensive, but require about twice as 
many gates on the FPGA. Additionally, SAT solvers 
propagate signals backwards through circuits starting at 
arbitrary points. For this, we would need a new circuit for 
each input to the original circuit. While building these circuits 
would not be particularly computationally expensive, they 
require significant real estate on the FPGA. 

In addition to the requirement for ternary logic and reverse 
propagation, the time it takes to do the place and route and the 
latency between the general-purpose processor and the FPGA 
represent significant obstacles. For a tightly packed large 
Xilinx FPGA, place and route can take multiple hours. 
Because we must count this overhead in the total runtime of 
our solver, the costs could easily outweigh the benefits of 
using a FPGA, especially for smaller problems.  

On the XD1, the latency for a round trip message from the 
Opteron to the FPGA is approximately 0.66µs, which is 3000 
clock cycles on a 4GHz general-purpose processor. In addition 
to the 3000-cycle overhead, the FPGA still has to do the 
propagation. Because of the overhead, it may have been faster 
to do the propagation directly on the Opteron. While we 
cannot perform a cost-benefit analysis for using the FPGA 
without significant additional effort, the incremental overhead 
for its use due to chip-to-chip latency in addition to the up-
front overhead due to place and route appear excessive. 

In the future, we believe that compilation of the entire DPLL-
based SAT solver to the FPGA may be a promising path. SAT 
solvers are relatively simple, consisting of a state machine, 
propagation engines, and heuristics for making decisions and 
resolving conflicts. Despite their algorithmic simplicity, their 
implementation often requires many thousands of lines of 
code in a high-level programming language. Compilation of 
the solver to a FPGA would be best accomplished by a 
compiler capable of translating a higher-level programming 
language into gates.  

Another technology that could enable SAT on FPGAs is a fast 
dynamic compiler combined with support for quickly 
reprogramming small areas of the FPGA. Using this tool, we 
could compile small pieces of data and program them on the 
FPGA as they become important to the search. However, 



 7

effective use of this compiled data would require significantly 
lower processor-to-FPGA latency. 

4.5 Projected Performance 

We believe the Alef solver will be able to handle larger 
problems and solve problems faster than sequential SAT 
solvers. A workstation running a sequential SAT solver is 
limited to problems that fit into memory and to the use of a 
single CPU. The Alef system is able to use all available 
memory and CPUs on a supercomputer or in a cluster. In 
terms of problem size, we should be able to attempt to solve 
problems that are up to two orders of magnitude larger than 
other solvers, assuming more than 100x available RAM on a 
large HPC system compared to a workstation.  

In terms of speed, we expect Alef will excel on large 
problems, where it is possible to exploit both data parallelism 
in BCP and the algorithmic parallelism of multiple synergistic 
searches. Quantifying the performance advantage of our solver 
is difficult, and ultimately we must measure its performance 
on benchmarks and real-world applications. However, we can 
estimate the solver’s performance by comparing existing 
solvers that share similar design characteristics. 

The parallel solver from NEC Lab’s DiVer system exploits 
data parallelism in BCP using a cluster of workstations. The 
system runs a single search, controlled by a master processor, 
which controls multiple BCP threads, one per cluster node. 
The system was benchmarked using a cluster of three Pentium 
4 workstations with standard Gigabit Ethernet, which has an 
MPI message latency of approximately 100µs.  

Ganai and Gupta report a performance penalty of 0.7 to 3.7 
compared to a sequential solver over a range of benchmarks. 
Performance penalty was defined as parallel speed / sequential 
speed, so penalties less than 1 represented a speedup. For all 
of the benchmarks under 124MB—benchmarks that would fit 
on a single node with a sequential solver—they found a 
significant slowdown (penalty >= 1.4). The largest slowdown 
occurred on a very small 8MB benchmark, where the 
overhead of distribution versus solver runtime was high. They 
saw consistent speedup on benchmarks over 254MB. One 
outlying 1538MB benchmark showed a slowdown (penalty = 
1.4). 

For large problems, DiVer’s solver often produced a speedup. 
In the worst case, for a very small benchmark, it produced a 
moderate slowdown (40%). This is encouraging because the 
MPI message latency of standard Linux with Gigabit Ethernet 
is over 50x greater than the latency of the Cray XD1 (1.7µs) 
[3]. Because of this, we believe that targeting Alef to the XD1 
will allow the solver to consistently realize a performance 
speedup from data parallelism in BCP on moderate to large 
structured benchmarks. 

Calculating how much speedup is difficult, but we can set an 
upper bound by looking at the Zhao architecture from 
Princeton University. Zhao’s application-specific architecture 
is a torus of customized Tensilica cores, each of which has 
about the same power to run BCP as a workstation. The chip 
runs a similar algorithm to the DiVer solver, but unlike DiVer 
(and Alef), Zhao did not have to partition the clauses because 
the on-chip latency between processor cores is in the 
nanosecond range. The extremely low communication 
overhead allowed Zhao to exploit all available data parallelism 
in BCP. Using Tensilica’s simulators, Zhao showed the 
maximum speedup from parallelism in BCP was 30x - 60x 
over a range of benchmarks. 

From Zhao’s work, we can conclude that, in the best case, 
with very low communication latency, we can expect 30x - 
60x speedup due to data parallelism from BCP. From Ganai 
and Gupta’s work, we know that the worst case is a 40% 
slowdown. We expect the Alef solver on the Cray XD1, with a 
latency between the two bounding examples, will see a 
speedup between 1x and 30x from data parallelism alone. 

The second form of parallelism that our system will exploit is 
algorithmic. By dividing the search space between multiple 
search threads, each thread can search for a solution to the 
same problem in parallel. This type of solver relies on various 
forms of load balancing and sharing of learned information, 
and most examples get between 1x and 20x speed up over 
sequential solvers. Because the Alef solver is multithreaded 
and will employ similar load balancing and information 
sharing algorithms, we expect 1x - 20x speedup for this type 
of parallelism. 

While these two types of parallelism are independent, we do 
not expect the speedups to multiply in the Alef solver. This is 
because the solver has a finite number of worker threads. Each 
added search thread places a greater load on the worker 
threads, which limits the amount of parallel BCP they can 
perform on behalf of each search thread. To achieve the 
maximum 30x – 60x speed up from data parallelism in BCP, 
we would need 30 – 60 BCP threads working together on 
behalf of one search thread, each requiring a processing node. 
However, we expect message latency to limit parallelism in 
BCP, and expect additional search threads will help hide this 
latency. 

5 Salt Language and Tool 

Salt is a constraint logic language and translator for SAT 
applications. The Salt input language provides a simple and 
intuitive syntax for representing propositional logic, fixed 
point arithmetic, and set theoretic constraints. The Salt 
translator provides a uniform method of translating those 
constraints into optimized CNF. Salt can also introduce 
partition annotations making it a useful preprocessor for the 
Alef parallel SAT solver. Because the Salt language has an 
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application-independent syntax, we can extend the 
functionality of the Alef parallel solver without modification 
to application problems expressed in Salt. Instead, we need 
only modify the Salt translator to exploit the new solver 
functionality. 

Shaker, a companion tool to Salt, parses the output of a SAT 
solver and translates the resulting variable assignments into a 
readable form according to the variable bindings provided in a 
Salt input file. 

Now at version 1.02, Salt optimizes constraints based on a 
system of lazy inference. In this system, assignments that can 
be inferred from already-asserted constraints are used to 
simplify subsequent constraints. The resulting translator is 
both efficient and powerful. Salt also provides a novel 
optimization mechanism based on controlling the complexity 
of logical constraint subexpressions. This parameter, the 
capture threshold of the translation, is key to achieving an 
optimal translation for a specific solver. 

The next version of Salt will provide a more robust 
intermediate representation that can be generated directly 
though an API, offering the ability to bypass the Salt language 
front-end. The IR will also support a more aggressive set of 
constraint optimizations, targeted at numerical and pseudo-
Boolean (linear inequality) constraints. 

6 Alef Compiler 

SAT solvers have applications in a wide variety of problem 
domains, including planning and formal verification. For Alef, 
we have chosen three domains that we think are particularly 
interesting for their military and commercial applicability: 
planning, software bounded model checking, and formal 
verification of numerical precision.  

The Alef system will include a front end that will accept 
PDDL and translate it to CNF, annotating it for distribution 
over the nodes of a parallel machine running our SAT solver. 
Optimal planning problems have a natural time-step structure, 
where each time step is only dependent on the previous time 
step. With permission of the author, we have modified 
SATPLAN [13] to annotate the CNF it produces with time 
step markers. SATPLAN accepts optimal planning problems 
in PDDL, produces CNF, then calls a sequential SAT solver to 
solve the SAT instance. We believe that our parallel solver 
will be able to solve the annotated CNF files from SATPLAN 
significantly faster than a sequential solver is able to solve un-
annotated CNF. 

For software BMC, we are modifying Reservoir’s R-Stream™ 
optimizing compiler to do automatic model extraction from 
the source program and its specification. From these two 
elements, R-Stream generates a Boolean formula that is 
unsatisfiable if the specification holds for all possible 
executions of the program. For the extraction, we use R-

Stream’s SSA internal representation, which simplifies the 
extraction process. R-Stream also allows us to apply standard 
compiler transformations such as program slicing, constant 
propagation and variable hoisting to increase the performance 
of the underlying model checker. 

To improve the scalability of our system, our system will 
include automatic program slicing to remove irrelevant 
information from the generated problem. Additionally, we will 
implement a program encoding that preserves context-
sensitivity by explicitly modeling the program stack. This will 
allow us to skip inlining of procedure calls. 

Formal verification of numerical precision builds on software 
BMC techniques, particularly the ability to model the exact 
value of a variable at any given point in a bounded program. 
Our technique generates two value-exact models of the 
program, one with lower precision and one with higher 
precision. The high-precision version is identical to the low-
precision version except that bit-width of numeric types have 
been increased. We then use our software bounded model 
checker to verify that the result of the low-precision version 
does not differ from the high-precision version by more than 
an error bound e. If this property holds, we have proven that 
the low-precision program approximates the high-precision 
program within that error bound. 

Extracting value-exact models of a program is only possible if 
the execution of the program can be statically bound. For most 
programs in which numerical precision is important, this will 
not be an issue. A typical application might be building a 
hardware circuit to implement a software function. Because it 
is possible to implement the function in hardware, it should be 
possible for the compiler to statically bind the execution of the 
function, through programmer pragmas or static analysis. 

7 Project Status 

As of May 2006, 13 months of our 23-month Phase II SBIR 
contract have elapsed. A sequential version of the Alef SAT 
solver is complete and the parallel version is nearing its alpha 
release. The Salt and Shaker tools are now at version 1.02 and 
we are currently working towards 2.0. SATPLAN has been 
modified to support our parallel solver, and we expect to 
demonstrate the verification front end in the coming months. 
We are actively soliciting prospective clients and 
collaborators. 
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