
reser voir abs

Alef™ Formal Verification and Planning System

Samuel Luckenbill, James Ezick, Ph.D.,
Donald Nguyen, Peter Szilagyi, Richard Lethin, Ph.D.

Reservoir Labs, Inc.

11 May 2006

DARPA IPTO/ACIP-SBIR W31P4Q-04-C-R257

Copyright © 2006 Reservoir Labs

Proprietary: Not for Public Release

2reser voir abs DARPA Review Meeting
11 May 2006

Presentation Outline

• Overview and Applications

• Alef Parallel SAT Solver

• Salt: Satisfiability Application Logic and Translator

• Alef Compiler

• Questions and Discussion

3reser voir abs DARPA Review Meeting
11 May 2006

Alef Planning and Formal Verification System

Alef system: uses Reservoir’s R-
Stream compiler technology, a parallel
SAT engine, and HPC hardware to
solve planning and verification
problems.

• Alef compiler: accepts planning and
formal verification problems and
transforms them to the Salt language.

• Salt tool: translates Salt language into
Conjunctive Normal Form (CNF) with
partition annotations. Performs
optimizations based on lazy-inference.

• Parallel SAT solver: runs on Cray
XD1, incorporates complex parallel
algorithms and solver heuristics to
achieve significant speedup on some
structured problems.

Worker
Worker Worker

Worker Worker
Cray XD1

SearchSearchSearch SearchSearchSearch SearchSearchSearch

SearchSearchSearchSearchSearchSearch

Master

4reser voir abs DARPA Review Meeting
11 May 2006

The Satisfiability Problem (SAT)

Definition: Given a Boolean formula , decide if there is some assignment
to the variables in such that evaluates to true

Example:

Solution: evaluates to true (is satisfied) if = 0, = 0, and = 0 or 1

)()()(cbba cbaE ¬¬¬¬¬ ∨∧∨∨∧∨=
a b cE

E
EE

• Alef Applications

– Software Verification: Verifying numerical precision and
interprocedural control flow (Reservoir); assertion checking (Coverity);
proving that an implementation meets an Alloy specification (MIT)

– Hardware Verification: Bounded model checking (Cadence,
Synopsys, etc.); test pattern generation (IBM, Intel, etc.)

– Planning: Route planning (Lockheed); mission planning (DoD)

5reser voir abs DARPA Review Meeting
11 May 2006

Alef Parallel SAT Solver Overview

• Parallel implementation allows
multiple searches over different
parts of the search space

• Message passing approach
reduces network load and round
trip message delays

• Multithreaded implementation
increases latency tolerance,
allowing multiple search threads
per node

• Dynamic load balancing ensures all
nodes remain busy

• Asynchronous sharing of learned
information allows nodes to work
together

Alef Parallel SAT Solver

6reser voir abs DARPA Review Meeting
11 May 2006

Boolean Constraint Propagation (BCP)

• Modern backtracking SAT algorithms spend more than 80% of their
runtime performing Boolean Constraint Propagation (BCP)
[Moskewicz 2001]

– Choose a variable and assign it 0 or 1
– Propagate the variable through the clauses, detecting implications
– Iteratively propagate new implications, detecting any conflicts that may arise

• Example:

– Assign a = 1
• b is implied to be 1 to satisfy first clause
• Queue implication b = 1
• No implications from remaining clauses from a = 1

– Propagate new implication b = 1
• c is implied to be 1 to satisfy second clause
• c is implied to be 0 to satisfy third clause (a conflict)

– Backtrack and try a = 0, etc.

)()()(cbba cbaE ¬¬¬¬¬ ∨∧∨∨∧∨=

7reser voir abs DARPA Review Meeting
11 May 2006

Alef Parallel BCP Algorithm

• Each node of the parallel machine
runs a BCP worker thread, which
performs BCP for one or more search
threads

• Each worker thread has a subset of
the clauses (constraints)

• Search threads make decisions,
resolve conflicts, and coordinate
worker threads

• After a decision, BCP requests are
sent to nodes which contain the
decision variable

• Results from BCP are forwarded
between worker threads until BCP
terminates, then sent back to the
search thread

Distributed Boolean
Constraint Propagation

)(ba∧¬
)(cba ∧¬∧¬

)(cb ¬∧¬

8reser voir abs DARPA Review Meeting
11 May 2006

Message Forwarding and Termination Detection

• Forwarding of messages
– Implications are forwarded on to

other nodes to continue BCP
– Reduces communication for BCP

(over 80% of the runtime) by 50%

• Fractional termination detection
– Incoming responses are matched to

outgoing requests
– Responses to messages are valued

as fractions of the total response to
a single request

– Termination is detected when the
sum of the values of the responses
is 1 Message Forwarding and

Termination Detection

9reser voir abs DARPA Review Meeting
11 May 2006

Communication Library

• Implemented using MPI
– Native communication interface for Cray XD-1 (1.7µs message latency)
– MPI calls hidden from application layer

• Provides one-sided communication protocol
– Provides one-sided send, request, respond, and receive
– Monitors outgoing messages until they are received, reclaims storage
– Sorts incoming messages into priority queues for application threads
– Tracks outstanding requests, allowing for invalidation of stale responses
– Handles fractional termination detection

• Selected (simplified) API Calls:
void communication_request(Message request) – Sends a request which is

noted on a “scoreboard.” Responses are later matched to this request.
Local storage is reclaimed when the request message is received.

Message communication_receive(int thread_id) – Receives a waiting message
for a thread sorted by priority then age.

void communication_invalidate_responses(int thread_id) – Invalidates all
pending responses to outstanding requests for a thread.

int communication_is_complete(Message message) – Checks the “scoreboard” to
see if all responses to a message have been received using fractional
termination detection.

10reser voir abs DARPA Review Meeting
11 May 2006

Alef and FPGAs

• Potential uses for FPGAs on XD1:
– Fast evaluation of unrolled time steps from bounded model checking

(BMC): Circuits derived from each time step of a BMC problem are similar and
could be compiled once for an FPGA and used for fast propagation of signals.
Back propagation circuits could be expensive.

– Compiled subcircuit representations: As the solver works, it could select
frequently-visited pieces of the problem and compile them to an FPGA for fast
propagation.

• Challenges
– Long compilation times and lack of dynamic compilation tools. Traditionally,

compilation for FPGAs requires writing Verilog to describe a circuit, adjusting
timing and layout, running the design through a compiler, and place and route.
For real-time challenges such as route planning, the fast dynamic compilation is
required.

– Time to reprogram the FPGA is on the order of milliseconds to seconds, while
Opterons have clock speeds up to 2.4GHz (0.42ns per clock cycle). This is 2.4
million to 2.4 billion clock cycles load a program.

– Latency to cross chip boundaries limits ability to split an algorithm between
two chips unless parts are relatively independent.

11reser voir abs DARPA Review Meeting
11 May 2006

Alef Parallel Solver Performance Goals

• Problem size
– Up to 100x through distribution of problem over HPC hardware
– Requires partitioning using high-level problem structure

• Data parallelism in Boolean Constraint Propagation
– Best case speedup on chip from data parallelism in BCP is 30x – 60x [Zhao]

• Nanosecond-level message latency
– Worst case speedup on cluster is 1/3x – 1.4x [Ganai, Gupta]

• ~100µs MPI latency over gigabit Ethernet
– Expected speedup on Cray XD1: 1x – 30x

• 1.7 µs MPI latency within chassis

• Search parallelism
– Threads work together sharing learned information
– 1x – 20x speedup depending on benchmark [Blochinger]

• Conclusion:
– Best case: 100x problem size, 30x speedup from data parallelism, 20x speedup

from algorithmic parallelism
– Worst case: no speedup, but we will likely be able to solve larger problems

12reser voir abs DARPA Review Meeting
11 May 2006

Alef Parallel SAT Solver Status

• Completed components
– Sequential SAT solver
– Alpha-version parallel SAT solver
– MPI-based communication library
– Parallel BCP implementation
– Conflict resolution
– Unit test framework and library
– ~15,500 lines of code

• Incomplete components
– Verification and debugging
– Load balancing through work stealing
– Sharing of learned clauses
– Experimentation and tuning
– Optimization of code
– Alef system integration

13reser voir abs DARPA Review Meeting
11 May 2006

Salt: Satisfiability Application Logic and Translator

• Current version: 1.02 (full functionality)
• Supports logic, sets, and arbitrary precision fixed point arithmetic

– Supports both unsigned and signed 2’s complement representations
– Both truncation and rounding modes
– Optional restrictions against overflow

• 60+ operators and ~40 translation directives
– Basic logical operations and compound operations (one_hot, at_least_n)
– Union, intersection, cardinality operations
– Basic arithmetic operations, shifts, integer roots

• Design motivated by a CISC machine assembly language
– Macro operators translate directly to output expressions
– Weak, implicit type system
– Optimization based on lazy inference

• Salt language does not express choice of how to encode
• Companion tool Shaker translates SAT results to readable form

14reser voir abs DARPA Review Meeting
11 May 2006

Salt-Shaker Data-Flow Pipeline

• Salt can target multiple domain-
specific applications, each with
distinct input formats tailored to a
specific problem space

• Salt and Shaker capture CNF
conversion and solver solution
extraction in a domain non-specific
way

• Salt can embody solver-specific
optimizations and features, such as
partition placement for the Alef
parallel SAT solverAlef Parallel SAT Solver

Salt Translator Shaker

Annotated
CNF

1, -2, …

Application

Salt
Language X = 3.4, …

Problem Example

15reser voir abs DARPA Review Meeting
11 May 2006

Salt Example: Sudoku

"Fill in the grid so
that every row,
every column, and
every 3x3 box
contains the digits
1 through 9."

#header V(x, y, n) = 81 * n + 9 * y + x + 1
#header X(var) = (var - 1) % 9
#header Y(var) = ((var - 1) / 9) % 9
#header N(var) = (var - 1) / 81
#variables 729
#comment partial solution constraints ($u<x><y><n>)
#fixed $u025 424
#fixed $u037 595
…
#comment every square ($s<x><y>) has at most one value
$s00 at_most_n 1 1 82 163 244 325 406 487 568 649 +
$s01 at_most_n 1 10 91 172 253 334 415 496 577 658 +
…
#comment every value occurs in every row ($r<y><n>)
$r00 or 1 2 3 4 5 6 7 8 9 +
$r01 or 82 83 84 85 86 87 88 89 90 +
…

Salt Output:
variables: 731 (+2)
clauses: 2261 (3.1:1)
solved: 272 (37.2%)
time: 0.010s

Alef Sequential Solver/Shaker Output:
RESULT: SAT
real 0m0.092s

9 6 3 1 7 4 2 5 8
1 7 8 3 2 5 6 4 9
2 5 4 6 8 9 7 3 1
8 2 1 4 3 7 5 9 6
4 9 6 8 5 2 3 1 7
7 3 5 9 6 1 8 2 4
5 8 9 7 1 3 4 6 2
3 1 7 2 4 6 9 8 5
6 4 2 5 9 8 1 7 3

• A single Salt file is generated that
encodes each partial solution

• Sudoku encoding consists of
four constraint groups:

– Every square has at most one value
– Every value occurs in every row
– Every value occurs in every column
– Every value occurs in every 3x3 box

16reser voir abs DARPA Review Meeting
11 May 2006

Leveraging Reservor’s R-Stream™ Compiler

• Goal: Augment R-Stream to generate Salt directly from C programs

• EDG C front end
– Some verification conditions can be embedded as assertions
– Other verification conditions can be expressed as stylized program annotations

• Enhanced SSA internal representation
– Facilitates program simplifications in general
– SSA conversion removes cycles from local dataflow graphs
– Simplifies interpretation of statements as constraints

• Large toolkit of compiler algorithms
– Confirm that the program has properties we require

• Known loop bounds and functions
– Transform program fragments into the form we require

• Unroll loops and inline function calls
– Perform program analysis to derive supplementary constraints

17reser voir abs DARPA Review Meeting
11 May 2006

Software Bounded Model Checking with Alef

• Model program and verification conditions using Salt constraints
– Program semantics, derived properties = P
– Verification condition = Q
– Refutation of correctness = P & ~Q

• Verify using SAT solver
– SAT assignment provides counterexample to correctness
– No assignment = correct program (but bounded)

• Correctness guarantee limited by nature of SAT
– Finite program execution
– Predicate statements on control dependencies

• Can’t model unbounded executions in SAT
• SSA renames local variables when they are modified so we have an acyclic DFG

– Must be able to convert control dependence to data dependence
– Ongoing work to characterize infinite execution properties as Salt constraints

18reser voir abs DARPA Review Meeting
11 May 2006

Questions and Discussion

