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Abstract

In this paper we consider recent trends in operat-
ing systems and discuss their applicability to high
performance computing systems. In particular, we
will consider the relationship between lightweight ker-
nels, hypervisors, microkernels, modular kernels, and
approaches to building systems with a single sys-
tem image. We then describe how the Catamount
lightweight kernel can be extended to support the
Xen hypervisor API. This will, in turn, support use
of Linux on the compute nodes of a large scale parallel
system while minimizing the effort needed to support
both, a lightweight OS and a full-featured OS.

1 Introduction

In 2000, Rob Pike (noted for his role in the devel-
opment of the Plan 9 and Unix operating systems),
presented a talk in which he proclaimed that “Sys-
tems Software Research is Irrelevant.” [9] Much of
his argument is based on his observations regarding
operating systems aimed at desktop systems. The
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dominance of Microsoft and the need to support a
large number of changing standards (e.g., TCP/IP,
HTTP, HTML, XML, CORBA, POSIX, NFS, etc.)
are two of the more significant reasons for the decline
in interest in new operating systems.

One could also argue that research in infrastructure
always tends to be marginalized (remains irrelevant)
until it is demonstrated that the infrastructure is fun-
damentally broken or that other approaches might
present substantial benefits. Recently, there have
been several observations indicating that operating
systems for very large scale systems are broken. In
particular, full featured operating systems have been
shown to limit application scalability [8, 6]. The al-
ternative approach, the lightweight operating systems
deployed on IBM’s Blue Gene/L and Cray’s XT3 do
not provide many of the features that application de-
velopers have come to expect. To quote Rob Pike,
these operating systems fail to “honor a huge list of
large, and often changing, standards:...”

In the current environment, companies developing
the largest systems face an unappealing dilemma:
they can adopt a full-featured operating system at
the risk of hindering application scalability, or they
can adopt a lightweight operating system that does
not support the broader application community. The
possibility of supporting both a full-featured operat-
ing system and supporting a lightweight operating
system is financially infeasible. In this paper, we ar-
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gue for an approach that we believe will enable sup-
port for both, a lightweight and a full-featured oper-
ating system, without significantly increasing budgets
needed to support systems software.

The approach we advocate is to transform a
lightweight operating system (like Catamount [7] for
the XT3) into a virtualization layer that can support
scalable applications directly, but can also support a
full-featured operating system (like Linux). In the
next three sections, we review the design approaches
embedded in microkernels (Mach [10] and L4 [5]), hy-
pervisors (VMware [11] and Xen), and lightweight
operating systems (IBM’s CNK and Cray’s Cata-
mount), respectively. In the following section, we
examine the benefits that Linux provides in an ef-
fort to identify why Linux might provide a desirable
environment for applications developed for high end
computing systems. In the sixth section, we describe
how Catamount could be extended to provide a virtu-
alization layer capable of running Linux while retain-
ing the properties that make this operating system
viable for scalable applications.

2 Microkernels

The microkernel approach was popularized with the
development of Mach in 1985. Figure 1 presents a
graphical interpretation of the microkernel approach.
The microkernel runs in privileged mode, everything
else runs in user (non-privileged) mode. The mi-
crokernel provides the features needed to create and
run processes and to communicate between processes.
Services that would traditionally be part of a mono-
lithic operating system, e.g., the file system, are im-
plemented in server processes. Rather than making
direct calls to operating systems services, applica-
tions send request messages to server processes.

The microkernel approach presents several bene-
fits. From a security perspective, microkernels offer
the potential for a much smaller privileged code base.
From an implementation perspective there are fewer
services that must be implemented in the microker-
nel, making it easier to optimize implementations of
these services. Because microkernels only implement
a minimal set of required services, users can develop
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Figure 1: Microkernel Software Architecture

implementations of services that are optimized to the
needs of specific applications.

One of the most interesting developments was the
observation that it was possible to run the full-
featured operating system as a server on top of the
microkernel with relatively simple modifications to
the microkernel and the full-featured operating sys-
tem. This was demonstrated by developing a Unix
server that ran on top of the Mach microkernel [1].
This, in turn, enabled the execution of applications
written (and compiled) for Unix without modifica-
tion.

The first generation of microkernels, as exemplified
by Mach, had a significant overhead for traditional
system calls. More recent, second generation micro-
kernels as exemplified by L4, do not incur the same
overheads.

3 Hypervisors

While Mach showed that it was possible to run a
full-featured operating system as a application level
service, Mach was really designed to run applications
and services that were written for Mach. Hypervi-
sors, on the other hand, have been developed with
the explicit goal of running full-featured operating
systems as applications. Hypervisors do this by con-
structing a virtual machine for each operating system.
Full virtualization involves full emulation for a spe-
cific set of hardware. This approach is exemplified
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by VMware and does not require any modification
of the full-featured operating system, as long as that
operating system is capable of running on the emu-
lated hardware. In paravirtualization, as exemplified
by Xen [2], the hypervisor provides an API for an
idealized virtual machine. This machine is accessed
using procedure calls rather than direct manipulation
of device registers. The operating systems that are
run on this type of hypervisor must be modified to
use the API provided by the hypervisor.

Figure 2 presents a graphical interpretation for the
Xen software architecture. In paravirtualization, the
CPU is not usually emulated, applications and op-
erating systems must be compiled for the processor
used by the hypervisor. The MMU (Memory Man-
agement Unit) which controls memory access, can be
emulated or accessed through procedure calls to up-
date and install page tables. Access to I/O devices
presents a particularly difficult problem. Xen pro-
vides a virtualized Ethernet device as part of each
virtual machine. Access to other devices is provided
through a special, privileged operating system run-
ning on Xen, called “Domain 0,” which has direct
access to the device registers for all of the devices
in the underlying system. This strategy means that
Xen is not complicated by the need to include device
drives for a wide range of devices. This complexity
can be relegated to a full-featured operating system,
like Linux, that already has drivers for a wide range
of devices.
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Figure 2: The Xen Software Architecture

4 Lightweight Kernels

Two of the largest systems currently available, IBM’s
Blue Gene/L and Cray’s XT3 (Red Storm), use
“lightweight” kernels on their compute nodes. These
systems are based on a partitioned system architec-
ture [4]. The nodes in the system are partitioned into
groups to support different functional needs. Typi-
cal partitions include I/O nodes (which support ac-
cess to storage devices), service nodes (which support
user logins), and compute nodes (which are used to
run computations). This partitioning allows for spe-
cialization, different types of node may have differ-
ent types of hardware and may run different software
stacks. For example, both the XT3 and Blue Gene/L
run Linux on their I/O nodes but they run lightweight
kernels on their compute nodes.

The lightweight kernel on the compute nodes pro-
vides a minimal environment needed to support com-
putations. These kernels do not directly support I/O
operations or many of the other services that applica-
tions will need. In the case of the Compute Node Ker-
nel (CNK) used in IBM’s Blu Gene/L, these services,
when requested by an application, are forwarded to
an I/O node. Figure 3 presents the software archi-
tecture for Blue Gene/L. The application runs on top
of the CNK which runs on the hardware of the com-
pute node. When the application makes a request,
its execution is trapped by the CNK. The CNK han-
dles some requests locally, while others are forwarded
to an I/O node. This strategy is very similar to the
microkernel approach to running a full-featured op-
erating system in user space.

In the case of Catamount, the lightweight OS used
in Cray’s XT3, requests for extended services are han-
dled by“wrapper”libraries that transform the request
into a Remote Procedure Call (RPC) to the appro-
priate type of node. Figure 4 presents the software
architecture of Catamount. As can be seen by this il-
lustration, Catamount consists of three separate com-
ponents: the wrapper library, the Process Control
Thread (PCT) and the Quintessential Kernel (QK).
The separation between the PCT and the QK reflects
a separation between policy and mechanism. The QK
provides the underlying mechanisms needed to sup-
port computation (for example, building and manag-
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Figure 3: The Blue Gene/L Software Architecture

ing address spaces and interprocess communication).
The PCT provides the policy needed to manage and
support application processes (for example, process
creation and scheduling and name services).
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Figure 4: The Catamount Software Architecture

5 Linux

In recent years, Linux has emerged as the platform of
choice for developing parallel scientific applications.
There are several reasons for the popularity of Linux.
From an application developer’s perspective, Linux
provides a wide range of familiar services. From the
perspective of a library writer, Linux provides a tar-
get platform that is used by a large group of users.
This means that library developers can reach a large
percentage of their potential market when they build
on Linux. This, in turn, grows the collection of ser-
vices that are available in Linux. From system inte-
grator’s perspective, Linux provides a very large col-
lection of device drivers, indeed 1.4 of the 2.6 million
lines of code in the 2.4 kernel are device drivers. It
is not too much of an exaggeration to say that Linux
runs on just about any platform you might want to
use. The availability of device driver for a wide range
of devices has been a driving factor in the rapid emer-
gence of Linux clusters. Figure 5 presents a graphical
interpretation of the “ecosystem” surrounding Linux.

In network design, the structure shown in Figure 5
is referred to as an “hourglass design.” Like an hour-
glass the structure narrows at the waist. In this case,
the waist constricts to a single entity, Linux (in the
case of modern networking, IP provides the single
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Figure 5: Linux Services

entity at the waist). The narrow waist defines a (rel-
atively) small interface to be implemented on a va-
riety of platforms. This interface, in turn, defines
a common platform that can be used to implement
additional functionality.

In the context of very large scale systems, the ben-
efits associated with the vast collection of available
device drivers are not as significant as they might
be in other contexts. First, the compute nodes of
these systems have very few devices; perhaps, an I/O
bus, a serial port (for the monitoring system), and
an interface to a high performance network. Second,
a significant complexities associated with developing
device drivers is the need to deal with hardware that
does not completely follow the specification. Because
they are typically based on specialized implementa-
tions using commodity components, if there is any
complexity due to a mismatch between the hardware
and its specification, the solutions needed are likely
to be unique to the system being developed (and will
not benefit to any significant extent from the solu-
tions encoded in the Linux device drivers).

In contrast to the device drivers, applications are
likely to benefit from the software ecosystem sup-
ported by Linux. These applications can take advan-
tage of communication libraries, numerical libraries,
compilers, and debugging tools that have been devel-

oped for Linux. In some cases, these applications may
also benefit from the availability of commodity net-
working protocols that can be used to interface with
remote services (e.g., visualization servers). While
they may benefit from some of the Linux ecosystem,
it is clear that these applications will not benefit from
large parts of this ecosystem. For example, applica-
tions running on the compute nodes of a large system
are unlikely to need a text editor, terminal emulator,
or mail client. Figure 6 presents the software archi-
tecture of Linux as this architecture is likely to be
used on the compute nodes of a very large system.
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Figure 6: Linux HPC Services

6 Linux on Catamount

Given the richness of the Linux software ecosystem,
running Linux on the compute nodes of a large scale
system has clear benefits. However, other researchers
have observed that full-featured operating systems
an have a negative impact on application scalabil-
ity [8, 6]. This conflict might be resolved by support-
ing both Linux and a lightweight operating system
on the compute nodes of the very large system. This
strategy introduces two problems. First, it may be
difficult to enable Linux and the lightweight kernel
to co-exist simultaneously on a single system. Sec-

5



ond, the costs associated with supporting two oper-
ating systems on the same platform may make this
approach infeasible.

Lightweight operating systems frequently make
simplifying assumptions to minimize work that must
be done during program execution. Catamount in
particular, makes several important assumptions re-
garding the authenticity and trustworthiness of mes-
sages [12] to improve the performance of message
passing and enhance application scalability. These
assumptions will not be valid if Linux is allowed to co-
exist on a single system. As a minimum, this would
require modification to the underlying communica-
tion mechanisms of Linux.

The second problem, the economic feasibility of
supporting two operating systems, is likely to be the
more significant. Supporting an operating system for
the compute nodes of a large scale system is not a
trivial task. As new applications are ported to the
system, these applications are likely to test the sys-
tems software in new ways frequently exposing soft-
ware issues that were previously unknown. The man-
power needed to diagnose and fix these problems is
significant. Unless the two operating systems share
a common low-level code base, there will not be any
carry over from one system to the other, requiring in-
dependent sets of resources to support each system.

To avoid these problems, we describe how Cata-
mount, the lightweight operating system for Cary’s
XT3 system, could be transformed into a paravirtu-
alization layer capable of supporting both the direct
execution of“scalable applications” and full-featured
operating systems like Linux. Figure 7 illustrates the
basic strategy for running Linux on Catamount. In
principle, the QK provides the hardware virtualiza-
tion functionality and the PCT provides the Domain
0 functionality.

To more fully explore this approach, we need to
consider the mechanisms used in Catamount. Fig-
ure 8 illustrates these mechanisms. The QK deals
with hardware interrupts (timer interrupts and net-
work interrupts) and exports two APIs: one for the
PCT and another for applications. The application-
QK API includes message passing (through Por-
tals [3]), quit quantum (to wait for an event), and
handlers for illegal instructions and illegal addresses
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Figure 7: Linux on Catamount

(both of these reflect the exceptions to the PCT).
The PCT-QK API includes message passing (so that
PCTs can communicate with one another and with
service nodes), functions to build address spaces and
a function to run a context (an address space plus
program counter).

Communication between the PCT and an applica-
tion is accomplished through a mailbox (MB) which
resides at a known address in the application. Appli-
cations place a request in the mailbox and invoke the
quit quantum QK call. When it is run, the PCT ex-
amines the mailbox for most recently run application
to see if the application has a PCT request.

Porting Linux to a new (virtual) hardware envi-
ronment typically involves the introduction of a new
target architecture. Supporting a new architecture
requires a great deal of effort. Rather than creat-
ing a new Linux target architecture, we propose to
use XenoLinux [2] a port of Linux that runs on Xen,
leaving the burden for supporting this architecture on
the Xen/Linux community. This only requires that
we support the Xen hypercalls used in XenoLinux.
Table 1 summarizes these calls.

For the most part, these calls are easily imple-
mented by extending the API provided by the PCT,
with minimal modifications to the QK and no mod-
ifications to XenoLinux. Figure 9 presents a more
realistic strategy for running Linux on Catamount.
A “PCT Wedge” library declares the required mail-
box and translates the Xen hypercalls into PCT re-
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Hypercall Use
set callbacks establish normal and “failsafe” event handlers

sched op new one of yield, block, shutdown, or poll
mmu update update page table entries (can also use direct modification)
stack switch change the stack

fpu taskswitch next attempt to use floating point causes trap
memory op increase or decrease current memory allocation

event channel op inter-domain event-channel management
physdev op BIOS replacement

Table 1: Hypercalls on Xen
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quests. While the PCT can easily provide the needed
functionality, it does not currently provide this func-
tionality for Catamount applications. In particular,
while the PCT can create address maps and run con-
texts, it does not make this functionality available to
applications. To do so, will require some extensions
to the PCT, indicated by the “Xen Wedge.” The QK
should not require any modifications. Address faults
and exceptions encountered by XenoLinux (for exam-
ple, during an attempt to modify an MMU register)
would be forwarded to the PCT, where they can be
handled in the appropriate manner.
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Figure 9: A More Realistic Approach to Running
Linux on Catamount

7 Conclusion

In this paper, we have advocated using Catamount
as a virtualization layer to support the use of full-
featured operating systems, specifically Linux, on
large scale systems. This can be accomplished with
minimal changes to the QK and extensions to the
PCT. Using this virtualization layer, application de-
velopers who choose to can take advantage of the
Linux software ecosystem. Because there are mini-
mal changes to the QK, application developers who
do not need this functionality should not experience
any limitations in application scalability.

All software evolves over time and Linux has had
a particularly rapid rate of change over its relatively
short history. By emulating the Xen hypercall API,

our approach minimizes the need to track changes
for future releases of Linux. In particular, applica-
tion developers should be able to use the XenoLinux
kernel, or any OS that has been ported to the Xen
API, without modification. Only changes to the Xen
API need to be tracked and incorporated into the
Catamount software base.
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